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Preface

The most incomprehensible thing about the world is that it is at all
comprehensible.

- Albert Einstein1 1 As quoted in Jon Fripp, Deborah
Fripp, and Michael Fripp. Speaking of
Science. Newnes, 1st edition, 4 2000.
ISBN 9781878707512In the course of studying physics I became, like any student of

physics, familiar with many fundamental equations and their solu-
tions, but I wasn’t really able to see their connection.

I was thrilled when I understood that most of them have a com-
mon origin: Symmetry. To me, the most beautiful thing in physics is
when something incomprehensible, suddenly becomes comprehen-
sible, because of a deep explanation. That’s why I fell in love with
symmetries.

For example, for quite some time I couldn’t really understand
spin, which is some kind of curious internal angular momentum that
almost all fundamental particles carry. Then I learned that spin is
a direct consequence of a symmetry, called Lorentz symmetry, and
everything started to make sense.

Experiences like this were the motivation for this book and in
some sense, I wrote the book I wished had existed when I started my
journey in physics. Symmetries are beautiful explanations for many
otherwise incomprehensible physical phenomena and this book is
based on the idea that we can derive the fundamental theories of
physics from symmetry.

One could say that this book’s approach to physics starts at the
end: Before we even talk about classical mechanics or non-relativistic
quantum mechanics, we will use the (as far as we know) exact sym-
metries of nature to derive the fundamental equations of quantum
field theory. Despite its unconventional approach, this book is about
standard physics. We will not talk about speculative, experimentally
unverified theories. We are going to use standard assumptions and
develop standard theories.



Depending on the readers experience in physics, the book can be
used in two different ways:

• It can be used as a quick primer for those who are relatively new
to physics. The starting points for classical mechanics, electro-
dynamics, quantum mechanics, special relativity and quantum
field theory are explained and after reading, the reader can decide
which topics are worth studying in more detail. There are many
good books that cover every topic mentioned here in greater depth
and at the end of each chapter some further reading recommen-
dations are listed. If you feel you fit into this category, you are
encouraged to start with the mathematical appendices at the end
of the book2 before going any further.2 Starting with Chap. A. In addition, the

corresponding appendix chapters are
mentioned when a new mathematical
concept is used in the text.

• Alternatively, this book can be used to connect loose ends for more
experienced students. Many things that may seem arbitrary or a
little wild when learnt for the first time using the usual historical
approach, can be seen as being inevitable and straightforward
when studied from the symmetry point of view.

In any case, you are encouraged to read this book from cover to
cover, because the chapters build on one another.

We start with a short chapter about special relativity, which is the
foundation for everything that follows. We will see that one of the
most powerful constraints is that our theories must respect special
relativity. The second part develops the mathematics required to
utilize symmetry ideas in a physical context. Most of these mathe-
matical tools come from a branch of mathematics called group theory.
Afterwards, the Lagrangian formalism is introduced, which makes
working with symmetries in a physical context straightforward. In
the fifth and sixth chapters the basic equations of modern physics
are derived using the two tools introduced earlier: The Lagrangian
formalism and group theory. In the final part of this book these equa-
tions are put into action. Considering a particle theory we end up
with quantum mechanics, considering a field theory we end up with
quantum field theory. Then we look at the non-relativistic and classi-
cal limits of these theories, which leads us to classical mechanics and
electrodynamics.

Every chapter begins with a brief summary of the chapter. If you
catch yourself thinking: "Why exactly are we doing this?", return
to the summary at the beginning of the chapter and take a look at
how this specific step fits into the bigger picture of the chapter. Every
page has a big margin, so you can scribble down your own notes and
ideas while reading3.3 On many pages I included in the

margin some further information or
pictures.

X PREFACE



I hope you enjoy reading this book as much as I have enjoyed writing
it.

Karlsruhe, January 2015 Jakob Schwichtenberg
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Part I

Foundations

"The truth always turns out to be simpler than you thought."

Richard P. Feynman
as quoted by

K. C. Cole. Sympathetic Vibrations.

Bantam, reprint edition, 10 1985.

ISBN 9780553342345



1

Introduction

1.1 What we Cannot Derive

Before we talk about what we can derive from symmetry, let’s clarify
what we need to put into the theories by hand. First of all, there is
presently no theory that is able to derive the constants of nature.
These constants need to be extracted from experiments. Examples are
the coupling constants of the various interactions and the masses of
the elementary particles.

Besides that, there is something else we cannot explain: The num-

ber three. This should not be some kind of number mysticism, but
we cannot explain all sorts of restrictions that are directly connected
with the number three. For instance,

• there are three gauge theories1, corresponding to the three fun- 1 Don’t worry if you don’t understand
some terms, like gauge theory or
double cover, in this introduction. All
these terms will be explained in great
detail later in this book and they are
included here only for completeness.

damental forces described by the standard model: The electro-
magnetic, the weak and the strong force. These forces are de-
scribed by gauge theories that correspond to the symmetry groups
U(1), SU(2) and SU(3). Why is there no fundamental force follow-
ing from SU(4)? Nobody knows!

• There are three lepton generations and three quark generations.
Why isn’t there a fourth? We only know from experiments2 with 2 For example, the element abundance

in the present universe depends on the
number of generations. In addition,
there are strong evidence from collider
experiments. (See Phys. Rev. Lett. 109,
241802) .

high accuracy that there is no fourth generation.

• We only include the three lowest orders in Φ in the Lagrangian
(Φ0, Φ1, Φ2), where Φ denotes here something generic that de-
scribes our physical system and the Lagrangian is the object we
use to derive our theory from, in order to get a sensible theory
describing free (=non-interacting) fields/particles.

• We only use the three first fundamental representations of the
double cover of the Poincare group, which correspond to spin 0, 1

2

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_1
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4 physics from symmetry

and 1, respectively, to describe fundamental particles. There is no
fundamental particle with spin 3

2 .

In the present theory, these things are assumptions we have to
put in by hand. We know that they are correct from experiments,
but there is presently no deeper principle why we have to stop after
three.

In addition, there are two things that can’t be derived from sym-
metry, but which must be taken into account in order to get a sensi-
ble theory:

• We are only allowed to include the lowest-possible, non-trivial or-
der in the differential operator ∂μ in the Lagrangian. For some the-
ories these are first order derivatives ∂μ, for other theories Lorentz
invariance forbids first order derivatives and therefore second
order derivatives ∂μ∂μ are the lowest-possible, non-trivial order.
Otherwise, we don’t get a sensible theory. Theories with higher or-
der derivatives are unbounded from below, which means that the
energy in such theories can be arbitrarily negative. Therefore states
in such theories can always transition into lower energy states and
are never stable.

• For similar reasons we can show that if particles with half-integer
spin would behave exactly as particles with integer spin there
wouldn’t be any stable matter in this universe. Therefore, some-
thing must be different and we are left with only one possible,
sensible choice3 which turns out to be correct. This leads to the3 We use the anticommutator instead of

the commutator as the starting point
for quantum field theory. This prevents
our theory from being unbounded from
below.

notion of Fermi-Dirac statistics for particles with half-integer spin
and Bose-Einstein statistics for particles with integer spin. Par-
ticles with half-integer spin are often called Fermions and there
can never be two of them in exactly the same state. In contrast, for
particles with integer spin, often called Bosons, this is possible.

Finally, there is another thing we cannot derive in the way we
derive the other theories in this book: Gravity. Of course there is
a beautiful and correct theory of gravity, called general relativity.
But this theory works quite differently than the other theories and
a complete derivation lies beyond the scope of this book. Quantum
gravity, as an attempt to fit gravity into the same scheme as the other
theories, is still a theory under construction that no one has success-
fully derived. Nevertheless, some comments regarding gravity will be
made in the last chapter.
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1.2 Book Overview

Double Cover of the Poincare Group

Irreducible Representations

��

�� �� ��
(0, 0) : Spin 0 Rep

acts on
��

( 1
2 , 0)⊕ (0, 1

2 ) : Spin 1
2 Rep

acts on
��

( 1
2 , 1

2 ) : Spin 1 Rep

acts on
��

Scalars

Constraint that Lagrangian is invariant
��

Spinors

Constraint that Lagrangian is invariant
��

Vectors

Constraint that Lagrangian is invariant
��

Free Spin 0 Lagrangian

Euler-Lagrange equations
��

Free Spin 1
2 Lagrangian

Euler-Lagrange equations
��

Free Spin 1 Lagrangian

Euler-Lagrange equations
��

Klein-Gordon equation Dirac equation Proka equation

This book uses natural units, which means setting the Planck
constant h = 1 and the speed of light c = 1. This is conventional in
fundamental theories, because it avoids a lot of unnecessary writing.
For applications the constants need to be added again to return to
standard SI units.

The starting point will be the basic assumptions of special relativ-

ity. These are: The velocity of light has the same value c in all inertial
frames of reference, which are frames moving with constant velocity
relative to each other and physics is the same in all inertial frames of
reference.

The set of all transformations permitted by these symmetry con-
straints is called the Poincare group. To be able to utilize them, the
mathematical theory that enables us to work with symmetries is in-
troduced. This branch of mathematics is called group theory. We will
derive the irreducible representations of the Poincare group4, which 4 To be technically correct: We will

derive the representations of the
double-cover of the Poincare group
instead of the Poincare group itself. The
term "double-cover" comes from the
observation that the map between the
double-cover of a group and the group
itself maps two elements of the double
cover to one element of the group. This
is explained in Sec. 3.3.1 in detail.

you can think of as basic building blocks of all other representations.
These representations are what we use later in this text to describe
particles and fields of different spin. Spin is on the one hand a label
for different kinds of particles/fields and on the other hand can be
seen as something like internal angular momentum.

Afterwards, the Lagrangian formalism is introduced, which
makes working with symmetries in a physical context very conve-
nient. The central object is the Lagrangian, which we will be able to
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derive from symmetry considerations for different physical systems.
In addition, the Euler-Lagrange equations are derived, which enable
us to derive the equations of motion from a given Lagrangian. Using
the irreducible representations of the Poincare group, the fundamen-
tal equations of motion for fields and particles with different spin can
be derived.

The central idea here is that the Lagrangian must be invariant
(=does not change) under any transformation of the Poincare group.
This makes sure the equations of motion take the same form in all
frames of reference, which we stated above as "physics is the same in
all inertial frames".

Then, we will discover another symmetry of the Lagrangian for
free spin 1

2 fields: Invariance under U(1) transformations. Similarly
an internal symmetry for spin 1 fields can be found. Demanding
local U(1) symmetry will lead us to coupling terms between the
spin 1

2 and spin 1 field. The Lagrangian with this coupling term is
the correct Lagrangian for quantum electrodynamics. A similar
procedure for local SU(2) and SU(3) transformations will lead us to
the correct Lagrangian for weak and strong interactions.

In addition, we discuss spontaneous symmetry breaking and the
Higgs mechanism. These enable us to describe particles with mass5.5 Before spontaneous symmetry break-

ing, terms describing mass in the
Lagrangian spoil the symmetry and are
therefore forbidden.

Afterwards, Noether’s theorem is derived, which reveals a deep
connection between symmetries and conserved quantities. We will
utilize this connection by identifying each physical quantity with
the corresponding symmetry generator. This leads us to the most
important equation of quantum mechanics

[x̂i, p̂i] = iδij (1.1)

and quantum field theory

[Φ̂(x), π̂(y)] = iδ(x − y). (1.2)

We continue by taking the non-relativistic6 limit of the equation6 Non-relativistic means that everything
moves slowly compared to the speed of
light and therefore especially curious
features of special relativity are too
small to be measurable.

of motion for spin 0 particles, called Klein-Gordon equation, which
result in the famous Schrödinger equation. This, together with the
identifications we made between physical quantities and the genera-
tors of the corresponding symmetries, is the foundation of quantum

mechanics.

Then we take a look at free quantum field theory, by starting
with the solutions of the different equations of motion7 and Eq. 1.2.7 The Klein-Gordon, Dirac, Proka and

Maxwell equations. Afterwards, we take interactions into account, by taking a closer look
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at the Lagrangians with coupling terms between fields of different
spin. This enables us to discuss how the probability amplitude for

scattering processes can be derived.

By deriving the Ehrenfest theorem the connection between quan-
tum and classical mechanics is revealed. Furthermore, the fun-
damental equations of classical electrodynamics, including the
Maxwell equations and the Lorentz force law, are derived.

Finally, the basic structure of the modern theory of gravity, called
general relativity, is briefly introduced and some remarks regarding
the difficulties in the derivation of a quantum theory of gravity are
made.

The major part of this book is about the tools we need to work
with symmetries mathematically and about the derivation of what is
commonly known as the standard model. The standard model uses
quantum field theory to describe the behaviour of all known elemen-
tary particles. Until the present day, all experimental predictions of
the standard model have been correct. Every other theory introduced
here can then be seen to follow from the standard model as a special
case, for example for macroscopic objects (classical mechanics) or el-
ementary particles with low energy (quantum mechanics). For those
readers who have never heard about the presently-known elementary
particles and their interactions, a really quick overview is included in
the next section.

1.3 Elementary Particles and Fundamental Forces

There are two major categories for elementary particles: bosons and
fermions. There can be never two fermions in exactly the same state,
which is known as Pauli’s exclusion principle, but infinitely many
bosons. This curious fact of nature leads to the completely different
behaviour of these particles:

• Fermions are responsible for matter

• Bosons for the forces of nature

This means, for example, that atoms consist of fermions8, but the 8 Atoms consist of electrons, protons
and neutrons, which are all fermions.
But take note that protons and neutrons
are not fundamental and consist of
quarks, which are fermions, too.

electromagnetic-force is mediated by bosons, called photons. One of
the most dramatic consequences of this is that there is stable matter.
If there could be infinitely many fermions in the same state, there
would be no stable matter at all, as we will discuss in Chap. 6.

There are four presently known fundamental forces
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• The electromagnetic force, which is mediated by massless photons.

• The weak force, which is mediated by massive W+, W− and Z-
bosons.

• The strong force, which is mediated by massless gluons.

• Gravity, which is (maybe) mediated by gravitons.

Some of the corresponding bosons are massless and some are
not, which tells us something deep about nature. We will fully un-
derstand this after setting up the appropriate framework. For the
moment, just take note that each force is closely related to a symme-
try. The fact that the bosons mediating the weak force are massive
means the related symmetry is broken. This process of spontaneous

symmetry breaking is responsible for the masses of all elementary
particles. We will see later that this is possible through the coupling
to another fundamental boson, the Higgs boson.

Fundamental particles interact via some force if they carry the
corresponding charge9.9 All charges have a beautiful common

origin that will be discussed in Chap. 7.

• For the electromagnetic force this is the electric charge and conse-
quently only electrically charged particles interact via the electro-
magnetic force.

• For the weak force, the charge is called10 isospin. All known10 Often the charge of the weak force
carries the extra prefix "weak", i.e. is
called weak isospin, because there
is another concept called isospin for
composite objects that interact via the
strong force. Nevertheless, this is not a
fundamental charge and in this book
the prefix "weak" is omitted.

fermions carry isospin and therefore interact via the weak force.

• The charge of the strong force is called color, because of some
curious features it shares with the humanly visible colors. Don’t
let this name confuse you, because this charge has nothing to do
with the colors you see in everyday life.

The fundamental fermions are divided into two subcategories:
quarks, which are the building blocks of protons and neutrons, and
leptons, which are for example electrons and neutrinos. The differ-
ence is that quarks interact via the strong force, which means carry
color and leptons do not. There are three quark and lepton genera-

tions, which consist each of two particles:

Generation 1 Generation 2 Generation 3 Electric charge Isospin Color
Up Charm Top +2

3 e 1
2 �

Quarks: Down Strange Bottom −1
3 e −1

2 �

Electron-Neutrino Muon-Neutrino Tauon-Neutrino 0 +1
2 -

Leptons: Electron Muon Tauon −e −1
2 -
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In general, the different particles can be identified through labels.
In addition to the charges and the mass there is another incredibly
important label called spin, which can be seen as some kind of in-
ternal angular momentum, as we will derive in Sec. 4.5.4. Bosons
carry integer spin, whereas fermions carry half-integer spin. The fun-
damental fermions we listed above have spin 1

2 . The fundamental
bosons have spin 1. In addition, there is only one known fundamen-
tal particle with spin 0: the Higgs boson.

There is an anti-particle for each particle, which carries exactly the
same labels with opposite sign11. For the electron the anti-particle 11 Maybe except for the mass label.

This is currently under experimental
investigation, for example at the AEGIS,
the ATRAP and the ALPHA exper-
iment, located at CERN in Geneva,
Switzerland.

is called positron, but in general there is no extra name and only a
prefix "anti". For example, the antiparticle corresponding to an up-
quark is called anti-up-quark. Some particles, like the photon12 are

12 And maybe the neutrinos, which is
currently under experimental investi-
gation in many experiments that search
for a neutrinoless double-beta decay.

their own anti-particle.

All these notions will be explained in more detail later in this text.
Now it’s time to start with the derivation of the theory that describes
correctly the interplay of the different characters in this particle zoo.
The first cornerstone towards this goal is Einstein’s famous special
relativity, which is the topic of the next chapter.
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Special Relativity

The famous Michelson-Morley experiment discovered that the speed
of light has the same value in all reference frames1. Albert Einstein 1 The speed of every object we observe

in everyday life depends on the frame
of reference. If an observer standing
at a train station measures that a train
moves with 50 km

h , another observer
running with 15 km

h next to the same
train, measures that the train moves
with 35 km

h . In contrast, light always
moves with 1, 08 · 109 km

h , no matter
how you move relative to it.

was the first who recognized the far reaching consequences of this
observation and around this curious fact of nature he built the theory
of special relativity. Starting from the constant speed of light, Einstein
was able to predict many very interesting, very strange consequences
that all proved to be true. We will see how powerful this idea is, but
first let’s clarify what special relativity is all about. The two basic
postulates are

• The principle of relativity: Physics is the same in all inertial
frames of reference, i.e. frames moving with constant velocity
relative to each other.

• The invariance of the speed of light: The velocity of light has the
same value c in all inertial frames of reference.

In addition, we will assume that the stage our physical laws act on
is homogeneous and isotropic. This means it does not matter where
(=homogeneity) we perform an experiment and how it is oriented
(=isotropy), the laws of physics stay the same. For example, if two
physicists, one in New-York and the other one in Tokyo, perform ex-
actly the same experiment, they would find the same2 physical laws. 2 Besides from changing constants,

as, for example, the gravitational
acceleration

Equally a physicist on planet Mars would find the same physical
laws.

The laws of physics, formulated correctly, shouldn’t change if
you look at the experiment from a different perspective or repeat
it tomorrow. In addition, the first postulate tells us that a physical
experiment should come up with the same result regardless of if
you perform it on a wagon moving with constant speed or at rest in
a laboratory. These things coincide with everyday experience. For

� Springer International Publishing Switzerland 2015
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example, if you close your eyes in a car moving with constant speed,
there is no way to tell if you are really moving or if you’re at rest.

Without homogeneity and isotropy physics would be in deep
trouble: If the laws of nature we deduce from experiment would hold
only at one point in space, for a specific orientation of the experiment
such laws would be rather useless.

The only unintuitive thing is the second postulate, which is con-
trary to all everyday experience. Nevertheless, all experiments until
the present day indicate that it is correct.

2.1 The Invariant of Special Relativity

In the following sections, we use the postulates of special relativity
to derive the Minkowski metric, which tells us how to compute the
"distance" between two physical events. Another name for physical
events in this context is points in Minkowski space, which is how
the stage the laws of special relativity act on is called. It then fol-
lows that all transformations connecting different inertial frames of
reference must leave the Minkowski metric unchanged. This is how
we are able to find all transformations that connect allowed frames
of reference, i.e. frames with a constant speed of light. In the rest of
the book we will use the knowledge of these transformations, to find
equations that are unchanged by these transformations. Let’s start
with a thought experiment that enables us to derive one of the most
fundamental consequences of the postulates of special relativity.

Fig. 2.1: Illustration of the thought
experiment

Imagine, we have a spectator, standing at the origin of his co-
ordinate system and sending a light pulse straight up, where it is
reflected by a mirror and finally reaches again the point from where
it was sent. An illustration of this can be seen in Fig. 2.1

We have three important events:

• A : the light leaves the starting point

• B : the light is reflected at a mirror

• C : the light returns to the starting point.

The time-interval between A and C is33 For constant speed v we have v = Δs
Δt ,

with the distance covered Δs and the
time needed Δt, and therefore Δt = Δs

v Δt = tC − tA =
2L
c

, (2.1)

where L denotes the distance between the starting point and the
mirror.
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Next imagine a second spectator, standing at tA at the origin of his
coordinate system and moving with constant velocity u to the left,
relative to the first spectator4. For simplicity let’s assume that the ori- 4 Transformations that allow us to trans-

form the description of one observer
into the description of a second ob-
server, moving with constant speed
relative to first observer, are called
boosts. We derive later a formal de-
scription of such transformations.

gin of this second spectator coincides at tA with the coordinate origin
of the first spectator. The second spectator sees things a little differ-
ently. In his frame of reference the point where the light ends up will
not have the same coordinates as the starting point (see Fig. 2.2).

We can express this mathematically

x′A = 0 �= x′C = uΔt′ → Δx′ = uΔt′, (2.2)

where the primed coordinates denote the moving spectator. For the
first spectator in the rest-frame we have of course

xA = xC → Δx = 0. (2.3)

We assume movement along the x-axis, therefore

y′A = y′C and z′A = z′C → Δy′ = 0 and Δz′ = 0
(2.4)

and equally of course

yA = yC and zA = zC → Δy = 0 and Δz = 0.
(2.5)

Fig. 2.2: Illustration of the thought
experiment for a moving spectator. The
second spectator moves to the left and
therefore the first spectator (and the
experiment) moves relative to him to
the right.

The next question is: What about the time interval the second

spectator measures? Because we postulate a constant velocity of
light, the second spectator measures a different time interval between
A and C! The time interval Δt′ = t′C − t′A is equal to the distance l the
light travels, as the second spectator observes it, divided by the speed
of light c.

Δt′ = l
c

(2.6)

We can compute the distance traveled l using good old Pythagoras
(see Fig. 2.2)

l = 2

√(
1
2

uΔt′
)2

+ L2. (2.7)

We therefore conclude, using Eq. 2.6

cΔt′ = 2

√(
1
2

uΔt′
)2

+ L2 (2.8)

If we now use Δx′ = uΔt′ from Eq. 2.2 we can write

cΔt′ = 2

√(
1
2

Δx′
)2

+ L2

→ (cΔt′)2 = 4

((
1
2

Δx′
)2

+ L2

)
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→ (cΔt′)2 − (Δx′)2 = 4

((
1
2

Δx′
)2

+ L2

)
− (Δx′)2 = 4L2 (2.9)

and now recalling from Eq. 2.1 that Δt = 2L
c , we can write

(cΔt′)2 − (Δx′)2 = 4L2 = (cΔt)2 = (Δtc)2 − (Δx)2︸ ︷︷ ︸
=0 see Eq. 2.3

. (2.10)

So finally, we arrive5 at5 Take note that what we are doing here
is just the shortest path to the result,
because we chose the origins of the
two coordinate systems to coincide
at tA. Nevertheless, the same can be
done, with more effort, for arbitrary
choices, because physics is the same
in all inertial frames. We used this
freedom to choose two inertial frames
where the computation is easy. In
an arbitrarily moving second inertial
system we do not have Δy′ = 0 and
Δz′ = 0. Nevertheless, the equation
holds, because physics is the same in all
inertial frames.

(cΔt′)2 − (Δx′)2 − (Δy′)2︸ ︷︷ ︸
=0

− (Δz′)2︸ ︷︷ ︸
=0

= (cΔt)2 − (Δx)2︸ ︷︷ ︸
=0

− (Δy)2︸ ︷︷ ︸
=0

− (Δz)2︸ ︷︷ ︸
=0

(2.11)
Considering a third observer, moving with a different velocity rela-
tive to the first observer, we can use the same reasoning to arrive at

(cΔt′′)2 − (Δx′′)2 − (Δy′′)2 − (Δz′′)2 = (cΔt)2 − (Δx)2 − (Δy)2 − (Δz)2

(2.12)
Therefore, we have found something which is the same for all

observers: The quadratic form

(Δs)2 ≡ (cΔt)2 − (Δx)2 − (Δy)2 − (Δz)2. (2.13)

In addition, we learned in this Sec. that (Δx)2 + (Δy)2 + (Δz)2 or
(cΔt)2 aren’t the same for different observers. We will talk about the
implications of this in the next section.

2.2 Proper Time

Fig. 2.3: World line of an object at rest.
The position of the object stays the
same as time goes on.

Fig. 2.4: World line of a moving object
with two events A and B. The distance
travelled between A and B is Δx and
the time that passed the events is Δt.

We derived in the last section the invariant of special relativity Δs2,
i.e. a quantity that has the same value for all observers. Now, we
want to think about the physical meaning of this quantity.

For brevity, let’s restrict ourselves to one spatial dimension. An
object at rest, relative to some observer, has a spacetime diagram

as drawn in Fig. 2.3. In contrast, an object moving with constant
velocity, relative to the same observer, has a spacetime diagram as
drawn in Fig. 2.4.

The lines we draw to specify the position of objects in spacetime
are called world lines. World lines are always observer dependent.
Two different observers may draw completely different world lines
for the same object. The moving object with world line drawn in
Fig. 2.4, looks for a second observer who moves with the same con-
stant speed as the object, as drawn in Fig. 2.5. For this second ob-
server the object is at rest. Take note, to account for the two different
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descriptions we introduce primed coordinates for the second ob-
server: x′ and t′.

We can see that both observers do not agree on the distance the
object travels between some events A and B in spacetime. For the
first observer we have Δx �= 0, but for the second observer Δx′ = 0.
For both observers the time interval between A and B is non-zero:
Δt �= 0 and Δt′ �= 0. Both observers agree on the value of the quantity
(Δs)2, because as we derived in the last section, this invariant of
special relativity has the same value for all observers. A surprising
consequence is that both observers do not agree on the time elapsed
between the events A and B

Fig. 2.5: World line of the same moving
object, as observed from someone
moving with the same constant speed
as the object. The distance travelled
between A and B is for this observer
Δx′ = 0.

(Δs)2 = (cΔt)2 − (Δx)2 (2.14)

(Δs′)2 = (cΔt′)2 − (Δx′)2︸ ︷︷ ︸
=0

= (cΔt′)2 (2.15)

(Δs)2 = (Δs′)2 → (Δt′)2 �= (Δt)2 because (Δx)2 �= 0 (2.16)

This is one of the most famous phenomena of special relativity
and commonly called time-dilation. Time-intervals are observer
dependent, as is spatial distance. The clocks tick differently for each
different observer and therefore both observe a different number of
ticks between two events.

Now that the concept of time has become relative, a new notion of
time that all observers agree on may be useful. In the example above
we can see that for the second observer, moving with the same speed
as the object, we have

(Δs)2 = (cΔt′)2, (2.17)

which means the invariant of special relativity is equivalent, up
to a constant c, to the time interval measured by this observer. This
enables us to interpret (Δs)2 and define a notion of time that all
observers agree on. We define

(Δs)2 = (cΔτ)2, (2.18)

where τ is called the proper time. The proper time is the time mea-
sured by an observer in the special frame of reference where the
object in question is at rest.

Of course objects in the real world aren’t restricted to motion
with constant speed, but if the time interval is short enough, in the
extremal case infinitesimal, any motion is linear and the notion of
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proper time is sensible. In mathematical terms this requires we make
the transition to infinitesimal intervals Δ → d:

(ds)2 = (cdτ)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2. (2.19)

Therefore, even if an object moves wildly we can still imagine
some observer with a clock travelling with the object and therefore
observing the object at rest. The time interval this special observer
measures is the proper time and all observers agree on its value, be-
cause (ds)2 = (cdτ)2 has the same value for all observers. Again,
this does not mean that all observers measure the same time inter-
val! They just agree on the value of the time interval measured by
someone who travels with the object in question.

2.3 Upper Speed Limit

Now that we have an interpretation for the invariant of special rela-
tivity, we can go a step further and explore one of the most stunning
consequences of the postulates of special relativity.

It follows from the minus sign in the definition that Δs2 can be
zero for two events that are separated in space and time. It even can
be negative, but then we would get a complex value for the proper
time6, which is commonly discarded as unphysical. We conclude, we6 Recall (ds)2 = (cdτ)2 and therefore if

(ds)2 < 0 → dτ is complex. have a minimal proper time τ = 0 for two events if Δs2 = 0. Then we
can write

Δs2
min = 0 = (cΔt)2 − (Δx)2 − (Δy)2 − (Δz)2

→ (cΔt)2 = (Δx)2 + (Δy)2 + (Δz)2

→ c2 =
(Δx)2 + (Δy)2 + (Δz)2

(Δt)2 . (2.20)

On the right-hand side we have a squared velocity v2, i.e. distance
divided by time. We can rewrite this in the infinitesimal limit

→ c2 =
(dx)2 + (dy)2 + (dz)2

(dt)2 . (2.21)

The functions x(t), y(t), z(t) describe the path between the two
events. Therefore, we have on the right-hand side the velocity be-
tween the events.

We conclude the lowest value for the proper time is measured by
someone travelling with speed

→ c2 = v2. (2.22)
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This means nothing can move faster than speed c! We have an upper

speed limit for everything in physics. Two events in spacetime can’t
be connected by anything faster than c.

From this observation follows the principle of locality, which
means that everything in physics can only be influenced by its imme-
diate surroundings. Every interaction must be local and there can be
no action at a distance, because everything in physics needs time to
travel from some point to another.

2.4 The Minkowski Notation

Henceforth space by itself, and time by itself, are doomed to fade away
into mere shadows, and only a kind of union of the two will preserve
an independent reality.

- Hermann Minkowski7 7 In a speech at the 80th Assembly
of German Natural Scientists and
Physicians (21 September 1908)

We can rewrite the invariant of special relativity

ds2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 (2.23)

by using a new notation, which looks quite complicated at first sight,
but will prove to be invaluable:

ds2 = ημνdxμdxν = η00(x0)
2 + η11(dx1)

2 + η22(dx2)
2 + η33(dx3)

2

= dx2
0 − dx2

1 − dx2
2 − dx2

3 = (cdt)2 − (dx)2 − (dy)2 − (dz)2. (2.24)

Here we use several new notations and conventions one needs to
become familiar with, because they are used everywhere in modern
physics:

• Einsteins summation convention: If an index occurs twice, a sum
is implicitly assumed : ∑3

i=1 aibi = aibi = a1b1 + a2b2 + a3b3, but
∑3

i=1 aibj = a1bj + a2bj + a3bj �= aibj

• Greek indices8, like μ, ν or σ, are always summed from 0 to 3: 8 In contrast, Roman indices like i, j, k
are always summed: xixi ≡ ∑3

i xixi
from 1 to 3. Much later in the book
we will use capital Roman letters like
A, B, C that are summed from 1 to 8.

xμyμ = ∑3
i=0 xμyμ.

• Renaming of the variables x0 ≡ ct, x1 ≡ x, x2 ≡ y and x3 ≡ y, to
make it obvious that time and space are now treated equally and
to be able to use the rules introduced above

• Introduction of the Minkowski metric η00 = 1, η11 = −1, η22 = −1,
η33 = −1 and ημν = 0 for μ �= ν ( an equal way of writing this is9

9 ημν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ημν = diag(1,−1,−1,−1) )
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In addition, it’s conventional to introduce the notion of a four-

vector

dxμ =

⎛
⎜⎜⎜⎝

dx0

dx1

dx2

dx3

⎞
⎟⎟⎟⎠ , (2.25)

because the equation above can be written equally using four-vectors
and the Minkowski metric in matrix form

(ds)2 = dxμημνdxν =
(

dx0 dx1 dx2 dx3

)
⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

dx0

dx1

dx2

dx3

⎞
⎟⎟⎟⎠

= dx2
0 − dx2

1 − dx2
2 − dx2

3 (2.26)

This is really just a clever way of writing things. A physical in-
terpretation of ds is that it is the "distance" between two events in
spacetime. Take note that we don’t mean here only the spatial dis-
tance, but also have to consider a separation in time. If we consider
3-dimensional Euclidean10 space the squared (shortest) distance be-10 3-dimensional Euclidean space is just

the space of classical physics, where
time was treated differently from space
and therefore it was not included into
the geometric considerations. The
notion of spacetime, with time as a
fourth coordinate was introduced with
special relativity, which enables mixing
of time and space coordinates as we
will see.

tween two points is given by11

11 The Kronecker delta δij, which is the
identity matrix in index notation, is
defined in appendix B.5.5.

(ds)2 = dxiδijdxj =
(

dx1 dx2 dx3

)⎛
⎜⎝1 0 0

0 1 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝dx1

dx2

dx3

⎞
⎟⎠

= (ds)2 = (dx1)
2 + (dx2)

2 + (dx3)
2 (2.27)

The mathematical tool that tells us the distance between two in-
finitesimal separated points is called metric. In boring Euclidean
space the metric is just the identity matrix δij. In the curved space-
time of general relativity much more complicated metrics can occur.
The geometry of the spacetime of special relativity is encoded in the
relatively simple Minkowski metric ημν. Because the metric is the tool
to compute length, we need it to define the length of a four-vector,
which is given by the scalar product of the vector with itself1212 The same is true in Euclidean space:

length2(v) = �v · �v = v2
1 + v2

2 + v2
3,

because the metric is here simply

δij =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠.

x2 = x · x ≡ xμxνημν

Analogously, the scalar product of two arbitrary four-vectors is
defined by

x · y ≡ xμyνημν. (2.28)
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There is another, notational convention to make computations
more streamlined. We define a four-vector with upper index as13 13 Four-vectors with a lower index are

often called covariant and four-vectors
with an upper index contravariant.xμ ≡ ημνxν (2.29)

or equally
yν ≡ ημνyμ =︸︷︷︸

The Minkowski metric is symmetric ημν=ηνμ

ηνμyμ (2.30)

Therefore, we can write the scalar product as14 14 The name of the index makes no
difference. For more information about
this have a look at appendix B.5.1.x · y ≡ xμyνημν = xμyμ = xνyν. (2.31)

It doesn’t matter which index we transform to an upper index. This
is just a way of avoiding writing the Minkowski metric all the time,
just as Einstein’s summation convention is introduced to avoid writ-
ing the summation sign.

2.5 Lorentz Transformations

Next, we try to figure out in what ways we can transform our de-
scription in a given frame of reference without violating the postu-
lates of special-relativity. We learned above that it follows directly
from the two postulates that ds2 = ημνdxμdxν is the same in all iner-
tial frames of reference:

ds′2 = dx′μdx′νημν = ds2 = dxμdxνημν. (2.32)

Therefore, allowed transformations are those which leave this quadratic
form or equally the scalar product of Minkowski spacetime invariant.
Denoting a generic transformation that transforms the description in
one frame of reference into the description in another frame with Λ,
the transformed coordinates dx′μ can be written as:

dxμ → dx′μ = Λσ
μdxσ. (2.33)

Then we can write the invariance condition as

(ds)2 = (ds′)2

→ dx · dx !
= dx′ · dx′ → dxμdxνημν !

= dx′μdx′νημν =︸︷︷︸
Eq. 2.33

Λσ
μdxσΛγ

ν dxγημν

→︸︷︷︸
Renaming dummy indices

dxμdxνημν !
= Λμ

σdxμΛν
γdxνησγ

→︸︷︷︸
Because the equation holds for arbitrary dxμ

ημν !
= Λμ

σΛν
γησγ (2.34)
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Or written in matrix notation1515 If you wonder about the transpose
here have a look at appendix C.1.

η = ΛTηΛ (2.35)

This is the condition that transformations Λν
μ between allowed

frames of reference must fulfil.

If this seems strange at this point don’t worry, because we will see
that such a condition is a quite natural thing. In the next chapter we
will learn that, for example, rotations in ordinary Euclidean space are
defined as those transformations16 O that leave the scalar product of16 The name O will become clear in a

moment. Euclidean space invariant17

17 The · is used for the scalar product of
vectors, which corresponds to�a ·�b =

�aT�b for ordinary matrix multiplication,
where a vector is an 1 × 3 matrix. The
fact (Oa)T = aTOT is explained in
appendix C.1, specifically Eq. C.3.

�a ·�b !
=�a′ ·�b′ =︸︷︷︸

Take note that (Oa)T=aTOT

�aTOTO�b. (2.36)

Therefore18 OT1O !
= 1 and we can see that the metric of Euclidean

18 This condition is often called orthog-

onality, hence the symbol O. A matrix
satisfying OTO = 1 is called orthogonal,
because its columns are orthogonal
to each other. In other words: Each
column of a matrix can be though of as
a vector and the orthogonality condi-
tion for matrices means that each such
vector is orthogonal to all other column
vectors.

space, which is just the unit matrix 1, plays the same role as the
Minkowski metric in Eq. 2.35. This is one part of the definition for
rotations, because the defining feature of rotations is that they leave
the length of a vector unchanged, which corresponds mathematically
to the invariance of the scalar product19. Additionally we must in-

19 Recall that the length of a vector is
given by the scalar product of a vector
with itself.

clude that rotations do not change the orientation20 of our coordinate

20 This is explained in appendix A.5.

system, which means mathematically det O !
= 1, because there are

other transformations which leave the length of any vector invariant:
spatial inversions21

21 A spatial inversion is simply a map
�x → −�x. Mathematically such trans-
formations are characterized by the

conditions det O !
= −1 and OTO = 1.

Therefore, if we only want to talk about
rotations we have the extra condition
det O !

= 1. Another name for spatial
inversions are parity transformations.

We define the Lorentz transformations as those transformations
that leave the scalar product of Minkowski spacetime invariant,
which means nothing more than respecting the conditions of special
relativity. In turn this does mean, of course, that everytime we want
to get a term that does not change under Lorentz transformations,
we must combine an upper with a lower index: xμyμ = xμyνημν. We
will construct explicit matrices for the allowed transformations in the
next chapter, after we have learned some very elegant techniques for
dealing with conditions like this.

2.6 Invariance, Symmetry and Covariance

Before we move on, we have to talk about some very important no-
tions. Firstly, we call something invariant, if it does not change under
transformations. For instance, let’s consider something arbitrary like
F = F(A, B, C, ...) that depends on different quantities A, B, C, .... If
we transform A, B, C, ... → A′, B′, C′, ... and we have

F(A′, B′, C′, ...) = F(A, B, C, ...) (2.37)
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F is called invariant under this transformation. We can express this
differently using the word symmetry. Symmetry is defined as in-
variance under a transformation or class of transformations. For
example, some physical system is symmetric under rotations if we
can rotate it arbitrarily and it always stays exactly the same. Another
example would be a room with constant temperature. The quantity
temperature does not depend on the position of measurement. In
other words, the quantity temperature is invariant under translations.
A translations means that we move every point a given distance in a
specified direction. Therefore, we have translational symmetry within
this room.

Covariance means something similar, but may not be confused
with invariance. An equation is called covariant, if it takes the same
form when the objects in it are transformed. For instance, if we have
an equation

E1 = aA2 + bBA + cC4

and after the transformation this equation reads

E1 = aA′2 + bB′A′ + cC′4

the equation is called covariant, because the form stayed the same.
Another equation

E2 = x2 + 4axy + z

that after a transformation looks like

E2 = y′3 + 4az′y′ + y′2 + 8z′x′

is not covariant, because it changed its form completely.

All physical laws must be covariant under Lorentz transformations,
because only such laws are valid in all reference frames. Formulat-
ing the laws of physics in a non-covariant way would be a very bad
idea, because such laws would only hold in one frame of reference.
The laws of physics would look differently in Tokyo and New York.
There is no preferred frame of reference and we therefore want our
laws to hold in all reference frames. We will learn later how we can
formulate the laws of physics in a covariant manner.
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Further Reading Tips

• E. Taylor and J. Wheeler - Spacetime Physics: Introduction to

Special Relativity22 is a very good book to start with.22 Edwin F. Taylor and John Archibald
Wheeler. Spacetime Physics. W. H.
Freeman, 2nd edition, 3 1992. ISBN
9780716723271

• D. Fleisch - A Student’s Guide to Vectors and Tensors23 has very

23 Daniel Fleisch. A Student’s Guide
to Vectors and Tensors. Cambridge
University Press, 1st edition, 11 2011.
ISBN 9780521171908

creative explanations for the tensor formalism used in special
relativity, for example, for the differences between covariant and
contravariant components.

• N. Jeevanjee - An Introduction to Tensors and Group Theory for

Physicists24 is another good source for the mathematics needed in
24 Nadir Jeevanjee. An Introduction to
Tensors and Group Theory for Physicists.
Birkhaeuser, 1st edition, August 2011.
ISBN 978-0817647148

special relativity.

• A. Zee - Einstein Gravity in a nutshell25 is a book about gen-

25 Anthony Zee. Einstein Gravity in a
Nutshell. Princeton University Press, 1st
edition, 5 2013. ISBN 9780691145587

eral relativity, but has many great explanations regarding special
relativity, too.
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Lie Group Theory

Chapter Overview
This diagram explains the structure
of this chapter. You should come back
here whenever you feel lost. There is no
need to spend much time here at a first
encounter.

2D Rotations

U(1)

��

SO(2)

��

3D Rotations

SU(2)

��

SO(3)

��

Lorentz Transformations

��
Lie algebra =̂su(2)⊕ su(2)

��
Representations of the Double Cover

Lorentz Transformations + Translations

��
Poincare Group

The final goal of this chapter is the derivation of the fundamental

representations of the double cover of the Poincare group, which
is assumed to be the fundamental symmetry group of spacetime.
These fundamental representations are the tools needed to describe
all elementary particles, each representation for a different kind of
elementary particle. The representations will tell us what types of
elementary particles exist in nature.

We start with the definition of a group, which is motivated by two
easy examples. Then, as a first step into Lie theory we introduce two
ways for describing rotations in two dimensions:

• the 2 × 2 rotation matrix and

• the unit complex numbers.

Then we will try to find a similar second description of rotations in
three dimensions, which leads us to a very important group, called1

1 The S stands for special, which means
det(M) = 1. U stands for unitary:
M† M = 1 and the number 2 is used
because the group is defined in the first
place by 2 × 2 matrices.

SU(2). After that, we will learn about Lie algebras, which enable
us to learn a lot about something difficult (a Lie group) by using
something simpler (the corresponding Lie algebra). There are in gen-
eral many groups with the same Lie algebra, but only one of them
is truly fundamental. We will use this knowledge to reveal the true
fundamental symmetry group of nature, which double covers the
Poincare group. We will always start with some known transforma-
tions, derive the Lie algebra and use this Lie algebra to get different
representations of the symmetry transformations. This will enable us
to see that the representation we started with is just one special case
out of many. This knowledge can then be used to learn something

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_3
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fundamental about the Lorentz group, which is an important part
of the Poincare group. We will see that the Lie algebra of the double
cover of the Lorentz group consists of two copies of the SU(2) Lie
algebra. Therefore, we can directly use everything we learned about
SU(2). Finally, we include translations into the considerations, which
is then called the Poincare group. The Poincare group is the Lorentz
group plus translations. At this point, we will have everything at
hand to classify the fundamental representations of the double cover
of the Poincare group, which we will use in later chapters to derive
the fundamental laws of physics.

3.1 Groups

If we want to utilize the power of symmetry, we need a framework
to deal with symmetries mathematically. The branch of mathemat-
ics that deals with symmetries is called Group Theory. A special
type of Group Theory is Lie Theory, which deals with continuous
symmetries, as we encounter them often in nature.

Symmetry is defined as invariance under a set of of transforma-
tions and therefore, one defines a group as a collection of transforma-
tions. Let us get started with two easy examples to get a feel for what
we want to do:

1. A square is mathematically a set of points (for example, the four
corner points are part of this set) and a symmetry of the square is
a transformation that maps this set of points into itself.

Fig. 3.1: Illustration of the square

Examples of symmetries of the square are rotations about the
origin by 90◦, 180◦, 270◦ or 0◦. These rotations map the square into
itself. This means they map every point of the set to a point that
lies again in the set and one says the set is invariant under such
transformations.

Fig. 3.2: Illustration of the square,
rotated by 5◦

Take note that not every rotation is a symmetry of the square. This
becomes obvious if we focus on the corner points of the square.
Transforming the set by a clockwise rotation by, say 5◦, maps these
points into points outside the original set that defines the square.
For instance, the corner point A is mapped to the point A′, which
is not found inside the set that defined the square in the first place.
Therefore a rotation by 5◦ is not a symmetry of the square. Of
course the rotated object is still a square, but a different square
(=different set of points). Nevertheless, a rotation by 90◦ is a sym-
metry of the square because the point A is mapped to the point B,
which lies again in the original set. This is shown in Fig. 3.3.
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Fig. 3.3: Illustration of the square
rotated by 90◦

Another perspective: Imagine you close your eyes for a moment,
and someone transforms a square in front of you. If you can’t tell
after opening your eyes whether the person changed anything at
all, then the transformation was a symmetry transformation.

The set of transformations that leave the square invariant is called
a group. The transformation parameter, here the rotation angle,
can’t take on arbitrary values and the group is called a discrete
group.

2. Another example is the set of transformations that leave the unit
circle invariant. Again, the unit circle is defined as a set of points
and a symmetry transformation is a map that maps this set into
itself.

Fig. 3.4: Illustration of the rotation of
the unit circle. For arbitrary rotations
about the origin, all rotated points lie
again in the initial set.

The unit circle is invariant under all rotations about the origin,
not just a few. In other words: the transformation parameter (the
rotation angle) can take on arbitrary values, and the group is said
to be a continuous group.

In mathematics, there are clearly objects other than just geometric
shapes, and one can find symmetries for different kinds of objects,
too. For instance, considering vectors, one can look at the set of trans-
formations that leave the length of any vector unchanged. For this
reason, the definition of symmetry I gave at the beginning was very
general: Symmetry means invariance under a transformation. Hap-
pily, there is one mathematical theory, called group theory, that lets
us work with all kinds of symmetries2 2 As a side-note: Group theory was

invented historically to describe sym-
metries of equationsTo make the idea of a mathematical theory that lets us deal with

symmetries precise, we need to distill the defining features of sym-
metries in a mathematical form:

• Leaving the object in question unchanged ("doing nothing") is
always a symmetry and therefore, every group needs to contain an
identity element. In the examples above, the identity element is the
rotation by 0◦.
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• Transforming something and afterwards doing the inverse trans-
formation must be equivalent to doing nothing. Therefore, there
must be, for every element in the set, an inverse element. A trans-
formation followed by its inverse transformation is, by definition
of the inverse transformation, the same as the identity transforma-
tion. In the above examples this means that the inverse transfor-
mation of a rotation by 90◦ is a rotation by -90◦. A rotation by 90◦

followed by a rotation by -90◦ is the same as a rotation by 0◦.

• Performing a symmetry transformation followed by a second
symmetry transformation is again a symmetry transformation. A
rotation by 90◦ followed by a rotation by 180◦ is a rotation by 270◦,
which is a symmetry transformation, too. This property of the set
of transformations is called closure.

• The combination of transformations must be associative3. A rota-3 But not commutative! For example
rotations around different axes do
not commute. This means in general:
Rx(θ)Rz(Φ) �= Rz(Φ)Rx(θ)

tion by 90◦ followed by a rotation by 40◦, followed by a rotation
by 110◦ is the same as a rotation by 130◦ followed by a rotation by
110◦, which is the same as a rotation by 90◦ followed by a rotation
by 150◦. In a symbolic form:

R(110◦)R(40◦)R(90◦) = R(110◦)
(

R(40◦)R(90◦)
)
= R(110◦)R(130◦)

(3.1)
and

R(110◦)R(40◦)R(90◦) =
(

R(110◦)R(40◦)
)

R(90◦) = R(150◦)R(90◦)
(3.2)

This property is called associativity.

• To be able to talk about the things above one needs a rule, to be
precise: a binary operation, for the combination of group ele-
ments. In the above examples, the standard approach would be
to use rotation matrices4 and the rule for combining the group4 If you want to know more about the

derivation of rotation matrices have a
look at appendix A.2.

elements (the corresponding rotation matrices) would be ordi-
nary matrix multiplication. Nevertheless, there are often different
ways of describing the same thing5 and group theory enables us5 For example, rotations in the plane

can be described alternatively by
multiplication with unit complex
numbers. The rule for combining group
elements is then complex number
multiplication. This will be discussed
later in this chapter.

to study this very systematically. The branch of group theory that
deals with different descriptions of the same transformations is
called representation theory, which is the topic of Sec. 3.5.

To work with ideas like these in a rigorous, mathematical way, one
distils the defining features of such transformations and promotes
them to axioms. All structures satisfying these axioms are then called
groups. This paves the way for a whole new branch of mathematics,
called group theory. It is possible to find very abstract structures
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satisfying the group axioms, but we will stick with groups that are
very similar to the rotations we explored above.

After the discussion above, we can see that the abstract definition
of a group simply states (obvious) properties of symmetry transfor-
mations:

A group is a set G, together with a binary operation ◦ defined on G if
the group (G, ◦) satisfies the following axioms6 6 Do not worry too much about this.

In practice one checks for some kind
of transformation if they obey these
axioms. If they do, the transformations
form a group and one can use the
useful results of group theory to learn
more about the transformations in
question.

• Closure: For all g1, g2 ∈ G, g1 ◦ g2 ∈ G

• Identity: There exists an identity element e ∈ G such that for all
g ∈ G, g ◦ e = g = e ◦ g

• Inverses: For each g ∈ G, there exists an inverse element g−1 ∈ G
such that g ◦ g−1 = e = g−1 ◦ g.

• Associativity: For all g1, g2, g3 ∈ G, g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3.

To summarize: The set of all transformations that leave a given
object invariant is called symmetry group. For Minkowski spacetime,
the object that is left invariant is the Minkowski metric7 and the 7 Recall, this is the tool which we use

to compute distances and lengths in
Minkowski space.

corresponding symmetry group is called Poincare group.

Take note that the characteristic properties of a group are defined
completely independent of the object the transformations act on. We
can therefore study such symmetry transformations without making
references to any object, we extracted them from. This is very useful,
because there can be many objects with the same symmetry or at
least the same kind of symmetry. Using group theory we no longer
have to inspect each object on its own, but are now able to study
general properties of symmetry transformations.

3.2 Rotations in two Dimensions

As a first step into Group theory, we start with an easy, but impor-
tant, example. What are transformations in two dimensions that leave
the length of any vector unchanged? After thinking about it for a
while, we come up with8 rotations and reflections. These transfor- 8 Another kind of transformation that

leaves the length of a vector unchanged
are translations, which means we move
every point a constant distance in a
specified direction. These are described
mathematically a bit different and we
are going to talk about them later.

mations are of course the same ones that map the unit circle into the
unit circle. This is an example of how one group may act on different
kinds of objects: On the circle, which is a geometric shape and on a
vector. Considering vectors, one can represent these transformations
by rotation matrices9, which are of the form

9 For an explicit derivation of these
matrices have a look a look at ap-
pendix A.2.



30 physics from symmetry

Rθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
(3.3)

and describe two-dimensional rotations about the origin by angle θ.
Reflections at the axes can be performed using the matrices:

Px =

(
−1 0
0 1

)
Py =

(
1 0
0 −1

)
. (3.4)

You can check that these matrices, together with the ordinary
matrix multiplication as binary operation ◦, satisfy the group axioms
and therefore these transformations form a group.

We can formulate the task of finding "all transformations in two
dimensions that leave the length of any vector unchanged" in a more
abstract way. The length of a vector is given by the scalar product of
the vector with itself. If the length of the vector is the same after the
transformation a → a′, the equation

a′ · a′ !
= a · a (3.5)

must hold. We denote the transformation with O and write the trans-
formed vector as a → a′ = Oa. Thus

a · a = aTa → a′Ta′ = (Oa)TOa = aTOTOa !
= aTa = a · a, (3.6)

where we can see the condition a transformation must fulfil to leave
the length of a vector unchanged is

OTO = I, (3.7)

where I denotes the unit matrix10. You can check that the well-10 I =
(

1 0
0 1

)
known rotation and reflection matrices we cited above fulfil exactly
this condition11. This condition for two dimensional matrices defines11 With the matrix from

Eq. 3.3 we have RT
θ R =(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
=(

cos2(θ) + sin2(θ) 0
0 sin2(θ) + cos2(θ)

)
=(

1 0
0 1

)
�

the O(2) group, the group of all12 orthogonal 2 × 2 matrices. We can

12 Every orthogonal 2 × 2 matrix can
be written either in the form of Eq. 3.3,
as in Eq. 3.4, or as a product of these
matrices.

find a subgroup of this group that includes only rotations, by taking
notice of the fact that it follows from the condition in Eq. 3.7 that

det(OTO)
!
= det(I) = 1

→ det(OTO) = det(OT)det(O)
!
= det(I) = 1

→ (det(O))2 !
= 1 → det(O)

!
= ±1 (3.8)

The transformations of the group with det(O) = 1 are rotations13 and
13 As can be easily seen by looking at
the matrices in Eq. 3.3 and Eq. 3.4.
The matrices with det O = −1 are
reflections.

the two conditions
OTO = I (3.9)

det O = 1 (3.10)
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define the SO(2) group, where the "S" denotes special and the "O"
orthogonal. The special thing about SO(2) is that we now restrict
it to transformations that keep the system orientation, i.e., a right-
handed14 coordinate system must stay right-handed. In the language 14 If you don’t know the difference

between a right-handed and a left-
handed coordinate system have a look
at the appendix A.5.

of linear algebra this means that the determinant of our matrices
must be +1.

3.2.1 Rotations with Unit Complex Numbers

There is a quite different way to describe rotations in two dimen-
sions that makes use of complex numbers: Rotations about the origin
by angle θ can be described by multiplication with a unit complex
number ( z = a + ib which fulfils the condition15 |z|2 = z�z = 1). 15 The � symbol denotes complex

conjugation: z = a + ib → z� = a − ib

The unit complex numbers form a group, called16 U(1) under or-
16 The U stands for unitary, which
means the condition U�U = 1

dinary complex number multiplication, as you can check by looking
at the group axioms. To make the connection with the group defini-
tions for O(3) and SO(3) introduced above, we write the condition
as17 17 For more general information about

the definition of groups involving a
complex product, have a look at the
appendix in Sec. 3.10.

U�U = 1. (3.11)

Another way to write a unit complex number is18

18 This is known as Euler’s formula,
which is derived in appendix B.4.2. For
a complex number z = a + ib, a is called
the real part of z: Re(z) = a and b the
imaginary part: Im(z) = b. In Euler’s
formula cos(θ) is the real part, and
sin(θ) the imaginary part of Rθ .

Fig. 3.5: The unit complex numbers lie
on the unit circle in the complex plane.

Rθ = eiθ = cos(θ) + i sin(θ), (3.12)

because then

R�
θ Rθ = e−iθeiθ =

(
cos(θ)− i sin(θ)

)(
cos(θ) + i sin(θ)

)
= 1 (3.13)

Let’s take a look at an example: We rotate the complex number
z = 3 + 5i, by 90◦, thus

z → z′ = ei90◦z = (cos(90◦)︸ ︷︷ ︸
=0

+i sin(90◦)︸ ︷︷ ︸
=1

)(3 + 5i) = i(3 + 5i) = 3i − 5

(3.14)
The two complex numbers are plotted in Fig. 3.6 and we see the
multiplication with ei90◦ does indeed rotate the complex number by
90◦. In this description, the rotation operator ei90◦ acts on complex
numbers instead of on vectors. To describe a rotation in two dimen-
sions, one parameter is necessary: the angle of rotation φ. A complex
number has two degrees of freedom and with the constraint to unit
complex numbers |z| = 1, one degree of freedom is left as needed.

We can make the connection to the previous description by repre-
senting complex numbers by real 2 × 2 matrices. We define

1 =

(
1 0
0 1

)
, i =

(
0 −1
1 0

)
. (3.15)
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You can check that these matrices fulfil

12 = 1, i2 = −1, 1i = i1 = i. (3.16)

Fig. 3.6: Rotation of a complex number,
by multiplication with a unit complex
number

So now, the complex representation of rotations of the plane reads

Rθ = cos(θ) + i sin(θ) = cos(θ)

(
1 0
0 1

)
+ sin(θ)

(
0 −1
1 0

)

=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
(3.17)

By making the map
i → real matrix,

we go back to the familiar representation of rotations of the plane.
Maybe you have noticed a subtle point: The familiar rotation matrix
in 2-dimensions acts on vectors, but here we identified the complex
unit i with a real matrix (Eq. 3.15), therefore, the rotation matrix
will act on a 2 × 2 matrix, because the complex number we act on
becomes a matrix, too.

A generic complex number in this description reads

z = a + ib = a

(
1 0
0 1

)
+ b

(
0 −1
1 0

)
=

(
a −b
b a

)
. (3.18)

Let us take a look at how rotations act on such a matrix that repre-
sents a complex number:

z′ =
(

a′ −b′

b′ a′

)
= Rθz =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
a −b
b a

)

=

(
cos(θ)a + sin(θ)b − cos(θ)b + sin(θ)a
− sin(θ)a + cos(θ)b sin(θ)b + cos(θ)a

)
. (3.19)

By comparing we get

→ a′ = cos(θ)a + sin(θ)b (3.20)

→ b′ = − sin(θ)a + cos(θ)b, (3.21)

which is the same result we get if we act with Rθ on a column vector(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
a
b

)
=

(
cos(θ)a + sin(θ)b
− sin(θ)a + cos(θ)b

)
=

(
a′

b′

)
. (3.22)

We see that both representations do exactly the same thing and math-
ematically speaking we have an isomorphism19 between SO(2) and19 An isomorphism is a one-to-one map

Π that preserves the product structure
Π(g1)Π(g2) = Π(g1g2) ∀g1, g2 ∈ G.
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U(1). This is a very important discovery and we will elaborate on
such lines of thoughts in the following chapters.

Next we want to describe rotations in three dimensions and find
similarly two descriptions for rotations in three dimensions20. 20 Things are about to get really interest-

ing! Analogous to the two-dimensional
case we discussed in the preceding sec-
tion, we will find a second description
of rotations in three dimensions and
this alternative description will reveal
something fundamental about nature.

3.3 Rotations in three Dimensions

The standard methods to rotate vectors in three dimensions uses
3 × 3 rotation matrices:

Rx =

⎛
⎜⎝1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎞
⎟⎠ Ry =

⎛
⎜⎝cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎞
⎟⎠

Rz =

⎛
⎜⎝ cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎞
⎟⎠ (3.23)

Analogous to the definition for SO(2), these matrices form a ba-
sis21 for a group, called SO(3). This means an arbitrary element of 21 This notion is explained in ap-

pendix A.1.SO(3) can be written as a linear combination of the above matrices.
If we want to rotate the vector

�v =

⎛
⎜⎝1

0
0

⎞
⎟⎠

around the z-axis22, we multiply it with the corresponding rotation 22 A general, rotated vector is derived
explicitly in appendix A.2.matrix

Rz(θ)�v =

⎛
⎜⎝ cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝1

0
0

⎞
⎟⎠ =

⎛
⎜⎝ cos(θ)
− sin(θ)

0

⎞
⎟⎠ . (3.24)

To get a second description for rotations in three dimensions, the
first thing we have to do is find a generalisation of complex numbers
in higher dimensions. A first guess may be to go from 2-dimensional
complex numbers to 3-dimensional complex numbers, but it turns
out that there are no 3-dimensional complex numbers. Instead, we
can find 4-dimensional complex numbers, called quaternions. The
quaternions will prove to be the correct second tool to describe rota-
tions in 3-dimensions and the fact that this tool is 4-dimensional re-
veals something deep about the universe. We could have anticipated
this result, because to describe an arbitrary rotation in 3-dimensions,
3 parameters are needed. Four dimensional complex numbers, with
the constraint to unit quaternions23, have exactly 3 degrees of free- 23 Remember that we used the con-

straint to unit complex numbers in the
two dimensional case, too.

dom.
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3.3.1 Quaternions

The 4-dimensional complex numbers can be constructed analogous
to the 2-dimensional complex numbers. Instead of just one complex
"unit" we introduce three, named i, j, k. These fulfil

i2 = j2 = k2 = −1. (3.25)

Then a 4-dimensional complex number, called a quaternion, can be
written as

q = a1 + bi + cj + dk. (3.26)

We now need multiplication rules for ij =? etc., because products
like this will occur when one multiplies two quaternions. The extra
condition

ijk = −1 (3.27)

suffices to compute all needed relations, for example ij=k follows
from multiplying Eq. 3.27 with k:

ij kk︸︷︷︸
=−1

= −k → ij=k. (3.28)

The set of unit quaternions q = a1 + bi + cj + dk are those satisfy-
ing the condition2424 The symbol †, here is called "dagger"

and denotes transposition plus complex
conjugation: a† = (a�)T . The ordinary
scalar product always includes a trans-
position a · b = aTb, because matrix
multiplication requires that we multiply
a row with a column. In addition, for
complex entities we include complex
conjugation that makes sure we get
something real, which is important if
we want to interpret things in terms of
length.

q†q !
= 1

→ (a1− bi− cj− dk)(a1+ bi+ cj+ dk) = a2 + b2 + c2 + d2 !
= 1. (3.29)

Exactly as the unit complex numbers formed a group under complex
number multiplication, the unit quaternions form a group under
quaternion multiplication.

Analogous to what we did for two-dimensional complex numbers,
we represent each of the three complex units with a matrix. There are
different possible ways of doing this, but one choice that does the job
is as complex 2 × 2 matrices:

1 =

(
1 0
0 1

)
, i =

(
0 1
−1 0

)

j =

(
0 −i
−i 0

)
, k =

(
i 0
0 −i

)
. (3.30)

You can check that these matrices fulfil the defining conditions in
Eq. 3.25 and Eq. 3.27. A generic quaternion can then be written, using
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these matrices, as

q = a1 + bi + cj + dk =

(
a + di −b − ci
b − ci a − di

)
. (3.31)

Furthermore, we have

det(q) = a2 + b2 + c2 + d2. (3.32)

Comparing this with Eq. 3.29 tells us that the set of unit quaternions
is given by matrices of the above form with unit determinant. The
unit quaternions, written as complex 2 × 2 matrices therefore fulfil
the conditions

U†U = 1 and det(U) = 1. (3.33)

In addition, the matrices in Eq. 3.30 are linearly independent25 and 25 This notion is explained in ap-
pendix A.1.therefore form a basis for the group called SU(2). Take note that the

way we define SU(2) here, is analogous to how we defined SO(2).
The S denotes special, which means det(U) = 1 and U stands for
unitary, which means the property26 U†U = 1. Every unit quaternion 26 For some more information about

this, have a look at the appendix
Sec. 3.10 at the end of this chapter.

can be identified with an element of SU(2).

Now, how is SU(2) related to rotations? Unfortunately, the map
between SU(2) and27 SO(3) is not as simple as the one between U(1) 27 Recall that SO(3) is the set of the

usual rotation matrices acting on 3
dimensional vectors.

and SO(2).

In 2-dimensions the 2 parameters of a complex number z = a + ib
could be easily identified with the two spatial axes, i.e. v = x +

iy. The restriction to unit complex numbers automatically makes
sure that the resulting matrix preserves the length of any vector28 28 Recall that here R is a unit complex

number, because complex numbers
can be rotated by multiplication with
unit complex numbers. Therefore we
have R�R = 1, which is the defining
condition for unit complex numbers.

(Rz)�Rz = z�R�Rz = z�z. The quaternions have 4 parameters, so
an identification with the 3 coordinates of a usual three-dimensional
vector is not obvious. If we define

v ≡ xi + yj + zk (3.34)

we can compute, using the matrix representation of the quaternions

det(v) = x2 + y2 + z2. (3.35)

Therefore, if we want to consider transformations that preserve the
length of the vector (x, y, z), we must use matrix transformations that
preserve determinants. The restriction to unit quaternions means
that we must restrict to matrices with unit determinant. Everything
seems straight forward, but now comes a subtle point. A first guess
would be that a unit quaternion u induces a rotation on v simply by
multiplication. This is not the case, because the product of u and v



36 physics from symmetry

may not belong to Ri + Rj + Rk. Therefore, the transformed vec-
tor can have a component we are not able to interpret. Instead the
transformation that does the job is given by

v′ = q−1vq. (3.36)

It turns out that by making this identification unit quaternions can
describe rotations in 3-dimensions.

Let’s take a look at an explicit example: To make the connection to
our example in two dimensions, we will define u as a unit vector in
Ri +Rj +Rk and denote a unit quaternion with

t = cos(θ) + sin(θ)u. (3.37)

Using Eq. 3.34 a generic vector can be written

�v = (vx, vy, vz)
T = vxi + vyj + vzk =︸︷︷︸

Eq. 3.31

(
ivz −vx − ivy

vx − ivy −ivz

)
.

(3.38)
With the identifications made above, we want to rotate, as an ex-
ample, a vector �v = (1, 0, 0)T around the z-axis. We will make a
particular choice for the vector and for the quaternion representing
the rotation and show that it works. We write, using quaternions in
their matrix representation (Eq. 3.30)

�v = (1, 0, 0)T → v = 1i + 0j + 0k =

(
0 −1
1 0

)
(3.39)

Rz(θ) = cos(θ)1 + sin(θ)k =

(
cos(θ) + i sin(θ) 0

0 cos(θ)− i sin(θ)

)
,

(3.40)
which we can rewrite using Euler’s formula2929 For a derivation have a look at ap-

pendix B.4.2. eix = cos(x) + i sin(x)

⇒ Rz(θ) =

(
eiθ 0
0 e−iθ

)
. (3.41)

Inverting the quaternion rotation matrix yields

Rz(θ)
−1 =

(
cos(θ)− i sin(θ) 0

0 cos(θ) + i sin(θ)

)
=

(
e−iθ 0

0 eiθ

)
.

(3.42)
The rotated vector is then using Eq. 3.36

v′ = Rz(θ)
−1vRz(θ) =

(
e−iθ 0

0 eiθ

)(
0 −1
1 0

)(
eiθ 0
0 e−iθ

)
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=

(
0 −e−i2θ

e2iθ 0

)
=

(
0 − cos(2θ) + i sin(2θ)

cos(2θ) + i sin(2θ) 0

)
(3.43)

On the other hand, an arbitrary vector can be written in this
quaternion notation (Eq. 3.38)

v′ =
(

iv′z −v′x − iv′y
v′x − iv′y −iv′z

)
(3.44)

which we now compare with Eq. 3.43. This yields

v′x = cos(2θ) , v′y = − sin(2θ) , v′z = 0. (3.45)

Therefore, written again in the conventional vector notation

→ �v′ = (cos(2θ),− sin(2θ), 0)T . (3.46)

The identifications do indeed induce rotations30, but something 30 See the example in Eq. 3.24 where we
rotated the vector, using the conven-
tional rotation matrix

needs our attention. We haven’t rotated �v by θ, but by 2θ. There-
fore, we define φ ≡ 2θ because then φ really represents the angle we
rotate and rewrite Eq. 3.37, which yields

t = cos(
φ

2
) + sin(

φ

2
)u. (3.47)

We can now see that the identifications we made are not one-to-
one, but rather we have two unit-quaternions describing the same
rotation. For example31 31 Because a rotation by π is the same as

a rotation by 3π = 2π + π for ordinary
vectors, because 2π = 360◦ is a full
rotation. In other words: We can see
that two quaternions u and −u can be
used to rotate a vector by π.

tφ=π = u

��

tφ=3π = −u

		
Vector Rotation by π

2

This is the reason SU(2) is called the double-cover of SO(3). It is
always possible to go unambiguously from SU(2) to SO(3) but not
vice versa. One may think this is just a mathematical side-note, but
we will understand later that groups which cover other groups are
indeed more fundamental32. 32 To spoil the surprise: We will use

the double cover of the Lorentz group,
instead of the Lorentz group itself,
because otherwise we miss something
important: Spin. Spin is some kind
of internal momentum and one of the
most important particle labels. This
is discussed in detail in Sec. 4.5.4 and
Sec. 8.5.5.

In order to reveal the group that covers a given group, we need to
introduce the most important tool of Lie theory: Lie algebras, which
is the topic of the next section.

Take note that the fact we had one quaternion parameter too
much, may be interpreted as a hint towards relativity. One may
argue that a more natural identification would have been, as in the
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two-dimensional case, v = t1 + xi + yj + zk. We see that pure math-
ematics pushes us towards the idea of using a 4th component and
what could it be, if not time? If we now want to describe rotations
in 4-dimensions, because we know that the universe we live in is
4-dimensional, we have two choices:

• We could search for even higher dimensional complex numbers or

• we could again try working with quaternions.

From the last paragraph it may seem that quaternions have some-
thing to say about rotations in 4 dimensions, too. An arbitrary ro-
tation in 4 dimensions is described by33 6 parameters. There is no33 Using ordinary matrices, we need in

four dimensions 4 × 4 matrices. The
two conditions OTO = 1 and det(O) =
1 reduce the 16 components of an
arbitrary 4× matrix to six independent
components.

7-dimensional generalisation of complex numbers, which together
with the constraint to unit objects would have 6 free parameters,
but we see that two unit quaternions have exactly 6 free parameters.
Therefore, maybe it’s possible to describe a rotation in 4-dimensions
by two quaternions? We will learn later that there is indeed a close
connection between two copies of SU(2) and rotations in four dimen-
sions.

3.4 Lie Algebras

Lie Theory is all about continuous symmetries. An example is the
continuous symmetry of the unit circle we discussed at the begin-
ning of this chapter. Continuous means there are elements of the
group which are arbitrary close to the identity transformation, which
changes nothing at all. In contrast, a discrete group has just a finite
number of elements and therefore no element close to the identity.
Consider again the symmetries of a square. A rotation by 0,000001◦,
which is very close to the identity transformation (= a rotation by 0◦),
is not in the set of symmetry transformations of the square. In con-
trast, the symmetry transformations of a circle include a rotation by
0,000001◦. The symmetry group of a circle is continuous, because the
rotation parameter (the rotation angle) can take on arbitrary (continu-
ous) values. Mathematically, with the identity denoted I, an element
g close to the identity is denoted

g(ε) = I + εX (3.48)

where the ε is, as always in mathematics, a really, really small num-
ber and X is an object, called generator, we will talk about in a
moment. Such small transformations, when acting on some object
change barely anything. In the smallest possible case such trans-
formations are called infinitesimal transformation. Nevertheless,
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repeating such an infinitesimal transformation often, results in a fi-
nite transformation. Think about rotations: many small rotations in
one direction are equivalent to one big rotation in the same direction.
Mathematically, we can write the idea of repeating a small transfor-
mation many times

h(θ) = (I + εX)(I + εX)(I + εX)... = (I + εX)k, (3.49)

where k denotes how often we repeat the small transformation. If
θ denotes some finite transformation parameter, e.q. 50◦ or so, and
N is some really big number which makes sure we are close to the
identity, we can write the element close to the identity as

g(θ) = I +
θ

N
X. (3.50)

The transformations we want to consider are the smallest possible,
which means N must be the biggest possible number, i.e. N → ∞. To
get a finite transformation from such a infinitesimal transformation,
one has to repeat the infinitesimal transformation infinitely. Mathe-
matically

h(θ) = lim
N→∞

(I +
θ

N
X)N , (3.51)

which is in the limit just the exponential function34 34 This is often used as a definition
of the exponential function. A proof,
showing the equivalence of this limit
and the exponential series we derive in
appendix B.4.1, can be found in most
books about analysis.

h(θ) = lim
N→∞

(I +
θ

N
X)N = eθX (3.52)

In some sense the object X generates the finite transformation h,
which is why it’s called the generator. This will be made more pre-
cise in a moment, but first let’s look at this from another perspective:

If we are considering a continuous group of transformations that
are given by matrices, we can make a Taylor expansion35 of an ele- 35 If you’ve never heard of the Taylor

expansion, or Taylor series before,
you are encouraged to have a look at
appendix B.3.

ment of the group about the identity. The Taylor series is given by

h(θ) = I +
dh
dθ

.|θ=0θ +
d2h
dθ2 .|θ=0θ2 + ... = ∑

n

dnh
dθn

∣∣
θ=0θn. (3.53)

This series expansion can be written in a more compact form,
using the series expansion of the exponential function36 36 This is derived in appendix B.4.1.

h(θ) = e
dh
dθ .|θ=0θ ≡ ∑

n

dnh
dθn

∣∣
θ=0θn. (3.54)

and we can see now, how to make the connection to the previous
description. By comparision with the result above:

X =
dh
dθ

|θ=0. (3.55)
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The idea behind such lines of thought is that one can learn a lot
about a group by looking at the important part of the infinitesimal
elements (denoted X above): the generators.

For matrix Lie groups one defines the corresponding Lie algebra
as the collection of objects that give an element of the group when
exponentiated. (This is an easy definition one can use when restrict-
ing to matrix Lie groups. Later we will introduce a more general
definition.) In mathematical terms3737 The Lie algebra which belongs to a

group G is conventionally denoted by
the Fraktur letter g For a Lie Group G (given by n × n matrices), the Lie algebra g of G

is given by those n × n matrices X such that etX ∈ G for t ∈ R.

We know from the definition of a group, that a group is more
than just a collection of transformations. The definition of a group
includes a binary operation ◦ that tells us how to combine group
elements. For matrix Lie groups this is just ordinary matrix multi-
plication. Naively one may think that the same combination rule ◦
is valid for elements of the Lie algebra, but this is not the case! The
elements of the Lie algebra are given by matrices38, but the multi-38 A famous theorem of Lie group

theory, called Ado’s Theorem, states
that every Lie algebra is isomorphic to a
matrix Lie algebra.

plication of two matrices of the Lie algebra doesn’t need to be an
element of the Lie algebra. Instead there is another combination rule
for the Lie algebra that is directly connected to the combination rule
of the corresponding Lie group.

The connection between the combination rule of the Lie group
and the combination rule of the Lie algebra is given by the famous
Baker-Campbell-Hausdorff formula3939 We will not talk about the proof of

this formula in this book. Proofs can be
found in most books about Lie theory,
for example in William Fulton and Joe
Harris. Representation Theory: A First
Course. Springer, 1st corrected edition, 8
1999. ISBN 9780387974958

eX ◦ eY = eX+Y+ 1
2 [X,Y]+ 1

12 [X,[X,Y]]− 1
12 [Y,[X,Y]]+... (3.56)

On the left hand side, we have the multiplication of two elements
of the Lie group, let’s name them g and h, which we can write in
terms of the corresponding generators (=elements of the Lie algebra)

g︸︷︷︸
∈G

◦ h︸︷︷︸
∈G

= eX ◦ eY = eX+Y+ 1
2 [X,Y]+ 1

12 [X,[X,Y]]− 1
12 [Y,[X,Y]]+...︸ ︷︷ ︸

∈G

(3.57)

with the generators40 X, Y ∈ g. On the right-hand side we have40 Recall, that the Lie algebra which
belongs to a group G is conventionally
denoted by the Fraktur letter g.

a single object of the group and the multiplication of the group el-
ements have been translated to a sum of Lie algebra elements. The
new symbol in this sum [ , ] is called Lie bracket and for matrix Lie
groups it is given by [X, Y] = XY − YX, which is called the commu-
tator of X and Y. The elements XY and YX need not to be part of the
Lie algebra, but their difference always is41!

41 A very illuminating proof of this fact
can be found in John Stillwell. Naive Lie
Theory. Springer, 1st edition, August
2008a. ISBN 978-0387782140
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We learn from the Baker-Campbell-Hausdorff-Formula that the
natural product of the Lie algebra is, not as one would naively think,
ordinary matrix multiplication, but the Lie bracket [, ]. One says,
the Lie algebra is closed under the Lie bracket, just as the group
is closed under the corresponding composition rule ◦, e.q. matrix
multiplication. Closure means that the composition of two elements
lies again in the same set42. 42 For group elements g, h ∈ G we have

g ◦ h ∈ G. For elements of the Lie
algebra X, Y ∈ g we have [X, Y] ∈ g and
in general X ◦ Y �∈ g

After looking at an example to illustrate these new notions, we
will have a look at the modern definition of a Lie algebra. The main
component of this definition is how the generators of a group behave
when put into the Lie bracket. By using this general definition we
will see that it is possible to say that different groups have the same

Lie algebra. With the definition above saying something like this
would make little sense. Nevertheless, this new way of thinking
about Lie algebras will enable us to reveal the most fundamental
description corresponding to a given transformation. This is possible
because there is a theorem in Lie theory that tells us that there is
exactly one distinguished Lie group for each Lie algebra, which
corresponds to many Lie groups by the more abstract definition. We
will make this more concrete after introducing the modern definition
of a Lie group.

Now we want to take a look at an example of how one can derive
the Lie algebra of a given group.

3.4.1 The Generators and Lie Algebra of SO(3)

The defining conditions of the SO(3) group are (Eq. 3.10)

OTO !
= I and det(O)

!
= 1. (3.58)

We can write every group element O in terms of a generator J:

O = eΦJ . (3.59)

Putting this into the first defining condition yields

OTO = eΦJT
eΦJ !

= 1 → JT + J !
= 0. (3.60)

Using the second condition in Eq. 3.58 and the identity43 43 tr(A) denotes the trace of the matrix
A, which means the sum of all elements
on the main diagonal. For example for

A =

(
A11 A12
A21 A22

)
we have

tr(A) = A11 + A22.

det(eA) = etr(A) for the matrix exponential function, we see

det(O)
!
= 1 → det(eΦJ) = eΦtr(J) !

= 1

→ tr(J) !
= 0 (3.61)
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Three linearly independent44 matrices fulfilling the conditions44 This is explained in appendix A.1.

Eq. 3.60 and Eq. 3.61 are

J1 =

⎛
⎜⎝0 0 0

0 0 −1
0 1 0

⎞
⎟⎠ J2 =

⎛
⎜⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎟⎠ J3 =

⎛
⎜⎝0 −1 0

1 0 0
0 0 0

⎞
⎟⎠ .

(3.62)
These matrices form a basis for the generators of the group SO(3).

This means any generator of the group can be written as a linear
combination of these basis generators: J = aJ1 + bJ2 + cJ3, where
a, b, c denote real constants. These generators can be written more
compactly by using the Levi-Civita symbol4545 The Levi-Civita symbol is explained

in appendix B.5.5.

(Ji)jk = −εijk, (3.63)

where j, k denote the components of the generator Ji. For example,

(J1)jk = −ε1jk ↔

⎛
⎜⎝(J1)11 (J1)12 (J1)13

(J1)21 (J1)22 (J1)23

(J1)31 (J1)32 (J1)33

⎞
⎟⎠ = −

⎛
⎜⎝ε111 ε112 ε113

ε121 ε122 ε123

ε131 ε132 ε133

⎞
⎟⎠

=

⎛
⎜⎝0 0 0

0 0 −1
0 1 0

⎞
⎟⎠ . (3.64)

Let’s see what finite transformation matrix we get from the first of
these basis generators. We can focus on the lower right 2 × 2 matrix4646 This is exactly the two-dimensional

Levi-Civita symbol (j1)ij = εijk in
matrix form (see appendix B.5.5), which
is the generator of rotations in two
dimensions (of SO(2)).

j1 and ignore the zeroes for a moment:

J1 =

⎛
⎜⎜⎜⎜⎝

0 (
0 −1
1 0

)
︸ ︷︷ ︸

≡j1

⎞
⎟⎟⎟⎟⎠ . (3.65)

We can immediately compute

(j1)2 = −1, (3.66)

therefore

(j1)3 = (j1)2︸︷︷︸
=−1

j1 = −j1 , (j1)4 = +1 , (j1)5 = +j. (3.67)

In general, we have

(j1)2n = (−1)n I and (j1)2n+1 = (−1)n j1, (3.68)

which we can use when we evaluate the exponential function as
series expansion47

47 This is derived in appendix B.4.1.
The trick used here is explained in
more detail in appendix B.4.2 and the
series expansions of sine and cosine are
derived in appendix B.4.1, too.
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R1 fin = eΦj1 =
∞

∑
n=0

Φn jn1
n!

=
∞

∑
n=0

Φ2n

(2n)!
(j1)2n︸ ︷︷ ︸
(−1)n I

+
∞

∑
n=0

Φ2n+1

(2n + 1)!
(j1)2n+1︸ ︷︷ ︸
(−1)n j1

=

(
∞

∑
n=0

Φ2n

(2n)!
(−1)n

)
︸ ︷︷ ︸

=cos(φ)

I +

(
∞

∑
n=0

Φ2n+1

(2n + 1)!
(−1)n

)
︸ ︷︷ ︸

=sin(φ)

j1

= cos(φ)

(
1 0
0 1

)
+ sin(φ)

(
0 −1
1 0

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
(3.69)

Therefore the complete, finite transformation matrix is, using
e0 = 1 for the upper-left component

R1 =

⎛
⎜⎝1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎞
⎟⎠ , (3.70)

which we can recognize as one of the well-known rotation matri-
ces in 3-dimensions that were quoted at the beginning of this chapter
(Eq. 3.23). Following the same steps, we can derive the matrices for
rotations around the other axes.

We now have the generators of the group in explicit matrix form
(Eq. 3.62) and we can compute the corresponding Lie bracket48 by

48 As explained above, the natural
product of the Lie algebra is the Lie
bracket. Here we compute how the
basis generators behave, when put into
the Lie bracket. All other generators can
be constructed by linear combination
of these basis generators. Therefore, if
we know the result of the Lie bracket
of the basis generators, we know
automatically the result for all other
generators. This behaviour of the basis
generators in the Lie bracket, will
become incredibly important in the next
section. Everything that is important
about a Lie algebra, is encoded in
the Lie bracket relation of the basis
generators.

brute force. This yields49

49 For example, we have

[J1, J2] = J1 J2 − J1 J2

=

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ −

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ =

⎛
⎝0 0 0

1 0 0
0 0 0

⎞
⎠ −

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ = ε12k︸︷︷︸

=0 except for k=3

Jk

= ε123 J3 = J3

[Ji, Jj] = εijk Jk, (3.71)

where εijk is again the Levi-Civita symbol.
In physics it’s conventional to define the generators of SO(3) with

an extra "i", that is instead of eφJ , we write eiφJ and our generators
are then

J1 = i

⎛
⎜⎝0 0 0

0 0 1
0 −1 0

⎞
⎟⎠ J2 = i

⎛
⎜⎝0 0 −1

0 0 0
1 0 0

⎞
⎟⎠ J3 = i

⎛
⎜⎝ 0 1 0
−1 0 0
0 0 0

⎞
⎟⎠ .

(3.72)
and the Lie algebra50 reads

50 We will call the Lie bracket relation of
the basis generators the Lie algebra, be-
cause everything important is encoded
here.

[Ji, Jj] = iεijk Jk. (3.73)

We do this in physics to get Hermitian generators, which means51

51 For example now we have J�1 =

i

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ and therefore

J†
1 = (J�1 )

T = i

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠ = J
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J† = (J�)T = J, because Hermitian matrices have real eigenvalues and
this becomes important in quantum mechanics when the eigenvalues
of the generators become the values we can expect to measure in
experiments, which will be discussed in Sec. 8.3. Otherwise, that is
without the "i", the generators are anti-Hermitian J† = (J�)T = −J
and the corresponding eigenvalues are complex.

We can derive the basis generators in another way, by starting
with the well known rotation matrices and using from Eq. 3.55 that
X = dh

dθ |θ=0. For the first rotation matrix, as quoted in Eq. 3.23 and
derived in Eq. 3.70, this yields

J1 =
dR1

dθ
|θ=0 =

d
dθ

⎛
⎜⎝1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎞
⎟⎠ ∣∣∣

θ=0

=

⎛
⎜⎝0 0 0

0 − sin(θ) − cos(θ)
0 cos(θ) sin(θ)

⎞
⎟⎠ ∣∣∣

θ=0
=

⎛
⎜⎝0 0 0

0 0 −1
0 1 0

⎞
⎟⎠ , (3.74)

which is exactly the first generator in Eq. 3.62. Nevertheless, the
first method is more general, because we will not always start with
given finite transformation matrices. For the Lorentz group we will
start with the definition of the group, derive the basis generators and
compute only afterwards the explicit matrix form for the Lorentz
transformations. If you already have explicit transformation matrices,
you can always use Eq. 3.55 to derive the corresponding generators.

Before we move on, we will have a look at the modern definition
of a Lie algebra.

3.4.2 The Abstract Definition of a Lie Algebra

Up to this point we used a simplified definition: The Lie algebra con-
sists of all elements X that result in an element of the corresponding
group G, when put into the exponential function eX ∈ G. Later we
learned that an important part of a group, the rule for the combina-
tion of group elements, is encoded in the Lie algebra in form of the
Lie bracket. As we did for groups, we distil the defining features of
this idea into precise mathematical axioms:

A Lie algebra is a vector space g equipped with a binary operation
[, ]: g× g → g. The binary operation satisfies the following axioms:

• Bilinearity: [aX + bY, Z] = a[X, Z] + b[Y, Z] and [Z, aX + bY] =
a[Z, X] + b[Z, Y] , for arbitrary number a, b and ∀X, Y, Z ∈ g

• Anticommutativity: [X, Y] = −[Y, X] ∀ X, Y ∈ g
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• The Jacobi Identity: [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0
∀X, Y, Z ∈ g

You can check that the commutator of matrices fulfils all these con-
ditions and of course this standard commutator was used historically
to get to these axioms. Nevertheless, there are quite different binary
operations that fulfil these axioms, for example, the famous Poisson
bracket of classical mechanics.

The important point is that this definition makes no reference to
any Lie group. The definition of a Lie algebra stands on its own and
we will see that this makes sense. In the next section we will have a
look at the generators of SU(2) and find that the basis generators,
which is the set of generators we can use to construct all other gener-
ators by linear combination, fulfil the same Lie bracket relation as the
basis generators of SO(3) (Eq. 3.73). This is interpreted as SU(2) and
SO(3) having the same Lie algebra. This is an incredibly important
result and it will tell us a lot about SU(2) and SO(3).

3.4.3 The Generators and Lie Algebra of SU(2)

We stumbled upon SU(2) while trying to describe rotations in
three dimensions and discovered that SU(2) is the double cover52 52 Recall that this means that the map

from SU(2) to SO(3) identifies two
elements of SU(2) with the same
element of SO(3).

of SO(3).

Remember that SU(2) is the group of unitary 2 × 2 matrices with
unit determinant53 : 53 This is what the "S" stands for:

Special = unit determinant.
U†U = UU† = 1 (3.75)

det(U) = 1. (3.76)

The first thing we want to take a look at is the Lie algebra of this
group. Writing the defining conditions of the group in terms of the
generators J1, J2, . . . yields54 54 As discussed above, we now work

with an extra "i" in the exponent, in
order to get Hermitian matrices, which
guarantees that we get real numbers as
predictions for experiments in quantum
mechanics.

U†U = (ei Ji )†ei Ji !
= 1 (3.77)

det(U) = det(ei Ji )
!
= 1 (3.78)

The first condition tells us, using the Baker-Champell-Hausdorf The-
orem (Eq. 3.56) and [Ji, Ji] = 0
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(ei Ji )†ei Ji = e−i J†
i ei Ji !

= 1

→ e−i J†
i +i Ji+

1
2 [J

†
i ,Ji ]+... !

= 1

→︸︷︷︸
e0=1

J†
i

!
= Ji. (3.79)

A matrix fulfilling the condition J†
i = Ji is called Hermitian and we

therefore learn here that the generators of SU(2) must be Hermitian.
Using the identity det(eA) = etr(A), we see from the second condi-

tion:
det(ei Ji ) = eitr(Ji) = 1 →︸︷︷︸

e0=1

tr(Ji)
!
= 0. (3.80)

We conclude the generators of SU(2) must be Hermitian traceless
matrices. A basis for Hermitian traceless 2 × 2 matrices is given by 3
matrices55:55 A complex 2× 2 matrix has 4 complex

entries and therefore 8 degrees of
freedom. Because of the two conditions
only three degrees of freedom remain.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(3.81)
This means every Hermitian traceless 2 × 2 matrix can be writ-

ten as a linear combination of these matrices that are called Pauli

matrices.
We can put these explicit matrices for the basis generators into the

Lie bracket, which yields

[σi, σj] = 2iεijkσk, (3.82)

where εijk is again the Levi-Civita symbol. To get rid of the nasty 2 it
is conventional to define the generators of SU(2) as Ji ≡ 1

2 σi. The Lie
algebra then reads

[Ji, Jj] = iεijk Jk (3.83)

Take note that this is exactly the same Lie bracket relation we de-
rived for SO(3) (Eq. 3.73)! Therefore one says that SU(2) and SO(3)
have the same Lie algebra, because we define Lie algebras by their
Lie bracket. We will use the abstract definition of this Lie algebra,
to get different descriptions for the transformations described by
SU(2). We will learn that an SU(2) transformation doesn’t need to
be described by 2 × 2 matrices. To make sense of things like this, we
need a more abstract definition of a Lie group. At this point SU(2) is
defined as a set of 2 × 2 matrices, and a description of SU(2) by, for
example, 3 × 3 matrices, makes little sense. The abstract definition of
a Lie group will enable us to see the connection between different de-
scriptions of the same transformation. We will identify with each Lie
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group a geometrical object (a manifold) and use this abstract object to
define a group. This may seem like a strange thought, but will make
a lot of sense after taking a second look at two examples we already
encountered in earlier chapters.

3.4.4 The Abstract Definition of a Lie Group

One of the first Lie groups we discussed was U(1), the unit complex
numbers. These are defined by z�z = 1, which reads if we write
z = a + ib:

z�z = (a + ib)�(a + ib) = (a − ib)(a + ib) = a2 + b2 = 1. (3.84)

This is exactly the defining condition of the unit circle56. The set 56 The unit circle S1 is the set of all
points in two dimensions with distance
1 from the origin. In mathematical
terms this means all points (x1, x2)
fulfilling x2

1 + x2
2 = 1.

of unit-complex numbers is the unit circle in the complex plane.
Furthermore, we found that there is a one-to-one map57 between

57 To be precise: An isomorphism. To
say two things are isomorphic is the
mathematical way of saying that they
are "the same thing" and two things
are called isomorphic if there exists an
isomorphism between them.

elements of U(1) and SO(2). Therefore, for these groups it is easy
to identify them with a geometric object: The unit circle. Instead of
talking about different descriptions for SO(2) or U(1), which are
defined by objects of given dimension, it can help to think about this
group as the unit-circle. Rotations in two-dimensions are, as a Lie
group, the unit-circle and we can represent these transformations
by elements of SO(2), i.e. 2 × 2 matrices or elements of U(1), i.e.
unit-complex numbers.

The next groups we discussed were SO(3) and SU(2). Remem-
ber that we found a one-to-one map between SU(2) and the unit
quaternions. The unit quaternions are defined as those quaternions
q = a1 + bi + cj + dk that satisfy the condition (Eq. 3.29)

a2 + b2 + c2 + d2 !
= 1, (3.85)

which is the same condition that defines58 the three sphere S3! There-

58 Recall that the unit circle S1 is defined
as the set of points that satisfy the
condition x2

1 + x2
2 = 1. Equally, the two-

sphere S2 is defined by the condition
x2

1 + x2
2 + x2

3 = 1 and analogously the
three sphere S3 by x2

1 + x2
2 + x2

3 + x2
4 = 1.

The number that follows the S denotes
the dimension. In two dimensions,
with one condition we get a one-
dimensional object: S1. Equally we
get in four dimensions, with one
condition x2

1 + x2
2 + x2

3 + x2
4 = 1 a three

dimensional object S3. S3 is the surface
of the four-dimensional sphere.

fore this map provides us with a map between SU(2) and the three
sphere S3. This map is an isomorphism (1-1 and onto) and therefore
we can really think of SU(2) as a the three sphere S3.

These observations motivate the modern definition of a Lie group59:

59 The technical details that follow aren’t
important for what we want to do in
this book. The important message to
take away is: Lie group = manifold.

A Lie group is a group, which is also a differentiable manifold60. Further-

60 A manifold is a set of points, for
example a sphere that looks locally
like flat Euclidean space Rn. Another
way of thinking about a n-dimensional
manifold is that it’s a set which can
be given n independent coordinates
in some neighborhood of any point.
For some more information about
manifolds, see the appendix in Sec. 3.11
at the end of this chapter.

more, the group operation ◦ must induce a differentiable map of the manifold
into itself. This is a compatibility requirement that ensures that the group
property is compatible with the manifold property. Concretely this means
that every group element, say a induces a map that takes any element of the
group b to another element of the group c = ab and this map must be dif-
ferentiable. Using coordinates this means that the coordinates of ab must be
differentiable functions of the coordinates of b.
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By the abstract definition of a Lie algebra we say that SO(3) and
SU(2) have the same Lie algebra (Eq. 3.83). Now it’s time to talk
about the remark at the end of Sec. 3.4:

"... there is precisely one distinguished Lie group for each Lie
algebra."

We can now understand a bit better, why this one group is distin-
guished. The distinguished group has the property of being simply

connected. This means that, if we use the modern definition of a
Lie group as a manifold, any closed curve on this manifold can be
shrunk smoothly to a point61.61 We will not discuss this any further,

but you are encouraged to read about
it, for example in the books recom-
mended at the end of this chapter.
For the purpose of this book it suf-
fices to know that there is always one

distinguished group.

To emphasize this important point:62

62 A proof can be found, for example,
in Michael Spivak. A Comprehensive
Introduction to Differential Geometry, Vol.
1, 3rd Edition. Publish or Perish, 3rd
edition, 1 1999. ISBN 9780914098706

There is precisely one simply-connected Lie group correspond-

ing to each Lie algebra.

This simply-connected group can be thought of as the "mother"
of all those groups having the same Lie algebra, because there are
maps to all other groups with the same Lie algebra from the simply
connected group, but not vice versa. We could call it the mother
group of this particular Lie algebra, but mathematicians tend to be
less dramatic and call it the covering group. All other groups having
the same Lie algebra are said to be covered by the simply connected
one. We already stumbled upon an example of this: SU(2) is the
double cover of SO(3). This means there is a two-to-one map from
SU(2) to SO(3).

Furthermore, SU(2) is the three sphere, which is a simply con-
nected manifold. Therefore, we have already found the "most impor-
tant" group belonging to this Lie algebra, i.e. Eq. 3.83. We can get all
other groups belonging to this Lie algebra through maps from SU(2).

We can now see what manifold SO(3) is. The map from SU(2)
to SO(3) identifies with two points of SU(2), one point of SO(3).
Therefore, SO(3) is one half of the unit sphere.

Fig. 3.7: Two-dimensional slice of
the three Sphere S3 (which is a three
dimensional surface and therefore not
drawable itself). We can see that the top
half of the sphere is SO(3), because to
get from SU(2) to SO(3) we identify
two points, for example, p and p + 2π,
with each other.

We can see, from the point of view that Lie groups are manifolds
that SU(2) is a more complete object than SO(3). SO(3) is just part of
the complete object.

I want to take the view in this book that in order to describe na-
ture at the most fundamental level, we need to use the most funda-
mental groups. For rotations in three dimensions this group is SU(2)
and not SO(3). We will discover something similar when considering
the symmetry group of special symmetry.
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We will see that Nature agrees with such lines of thought! To
describe elementary particles one uses the representations of the
covering group of the Poincare group, instead of just the usual rep-
resentation one uses to transform four-vectors. To describe nature at
the most fundamental level, one must use the covering group, instead
of any of the other groups one can map to from the covering group.

We are able to derive the representations63 of the most fundamen- 63 This notion will be made precise in
the next section.tal group, belonging to a given Lie algebra, by deriving representa-

tions of the Lie algebra. We can then put the matrices representing
the Lie algebra elements (the generators) into the exponential func-
tion to get matrices representing group elements.

Herein lies the strength of Lie theory. By using pure mathemat-
ics we are able to reveal something fundamental about nature. The
standard symmetry group of special relativity hides64 something 64 For those who already know some

quantum mechanics: The standard
symmetry group hides spin from us!

from us, because it is not the most fundamental group belonging to
this symmetry. The covering group of the Poincare group65 is the

65 For brevity, we will avoid writing
"double cover of" or "covering group
of" most of the time. We will use one
representation of the Poincare group to
derive the corresponding Lie algebra.
Then we will use this Lie algebra to
derive the representations of the one
distinguished group that belongs to
this Lie algebra. In other words: The
representations of the double cover of
the Poincare group.

fundamental group and therefore we will use it to describe nature.

To summarize66

66 Maybe you wonder why S2, the sur-
face of the sphere in three dimensions,
is missing. S2 is not a Lie group and
this is closely related to the fact that
there are no three-dimensional complex
numbers. Recall that we had to move
from two-dimensional complex num-
bers with just i to the four-dimensional
quaternions with i,j,k.

• S1=̂U(1) ↔︸︷︷︸
one-to-one

SO(2)

• S3=̂SU(2) →︸︷︷︸
two-to-one

SO(3)=̂ half of S3

⇒ SU(2) is the distinguished group belonging to the Lie algebra
[Ji, Jj] = iεijk Jk (Eq. 3.83), because S3 is simply connected.

Next, we will introduce another important branch of Lie theory,
called representation theory. It is representation theory that enables
us to derive from a given Lie group the tools we need to describe
nature at the most fundamental level.

3.5 Representation Theory

The important thing about group theory is that it is able to describe
transformations without referring to any objects in the real world.

For theoretical considerations it is often useful to regard any group
as an abstract group. This means defining the group by its manifold
structure and the group operation. For example SU(2) is the three
sphere S3, the elements of the group are points of the manifold and
the rule associating a product point ab with any two points b and a
satisfies the usual group axioms. In physical applications one is more
interested in what the group actually does, i.e. the group action.
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An important idea is that one group can act on many different
kinds of objects67. This idea motivates the definition of a representa-67 This will make much more sense in a

moment. tion: A representation is a map68 between any group element g of a
68 The mathematical term for a map
with these special properties is ho-

momorphism. The definition of an
isomorphism is then a homomorphism,
which is in addition one-to-one.

group G and a linear transformation69 R(g) of some vector-space V

69 In the context of this book this will
always mean that we map each group
element to a matrix. Each group ele-
ment is then given by a matrix that acts
by usual matrix multiplication on the
elements of some vector space.

g →︸︷︷︸
R

R(g) (3.86)

in such a way that the group properties are preserved:

• R(e) = I (The identity element of the group transforms nothing at
all)

• R(g−1) =
(

R(g)
)−1 (Every inverse element is mapped to the

corresponding inverse transformation)

• R(g) ◦ R(h) = R(gh) (The combination of transformations corre-
sponding to g and h is the same as the transformation correspond-
ing to the point gh)

A representation70 identifies with each point (abstract group el-70 This concept can be formulated more
generally if one accepts arbitrary (not
linear) transformations of an arbitrary
(not necessarily a vector) space. Such a
map is called a realization. In physics
one is concerned most of the time with
linear transformations of objects liv-
ing in some vector space (for example
Hilpert space in quantum mechanics or
Minkowski space for special relativity),
therefore the concept of a representa-
tion is more relevant to physics than the
general concept called realization.

ement) of the group manifold (the abstract group) a linear transfor-
mation of a vector space. Although we define a representation as a
map, most of the time we will call a set of matrices a representation.
For example, the usual rotation matrices are a representation of the
group SO(3) on the vector space71 R3. The rotation matrices are lin-

71 R3 denotes three dimensional Eu-
clidean space, where elements are
ordinary 3 component vectors, as we
use them for example in appendix A.1.

ear transformations on R3. But take note that we can examine the
group action on other vector spaces, too.

Using representation theory, we able to investigate systematically
how a given group acts on very different vector spaces and that is
were things start to get really interesting.

One of the most important examples in physics is SU(2). For
example, we can examine how SU(2) acts on the complex vector
space of dimension one C1, which is especially easy, as we will see
later, or two: C2, which we will discuss in detail in the following
sections. The objects living in C2 are complex vectors of dimension
two and therefore SU(2) acts on them as 2 × 2 matrices. The matrices
(=linear transformations) acting on C2 are just the usual matrices we
already know for SU(2). In addition, we can examine how SU(2)
acts on C3. There is a well defined framework for constructing such
representations and as a result, SU(2) acts on complex vectors of
dimension three as 3 × 3 matrices. For example, a basis for the SU(2)
generators on C3 is given by7272 We will learn later in this chapter how

to derive these. At this point just take
notice that it is possible.
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J1 =
1√
2

⎛
⎜⎝0 1 0

1 0 1
0 1 0

⎞
⎟⎠ , J2 =

1√
2

⎛
⎜⎝0 −i 0

i 0 −i
0 i 0

⎞
⎟⎠ , J3 =

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠ .

(3.87)
As usual, we can then compute SU(2) matrices in this represen-

tation by putting linear combinations of these generators into the
exponential function.

One can go on and inspect how SU(2) acts on higher dimensional
vectors. This can be quite confusing and it would be better to call73 73 In an early draft version of this book

the group was consequently called S3.
Unfortunately, such a non-standard
name makes it hard for beginners to
dive deeper into the subject using the
standard textbooks.

this group S3 instead of SU(2), because usually SU(2) is defined as
the set of complex 2 × 2 (!) matrices satisfying (Eq. 3.33)

U†U = 1 and det(U) = 1 (3.88)

and now we write SU(2) as 3 × 3 matrices. Therefore one must al-
ways keep in mind that we mean the abstract group, instead of the
2 × 2 definition, when we talk about higher dimensional representa-
tion of SU(2) or any other group.

Typically a group is defined in the first place by a representation.
For example, for SU(2) we started with 2 × 2 matrices. This enables
us to study the group properties concretely, as we did in the preced-
ing chapters. After this initial study it’s often more helpful to regard
the group as an abstract group74, because it’s possible to find other, 74 For SU(2) this means using S3.

useful representations of the group.

Before we move on to examples we need to define some abstract,
but useful, notions. These notions will clarify the hierarchy of rep-
resentations, because not every possible representation is equally
fundamental.

The first notion we want to talk about is similarity transforma-

tion. Given a matrix D and an invertible75 matrix S then a transfor- 75 A matrix S is called invertible, if
there exists a matrix T, such that
ST = TS = 1. The inverse matrix is
usually denoted S−1.

mation of the form

R → R′ = S−1RS (3.89)

is called a similarity transformation. The usefulness of this kind of
transformation in this context lies in the fact that if we have a rep-
resentation R(G) of a group G, then S−1RS is also a representation.
This follows directly from the definition of a representation: Suppose
we have two group elements g1, g2 and a map R: G ⇒ GL(V), i.e.
R(g1) and R(g2). This is a representation if

R(g1)R(g2) = R(g1g2) (3.90)
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If we now look at the similarity transformation of the representa-
tion

S−1R(g1) SS−1︸ ︷︷ ︸
=1

R(g2)S = S−1R(g1)R(g2)S = S−1R(g1g2)S (3.91)

we see that this is a representation, too. Speaking colloquially, this
means that if we have a representation, we can transform its elements
wildly with literally any non-singular matrix S to get nicer matrices.

The next notion we want to introduce is invariant subspace. If
we have a representation R of a group G on a vector space V we call
V′ ⊆ V an invariant subspace if for76 v ∈ V′ we have R(g)v ∈ V′76 Of course v ∈ V, too. The vector

space V′ must be part of the vector
space V, which is mathematically
denoted by V′ ⊆ V. In other words this
means that every element of V′ is at the
same time an element of V.

for all g ∈ G. This means, if we have a vector in the subspace V′

and we act on it with arbitrary group elements, the transformed
vector will always be again part of the subspace V′. If we find such
an invariant subspace we can define a representation R′ of G on V′,
called a subrepresentation of R, by

R′(g)v = R(g)v (3.92)

for all v ∈ V′. Therefore, one is led to the thought that the represen-
tation R, we talked about in the first place, is not fundamental, but a
composite of smaller building blocks, called subrepresentations.

This leads us to the very important notion of an irreducible rep-

resentation. An irreducible representation is a representation of a
group G on a vector space V that has no invariant subspaces besides
0 and V itself. Such representations can be thought of as truly fun-
damental, because they are not made up by smaller representations.
The irreducible representations of a group are the building blocks
from which we can build up all other representations. There is an-
other way to think about irreducible representation: A irreducible
representation cannot be rewritten, using a similarity transforma-
tion, in block diagonal form. In contrast to a reducible representation,
which can be rewritten in block-diagonal form by similarity trans-
formations. This notion is important because nature uses irreducible
representations77 to describe elementary particles. We will see later77 What else?

that the behaviour of elementary particles under transformations is
described by irreducible representations of the corresponding sym-
metry group.

There are many possible representations78 for each group, how do78 For example we already know two
different representations for rotations
in two-dimensions. One using complex
numbers and one using 2 × 2 matrices.
Both are representations of S1 as a
group.

we know which one to choose to describe nature? There is an idea
that is based on the Casimir elements. A Casimir element C is build
from generators of the Lie algebra and its defining feature is that it
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commutes with every generator X of the group

[C, X] = 0. (3.93)

What does this mean? A famous Lemma, called Schur’s Lemma79, 79 A basic result of group theory, which
you can look up in any book about
group theory.

tells us that if we have an irreducible representation R : g → GL(V),
any linear operator T : V → V that commutes with all operators
R(X) must be a scalar multiple of the identity operator. Therefore,
the Casimir elements give us linear operators with constant values
for each representation. As we will see, these values provide us with
a way of labelling representations naturally.80 We can then start to 80 This will become much clearer as

soon as we look at an example.investigate the irreducible representations, starting with the represen-
tation with the lowest possible scalar value for the Casimir element.

Is there anything we can say about the vector space V mentioned
in the definition of a representation above? The definition states
that a representation is a map from the abstract group to the space
of linear operators on a vector space. Now, from linear algebra we
know that the eigenvectors of a linear operator always form a basis
for the vector space. We can use this to inspect the vector space. For
any Lie group, one or more of the generators of a Lie group can be
diagonalized81 using similarity transformations and we will use these

81 The set of diagonal generators is
called Cartan subalgebra, and the
corresponding generators Cartan gen-
erators. These generators play a big
role in quantum field theory, because
the eigenvalues of the Cartan genera-
tors are used to give charge labels to
elementary particles. For example, to
derive quantum chromodynamics, we
use the group SU(3), as we will see
later, and there are two Cartan gen-
erators. Therefore, each particle that
interacts via chromodynamics, carries
two charge labels. Conventionally in-
stead of writing two numbers, one uses
the words red, blue, green, and calls the
corresponding charge colour. Analo-
gous, the theory of weak interactions
uses the group SU(2), which has only
one Cartan generator. Therefore, each
particle is labelled by the corresponding
eigenvalues of this Cartan generator.

diagonalized generators to get a basis of our vector space.
We will now start deriving the irreducible representations of the

Lie algebra of SU(2) because, as we will see, the Lie algebra of the
Lorentz group can be thought of as two copies of the SU(2) algebra.
The Lorentz group is part of the Poincare group and we will talk
about these groups in this order.

3.6 SU(2)

We used in Sec. 3.4.3 specific matrices (=a specific representation) to
identify how the generators of SU(2) behave, when put into the Lie
bracket82. We can use this knowledge to find further representations. 82 Recall that this is what we use to

define the Lie algebra of a group in
abstract terms. The final result was
Eq. 3.83.

We will arrive again at the representation we started with, which
means the set of unitary 2× matrices with unit determinant and are
then able to see that it is just one special case. Before we are going
to tackle this task, we want to take a moment to think about what
representations we can expect.

3.6.1 The Finite-dimensional Irreducible Representations

of SU(2)

To learn something about what finite-dimensional, irreducible repre-
sentations of SU(2) are possible, we define new operators from the
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ones we used in Sec. 3.4.3, by linear combination8383 We can always diagonalize one of the
generators. Following the convention
we choose J3 as diagonal and therefore
yielding the basis vectors for our vector
space. Furthermore, it is conventional
to introduce the new operators J± in
the way we do here.

J+ =
1√
2
(J1 + i J2) (3.94)

J− =
1√
2
(J1 − i J2) (3.95)

These new operators obey the following commutation relations, as
you can check by using the commutator relations in Eq. 3.83

[J3, J±] = ±J± (3.96)

[J+, J−] = J3. (3.97)

If we now investigate how these operators act on an eigenvector v of
J3 with eigenvalue84 b we discover something remarkable:84 This means J3v = bv as explained in

appendix C.4.

J3(J±v) = J3(J±v) + J± J3v − J± J3v︸ ︷︷ ︸
=0

= J± J3v︸ ︷︷ ︸
=J±bv

+ J3 J±v − J± J3v︸ ︷︷ ︸
=[J3,J± ]v

=︸︷︷︸
Eq. 3.96

(b ± 1)J±v (3.98)

We conclude that J±v is again an eigenvector, let’s call him w, of J3

with eigenvalue (b ± 1):

J3w = (b ± 1)w with w = J±v. (3.99)

The operators J− and J+ are called raising and lowering or ladder

operators. We can construct more and more eigenvectors of J3 using
the operators the ladder operators J± repeatedly. This process must
come to an end, because eigenvectors with different eigenvalues are
linearly independent and we are dealing with finite-dimensional
representations. This means that the corresponding vector space is
finite-dimensional and therefore we can only find a finite number of
linearly independent vectors.

We conclude there must be an eigenvector with a maximum eigen-
value vmax. After a finite number N of applications of J+ we reach
the maximum eigenvector vmax

vmax = JN
+ v (3.100)

We have
J+vmax = 0, (3.101)
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because vmax is, by definition, the eigenvector with the highest eigen-
value. We call the maximum eigenvalue j := b + N. The same must
be true for the other direction: There must be an eigenvector with
minimum eigenvalue vmin for which the following relation holds

J−vmin = 0 (3.102)

Let us say we reach the minimum after operating M times with J− on
vmax

vmin = JM− vmax. (3.103)

Therefore, vmin has eigenvalue j-M. To go further we need to know
how exactly J± acts on eigenvectors. The computation above shows
that J−vk is, in general, a scalar multiplied by an eigenvector with
eigenvalue k − 1:

J−vk = αkvk−1. (3.104)

If we inspect in detail how J− acts on vmax we get85 the general rule 85 See, for example, page 90 in Matthew
Robinson. Symmetry and the Standard
Model. Springer, 1st edition, August
2011. ISBN 978-1-4419-8267-4

for the scalar factor

αj−k =
1√
2

√
(2j − k)(k + 1) (3.105)

Take note that this scalar factor becomes zero for k = 2j and there-
fore, we have reached the end of the ladder after 2j steps if we start at
the top. Therefore vmin has eigenvalue j − 2j = −j. We conclude that
we have in general 2j + 1 eigenstates with eigenvalues

{−j,−j + 1, . . . , j − 1, j} (3.106)

This is only possible if j is an integer or an half-integer86. Now we 86 Try it with other fractions if you don’t
believe this!know that our vector space V has 2j + 1 dimensions87, because we
87 See, for example, page 189 in Nadir
Jeevanjee. An Introduction to Tensors and
Group Theory for Physicists. Birkhaeuser,
1st edition, August 2011. ISBN 978-
0817647148

have 2j + 1 linearly independent eigenvectors. Those eigenvectors
of J3 span the complete vector space V because J1 and J2 can be ex-
pressed in terms of J+ and J− and therefore take any linear combina-
tion ∑i aivi into a possibly different linear combination ∑i bivi, with
scalar factors ai, bi. Therefore, the span of the eigenvectors of J3 is
a non-zero invariant subspace of V and because we are looking for
irreducible representations they span the complete vector space V.

We can use the construction above to define representations of
SU(2) on a vector space Vj with 2j + 1 dimensions and basis given
by the eigenvectors vk of J3. Furthermore, it’s possible to show that
every irreducible representation of SU(2) must be equivalent to one
of these88. 88 See page 190 in: Nadir Jeevanjee. An

Introduction to Tensors and Group Theory
for Physicists. Birkhaeuser, 1st edition,
August 2011. ISBN 978-0817647148
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3.6.2 The Casimir Operator of SU(2)

As described in Sec. 3.5, we can naturally label representations by
using the Casimir operators89 of the group. SU(2) has exactly one89 Recall that Casimir operators are

defined as operators C, built from the
generators of the group that commute
with every generator X of the group:
[C, X] = 0.

Casimir operator:

J2 := (J1)
2 + (J2)

2 + (J3)
2 (3.107)

that fulfils the defining condition:

[J2, Ji] = 0. (3.108)

We can re-express J2 in terms of J± by using the definition of J± in
Eq. 3.95 and Eq. 3.94:

J2 = J+ J− + J− J+ + (J3)
2

=
1
2
(J1 + i J2)(J1 − i J2) +

1
2
(J1 − i J2)(J1 + i J2) + (J3)

2

=
1
2

(
(J1)

2 − i J1 J2 + i J2 J1 + (J2)
2
)
+

1
2

(
(J1)

2 + i J1 J2 − i J2 J1 + (J2)
2
)

+ (J3)
2

= (J1)
2 + (J2)

2 + (J3)
2 � (3.109)

If we now use90

90 These are just the normalization
constants. If we act with J± onto a
normalized state, the resulting state
will in general not be normalized, too.
Nevertheless, in physics we always
prefer working with normalized states,
for reasons that will become clear in the
following chapters. The derivation is a
bit tedious, but simply starts with

J±vk = cvk±1 where c is the nor-
malization constant in question. The
complete computation can be found
in most books about quantum me-
chanics in the chapter about angular
momentum and angular momentum
ladder operators. If this is new to you,
do not waste too much time here be-
cause the result of this section is not too
important for everything that follows.

J+vk =
1√
2

√
(j + k + 1)(j − k)vk+1 (3.110)

and
J−vk =

1√
2

√
(j + k)(j − k + 1)vk−1 (3.111)

we can compute the fixed scalar value for each representation:

J2vk =

(
1
2
(J+ J− + J− J+) + (J3)

2
)

vk

= J+ J−vk + J− J+vk + k2vk

= J+
1√
2

√
(j + k)(j − k + 1)vk−1 + J−

1√
2

√
(j + k + 1)(j − k)vk+1 + k2vk

=
1√
2

√
(j + k)(j − k + 1)J+vk−1 +

1√
2

√
(j + k + 1)(j − k)J−vk+1 + k2vk

=
1√
2

√
(j + k)(j − k + 1)

1√
2

√
(j + (k − 1) + 1)(j − (k − 1))vk

+
1√
2

√
(j + k + 1)(j − k)

1√
2

√
(j + (k + 1))(j − (k + 1) + 1)vk + k2vk

=
1
2
(j + k)(j − k + 1) +

1
2
(j − k)(j + k + 1)vk + k2vk

= (j2 + j)vk = j(j + 1)vk (3.112)

Now we look at specific examples for the representations. We start,
of course, with the lowest dimensional representations.
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3.6.3 The Representation of SU(2) in one Dimension

The lowest possible value for j is zero. In this case our representation
acts on a 2j + 1 = 2 · 0 + 1 = 1 dimensional vector space. We can
see that this representation is trivial, because the only 1 × 1 matrices
fulfilling the commutation relations of the SU(2) Lie algebra

[Jl , Jm] = iεlmn Jn, are trivially 0. If we exponentiate the generator 0
we always get the transformation U = e0 = 1 which changes nothing
at all.

3.6.4 The Representation of SU(2) in two Dimensions

We now take a look at the next lowest possible value j = 1
2 . This

representation is 2 1
2 + 1 = 2 dimensional. The generator J3 has

eigenvalues 1
2 and 1

2 − 1 = − 1
2 , as can be seen from Eq. 3.106 and is

therefore given by

J3 =
1
2

(
1 0
0 −1

)
, (3.113)

because we choose J3 to be the diagonal generator91. The eigenvec- 91 For SU(2) only one generator is
diagonal, because of the commutation
relations. Furthermore, remember that
we are able to transform the generators
using similarity transformations and
could therefore easily make another
generator diagonal.

tors corresponding to the eigenvalues + 1
2 ,− 1

2 are:

v 1
2
=

(
1
0

)
and v− 1

2
=

(
0
1

)
. (3.114)

We can find the explicit matrix form of the other two generators of
SU(2) in this basis by rewriting them using the ladder operators

J1 =
1√
2
(J− + J+) (3.115)

J2 =
i√
2
(J− − J+), (3.116)

which we get directly from inverting the definitions of J± in Eq. 3.95
and Eq. 3.94. Recall that a basis four the vector space of this represen-
tation is given by the eigenvectors of J3 and we therefore express the
generators J1 and J2 in this basis. In other words: In this basis J1 and
J2 are defined by their action on the eigenvectors of J3. We compute

J1v 1
2
=

1√
2
(J− + J+)v 1

2
=

1√
2
(J−v 1

2
+ J+v 1

2︸ ︷︷ ︸
=0

) =
1√
2

J−v 1
2
=

1
2

v− 1
2
,

(3.117)
where we used that 1

2 is already the maximum value for v 1
2

and

we cannot go higher. The factor 1
2 is the scalar factor we get from

Eq. 3.105. Similarly we get

J1v− 1
2
=

1√
2
(J− + J+)v− 1

2
=

1
2

v 1
2

(3.118)
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Written in matrix form, where our basis is given by v 1
2
= (1, 0)T and

v− 1
2
= (0, 1)T :

J1 =
1
2

(
0 1
1 0

)
. (3.119)

You can check that this matrix has the action on the basis vectors we
derived above92. In the same way, we find92 We derived in Eq. 3.117:

J1v 1
2
= 1

2 v− 1
2

. Using the explicit
matrix form of J1 we get

J1v 1
2
= 1

2

(
0 1
1 0

)(
1
0

)
= 1

2

(
0
1

)
=

1
2 v− 1

2
�.

J2 =
1
2

(
0 −i
i 0

)
. (3.120)

These are the same generators Ji = 1
2 σi, with the Pauli matrices σi,

we found while investigating Lie algebra of SU(2) at the beginning
of this chapter (Eq. 3.81). We can now see that the representation we
used there was exactly this two dimensional representation. Never-
theless, there are many more, for example, in three-dimensions as we
will see in the next section93.93 Again, don’t get confused by the

name SU(2), which we originally de-
fined as the set of unitary 2 × 2 matrices
with unit determinant. Here we mean
the abstract group, defined by the cor-
responding manifold S3 and we are
going to talk about higher dimensional
representations of this group, which
result in, for example, a representation
with 3 × 3 matrices. It would help if
we could give this structure a different
name (For example, using the name of
the corresponding manifold S3), but
unfortunately SU(2) is the conventional
name.

3.6.5 The Representation of SU(2) in three Dimensions

Following the same procedure94 as in two-dimensions, we find:

94 We start again with the diagonal
generator J3, which we can write down
immediately because we know its
eigenvalues (1, 0,−1). Afterwards,
the other two generators J1, J2 can be
derived by their action, where we again
use that we can write them in terms of
J±, on the eigenvectors of J3.

J1 =
1√
2

⎛
⎜⎝0 1 0

1 0 1
0 1 0

⎞
⎟⎠ , J2 =

1√
2

⎛
⎜⎝0 −i 0

i 0 −i
0 i 0

⎞
⎟⎠ , J3 =

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠

(3.121)
This is the representation of the generators of SU(2) in three di-
mensions. If you’re interested, you can derive the corresponding
representation for the group elements of SU(2) in three dimensions,
by putting these generators into the exponential function. We will
not go any further and deriving even higher dimensional represen-
tations, because at this point we already have everything we need to
understand the most important representations of the Lorentz group.

3.7 The Lorentz Group O(1, 3)

"To arrive at abstraction, it is always necessary to begin with a concrete
reality . . . You must always start with something. Afterward you can
remove all traces of reality."

- Pablo Picasso9595 As quoted in Robert S. Root-Bernstein
and Michele M. Root-Bernstein. Sparks
of Genius. Mariner Books, 1st edition, 8
2001. ISBN 9780618127450 In this section we will use one known representation of the Lorentz

group to derive the corresponding Lie algebra, which is exactly the
same route we followed for SU(2). There we started with explicit
2 × 2 matrices to derive the corresponding Lie algebra. We will find



lie group theory 59

that this algebra can be seen to be constructed of two copies of the
Lie algebra of SU(2). This fact can be used to discover further rep-
resentations of the Lorentz group, whereas the well-known vector
representation, which is the representation of the Lorentz group by
4 × 4 matrices acting on four-vectors, will prove to be one of the rep-
resentations. The new representations will provide us with tools to
describe physical systems that cannot be described by the vector rep-
resentation. This shows the power of Lie theory. Using Lie theory we
are able to identify the hidden abstract structure of a symmetry and
by using this knowledge we are able to describe nature at the most
fundamental level with the required tools.

We start with a characterisation of the Lorentz group and its sub-
groups. The Lorentz group is the set of all transformations that pre-
serve the inner product of Minkowski space96 96 This was derived in Chap. 2. Recall

that this definition is analogous to
our definition of rotations and spatial
reflections in Euclidean space, which
preserve the inner product of Euclidean
space.

xμxμ = xμημνxν = (x0)2 − (x1)2 − (x2)2 − (x3)2 (3.122)

where ημν denotes the metric of Minkowski space

ημν =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠ . (3.123)

This is the reason why we call the Lorentz group O(1, 3). The group
O(4) preserves (x0)2 + (x1)2 + (x2)2 + (x3)2. Let’s see what restriction
this imposes. The conventional name for a Lorentz transformation is
Λ (Lambda). For the moment, Λ is just a name and we will derive
now how these transformations look like explicitly. If we transform
xμ → x′μ = Λμ

ν xν, we get the product

xμημνxν → x′σησρx′ρ = (xμΛσ
μ)ησρ(Λ

ρ
νxν)

!
= xμημνxν (3.124)

and because this must hold for arbitrary xμ we conclude

Λσ
μησρΛρ

ν
!
= ημν (3.125)

or written in matrix form97 97 Recall that in order to write the prod-
uct of two vectors in matrix notation,
the left vector is transposed. Therefore
we get here ΛT .

ΛTηΛ !
= η. (3.126)

This is how the Lorentz transformations Λ are defined! If we
take the determinant of the equation and use

det(AB) = det(A)det(B) we get the defining condition

det(Λ)det(η)︸ ︷︷ ︸
=−1

det(Λ) = det(η)︸ ︷︷ ︸
=−1

→ det(Λ)2 !
= 1 (3.127)
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→ det(Λ)
!
= ±1 (3.128)

Furthermore, we get if we look at98 the μ = ν = 0 component in98 We will see in a minute why this is
useful. Eq. 3.125

Λσ
0 ησρΛρ

0
!
= η00︸︷︷︸

=1

→ Λσ
0 ησρΛρ

0 = (Λ0
0)

2 − ∑
i
(Λi

0)
2 !
= 1 (3.129)

and we conclude

Λ0
0

!
= ±

√
1 + ∑

i
(Λi

0)
2. (3.130)

We divide the Lorentz group into four components, depending
on the signs in the Eq. 3.128 and Eq. 3.130. The components that
preserve the orientation99 of the coordinate system are those two99 This means a right-handed coordinate

system stays right-handed and a left-
handed coordinate system stays left-
handed. For the definition of left- and
right-handed coordinate systems have a
look at appendix A.5.

with det(Λ) = +1. Furthermore, if we want to preserve the direction
of time we need to restrict to Λ0

0 ≥ 0, because

x0 = t → x′0 = t′ = Λ0
νxν = Λ0

0t + Λ0
1x1 + Λ0

2x2 + Λ0
3x3, (3.131)

where we can see that, if Λ0
0 ≥ 0, then t′ has the same sign as t. This

component is called SO(1, 3)↑ and we will talk about this subgroup
most of the time. The fancy term for this subgroup is proper100 or-100 This term refers to the fact that

the subgroup SO(1, 3)↑ preserves
orientation/parity.

thochronous101 Lorentz group. The four components of the Lorentz

101 This means that this subgroup
preserves the direction of time.

group are disconnected in the sense that it is not possible to get
a Lorentz transformation of another component just by using the
Lorentz transformations of one component. Other components can be
obtained from SO(1, 3)↑ by using102

102 At least for one representation, these
operators look like this. We will see
later that for different representations,
these operators look quite different.

ΛP =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠ (3.132)

ΛT =

⎛
⎜⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (3.133)

ΛP is called the parity operator. A parity transformation is simply a
reflection in a mirror. ΛT is the time-reversal operator.

The complete Lorentz group O(1, 3) can then be seen as the set:

O(1, 3) = {SO(1, 3)↑, ΛPSO(1, 3)↑, ΛTSO(1, 3)↑, ΛPΛTSO(1, 3)↑}
(3.134)
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Therefore, we can restrict our search for representations of the
Lorentz group, to representations of SO(1, 3)↑, because then we only
need to find representations for ΛP and ΛT , to get representations of
the other components.

3.7.1 One Representation of the Lorentz Group

Let’s see how we can use the defining condition of the Lorentz group
(Eq. 3.125) to construct an explicit matrix representation of the al-
lowed transformations. First let’s think a moment about what we are
trying to find. The Lorentz group, when acting on 4-vectors103, is 103 The usual vector space of special

relativity is the real, four-dimensional
Minkowski space R(1,3). We will look
at the representation on this vector
space first, because the Lorentz group
is defined there in the first place, i.e. as
the set of transformations that preserve
the 4 × 4 metric. Equivalently SU(2)
was defined as complex 2 × 2 matrices
in the first place and we tried to learn
as much as possible about SU(2) from
these matrices, in order to derive other
representations later .

given by real 4 × 4 matrices. The matrices must be real, because we
want to know how they act on elements of the real Minkowski space
R(1,3). A generic, real 4 × 4 matrix has 16 parameters. The defining
condition of the Lorentz group, which is in fact 10 conditions104, re-

104 You can see this, by putting a generic
4 × 4 matrix Λ, in ΛTηΛ = η.

stricts this to 6 parameters. In other words, to describe a most general
Lorentz transformation, 6 parameters are needed. Therefore, if we
find 6 linearly independent generators, we have found the complete
Lie algebra of this group. These generators form a basis for this Lie
algebra, which means every other generator can be written as a lin-
ear combination of these basis generators. In addition, we are then
able to compute how these basis generators behave when put into the
Lie bracket and therefore to derive the abstract definition of this Lie
algebra.

First note that the rotation matrices of 3-dimensional Euclidean
space, involving only space and leaving time unchanged, fulfil the
condition in Eq. 3.125. This follows because the spatial part105 of the 105 The spatial part are the components

μ = 1, 2, 3. Commonly this is denoted
by ηij, because Latin indices, like i, j
always run from 1 to 3 and Greek
indices, like μ and ν, run from 0 to 3.

Minkowski metric is proportional to the 3 × 3 identity matrix106 and

106 Recall η11 = η22 = η33 = −1 and
ηij = 0 for i �= j.

therefore for transformations involving only space, we have from
Eq. 3.125 the condition

−RT I3×3R = −RT R !
= −I3×3

→ RT I3×3R = RT R !
= I3×3.

This is exactly the defining condition of O(3). Together with the
condition

det(Λ)
!
= 1

these are the defining conditions of SO(3). We conclude that the
corresponding Lorentz transformation is given by

Λrot =

(
1

R3×3

)
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with the rotation matrices R3×3 cited in Eq. 3.23 and derived in
Sec. 3.4.1. The corresponding generators are therefore analogous
to those we derived for three spatial dimension in Sec. 3.4.1:

Ji =

(
0

J3dim
i

)
. (3.135)

For example, from Eq. 3.65 we now have

J1 =

(
0

J3dim
1

)
=

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠ . (3.136)

To investigate transformations involving time and space we will
start, as always in Lie theory, with an infinitesimal transformation107107 With the Kronecker delta defined by

δ
μ
ρ = 1 for μ = ρ and δ

μ
ρ = 0 for μ �= ρ.

This means writing the Kronecker
delta in matrix form is just the identity
matrix.

Λμ
ρ ≈ δ

μ
ρ + εKμ

ρ . (3.137)

We put this into the defining condition (Eq. 3.125)

Λμ
ρ ημνΛν

σ
!
= ηρσ

→ (δ
μ
ρ + εKμ

ρ )ημν(δ
ν
σ + εKν

σ)
!
= ηρσ

→��ηρσ + εKμ
ρ ημσ + εKν

σηρν + ε2Kμ
ρ ημνKν

σ︸ ︷︷ ︸
≈0 because ε is infinitesimal →ε2≈0

=��ηρσ

→ Kμ
ρ ημσ + Kν

σηρν = 0 (3.138)

which reads in matrix form108108 Recall that the first index denotes
the row and the second the column.
So far we have been a little sloppy
with first and second index, by writing
them above each other. In fact, we have
Kμ

ρ ≡ Kμ
ρ → (KT)

μ
ρ = K μ

ρ . Matrix
multiplication always works by multi-
plying rows with columns. Therefore
Kν

σηρν = ηρνKν
σ , were the ρ-row of η is

multiplied with the σ-column of K. This
term then is in matrix notation ηK. Fur-
thermore, Kμ

ρ ημσ = Kμ
ρημσ = (KT)

μ
ρ ημσ .

In order to write this index term in
matrix notation we need to use the
transpose of K, because only then we
get a product of the form row times
column. The ρ-row of KT is multiplied
with the σ-column of η. Therefore, this
term is KTη in matrix notation. In index
notation we are free to move objects
around, because for example Kμ

ρ is just
one element of K, i.e. a number.

KTη = −ηK. (3.139)

Now we have the condition for the generators of transformations
involving time and space. A transformation generated by these gen-
erators is called a boost. A boost means a change into a coordinate
system that moves with a different constant velocity compared with
the original coordinate system. We boost the description we have, for
example in frame of reference where the object in question is at rest,
into a frame of reference where it moves relative to the observer. Let’s
go back to the example used in Chap. 2.1: A boost along the x-axis.
Because we know that y′ = y and z′ = z the generator is of the form

Kx =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
a b
c d

)
︸ ︷︷ ︸

≡kx (
0 0
0 0

)

⎞
⎟⎟⎟⎟⎟⎟⎠ (3.140)
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and we only need to solve a 2 × 2 matrix equation. Equation 3.139
reduces to (

a c
b d

)(
−1 0
0 1

)
= −

(
−1 0
0 1

)(
a b
c d

)
,

which is solved by109
109

(
0 1
1 0

)(−1 0
0 1

)
=

(
0 1
−1 0

)
and

−
(−1 0

0 1

)(
0 1
1 0

)
= −

(
0 −1
1 0

)
.

kx =

(
a b
c d

)
=

(
0 1
1 0

)
.

The complete generator for boosts along the x-axis is therefore

Kx =

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ (3.141)

and equally we can find the generators for boosts along the y- and
z-axis

Ky =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ Kz =

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ . (3.142)

Now, we already know from Lie theory how we get from the gen-
erators to finite transformations110 110 Take not that the generators Kx ,Ky

and Kz are already Hermitian: K†
i = Ki .

Therefore, we do not include an extra i
here in the exponent, because then the
generators would be anti-Hermitian.

Λx(φ) = eφKx

For brevity let’s focus again on the exciting part of the generator Kx,
i.e. the upper left 2 × 2 matrix kx, which is defined in Eq. 3.140. We
can then evaluate the exponential function using its series expansion
and that111 k2

x = 1 111 As you can easily check: k2
x =(

0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
, equally

k4
x = 1 etc. for all even exponents and

of course k3
x = kx , k5

x = kx etc. for all
uneven exponents.

Λx(φ) = eφkx =
∞

∑
n=0

φnkn
x

n!
=

∞

∑
n=0

φ2n

(2n)!
k2n

x︸︷︷︸
=1

+
∞

∑
n=0

φ2n+1

(2n + 1)!
k2n+1

x︸ ︷︷ ︸
=kx

=

(
∞

∑
n=0

φ2n

(2n)!

)
I +

(
∞

∑
n=0

φ2n+1

(2n + 1)!

)
kx = cosh(φ)I + sinh(φ)kx

=

(
cosh(φ) 0

0 cosh(φ)

)
+

(
0 sinh(φ)

sinh(φ) 0

)
=

(
cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

)
(3.143)

This computation is analogous to the computation in Sec. 3.4.1,
but observe that the sums here have no factor (−1)n and therefore
these sums are not sin(φ) and cos(φ), but different functions called
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hyperbolic sine sinh(φ) and hyperbolic cosine cosh(φ). The complete
4 × 4 transformation matrix for a boost along the x-axis is therefore

Λx =

⎛
⎜⎜⎜⎝

cosh(φ) sinh(φ) 0 0
sinh(φ) cosh(φ) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (3.144)

Analogously, we can derive the transformation matrices for boosts
along the other axes:

Λy =

⎛
⎜⎜⎜⎝

cosh(φ) 0 sinh(φ) 0
0 1 0 0

sinh(φ) 0 cosh(φ) 0
0 0 0 1

⎞
⎟⎟⎟⎠ (3.145)

Λz =

⎛
⎜⎜⎜⎝

cosh(φ) 0 0 sinh(φ)
0 1 0 0
0 0 1 0

sinh(φ) 0 0 cosh(φ)

⎞
⎟⎟⎟⎠ . (3.146)

An arbitrary boost can be composed by multiplication of these 3
transformation matrices.

3.7.2 Generators of the Other Components of the Lorentz

Group

To understand how the generators for the transformations of the
other components112 of the Lorentz Group look like, we simply have112 Recall that the Lorentz group is in

fact O(1, 3) = {SO(1, 3)↑, ΛPSO(1, 3)↑
, ΛTSO(1, 3)↑, ΛPΛTSO(1, 3)↑} and

we derived in the last section the
generators of SO(1, 3)↑.

to act with the parity operation ΛP and the time reversal operator ΛT

on the matrices Ji, Ki we just derived. In index notation we have113

113 We need two matrices ΛP, one for
each index. This is just the ordinary
transformation behaviour of opera-
tors under changes of the coordinate
system.

(ΛP)
α
α′(ΛP)

β
β′(Ji)

α′β′ =̂︸︷︷︸
switching to matrix notation

ΛP Ji(ΛP)
T = Ji=̂(Ji)

αβ (3.147)

(ΛP)
α
α′(ΛP)

β
β′(Ki)

α′β′ =̂︸︷︷︸
switching to matrix notation

ΛPKi(ΛP)
T = −Ki=̂− (Ki)

αβ, (3.148)

as you can check by brute force computation, using the explicit
matrices derived in the last section. For example

Jx =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠ → J′x = ΛP Jx(ΛP)

T = Jx, (3.149)



lie group theory 65

because

ΛP Ji(ΛP)
T =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

T

=

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠ (3.150)

In contrast,

Kx =

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ → K′

x = ΛPKx(ΛP)
T = −Kx, (3.151)

because

ΛP Ji(ΛP)
T =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

T

= −

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ . (3.152)

In conclusion, we have under parity transformations

Ji →︸︷︷︸
P

Ji Ki →︸︷︷︸
P

−Ki (3.153)

This will become useful later, because for different representations
the parity transformations will not be as obvious as in the vector rep-
resentation. Equally we can investigate the time-reversed generators
and the result will be the same, because time-reversal involves only
the first component, which only changes something for the boost
generators Ki

(ΛT)
α
α′(ΛT)

β
β′(Ji)

α′β′ =̂︸︷︷︸
switching to matrix notation

ΛT Ji(ΛT)
T = Ji=̂(Ji)

αβ (3.154)

(ΛT)
α
α′(ΛT)

β
β′(Ki)

α′β′ =̂︸︷︷︸
switching to matrix notation

ΛTKi(ΛT)
T = −(Ki)

αβ, (3.155)
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Or shorter:
Ji →︸︷︷︸

T

Ji Ki →︸︷︷︸
T

−Ki. (3.156)

3.7.3 The Lie Algebra of the Proper Orthochronous Lorentz

Group

Now using the explicit matrix form of the generators114 for SO(1, 3)↑114 See Eq. 3.141 for the boost generators
and Eq. 3.62 for the rotation generators we can derive the corresponding Lie algebra by brute force computa-

tion115
115 The Levi-Civita symbol εijk , is
defined in appendix B.5.5.

[Ji, Jj] = iεijk Jk (3.157)

[Ji, Kj] = iεijkKk (3.158)

[Ki, Kj] = −iεijk Jk (3.159)

where again Ji denotes the generators of rotations and Ki are the
generators of boosts. A general Lorentz transformation is of the form

Λ = ei Jθ+iKΦ (3.160)

Equation 3.158 tells us that the two generator types (Ji and Ki)
do not commute with each other. While the rotation generators are
closed under commutation116, the boost generators are not117. We116 Closed under commutation means

that the commutator [Ji , Jj] = Ji Jj − Jj Ji ,
is again a rotation generator. From
Eq. 3.157 we can see that this is the
case.

117 Eq. 3.159 tells us that the commutator
of two boost generators Ki and Kj isn’t
another boost generator, but a generator
of rotations.

can now define new operators from the old ones that are closed un-
der commutation and commute with each other

N±
i =

1
2
(Ji ± iKi). (3.161)

Working out the commutation relations yields

[N+
i , N+

j ] = iεijk N+
k (3.162)

[N−
i , N−

j ] = iεijk N−
k (3.163)

[N+
i , N−

j ] = 0. (3.164)

These are precisely the commutation relations for the Lie algebra
of SU(2) and we have therefore discovered that the Lie algebra of
SO(1, 3)↑+ consists of two copies of the Lie algebra of SU(2).

This is great news, because we already know how to construct all
irreducible representations of the Lie algebra of SU(2). However the
Lorentz group is, like SO(3), not simply-connected118 and Lie theory118 We will use this simply as a fact here,

because a proof would lead us too far
apart.
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tells us that there is, for groups that aren’t simply connected, no one-
to-one correspondence between the irreducible representations of the
Lie algebra and representations of the corresponding group119. In- 119 This can be quite confusing, but

remember that there is always one
distinguished group that belongs to a
Lie algebra. This group is distinguished
because it is simply connected. If we
derive the irreducible representation
of a Lie algebra, we get, by putting
those Lie algebra elements (= the
generators) in the exponential function,
representations of the simply connected
(= covering) group. Only for the simply
connected group there is a one-to-one
correspondence.

stead, by deriving the irreducible representations of the Lie algebra

of the Lorentz group, we find the irreducible representations of the

covering group of the Lorentz group, if we put the corresponding
generators into the exponential function. Some of these representa-
tions will be representations of the Lorentz group, but we will find
more than that. It is a good thing that we find addition represen-
tations, because we need those representations to describe certain
elementary particles.

For brevity, we will continue to call the representations we will derive,
representations of the Lorentz group instead of representations of the Lie al-
gebra of the Lorentz group or representations of the double cover the Lorentz
group.

Each irreducible representation of the Lie algebra of SU(2) can be
labelled by the scalar value j of the Casimir operator of SU(2). There-
fore, we now know that we can label the irreducible representations
of the covering group120 of the Lorentz group by two integer or half 120 The covering group of the Lorentz

group is SL(2, C), the set of 2 × 2
matrices with unit determinant and
complex entries. The relationship
SL(2, C) → SO(1, 3) is similar to
the relationship SU(2) → SO(3) we
discovered earlier in this text.

integer numbers: j1 and j2. This means we will look at the (j1, j2) rep-
resentations and use the j1, j2 = 0, 1

2 , 1 . . . representations for the two
copies of the SU(2), which we derived earlier.

It is conventional to write the Lorentz algebra in a more compact
way using Mμν, which is defined by

Ji =
1
2

εijk Mjk. (3.165)

Ki = M0i. (3.166)

With this definition the Lorentz algebra reads

[Mμν, Mρσ] = i(ημρ Mνσ − ημσ Mνρ − ηνρ Mμσ + ηνσ Mμρ). (3.167)

Next, we want to take a look at what irreducible representations we
can construct from the Lie algebra of the Lorentz group.

3.7.4 The (0, 0) Representation

The lowest order representation is as for SU(2) trivial, because the
vector space is 1 dimensional for both copies of the Lie algebra of
SU(2). Our generators must therefore be 1 × 1 matrices and the only
1 × 1 matrices fulfilling the commutation relations are trivially 0:

N+
i = N−

i = 0 → eN+
i = eN−

i = e0 = 1 (3.168)
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Therefore, the (0, 0) representation of the Lorentz group acts on ob-
jects that do not change under Lorentz transformations. This repre-
sentation is called the Lorentz scalar representation.

3.7.5 The (1
2 , 0) Representation

In this representation we use the121 2 dimensional representation for121 Recall that the dimension of our vec-
tor space is given by 2j + 1. Therefore
we have here 2 1

2 + 1 = 2 dimensions.
one copy of the SU(2) Lie algebra N+

i , i.e. N+
i = σi

2 and the 1 dimen-
sional representation for the other N−

i , i.e. N−
i = 0 as explained in

the last section. From the definition of N− in Eq. 3.161 we conclude

N−
i =

1
2
(Ji − iKi) = 0 (3.169)

→ Ji = iKi. (3.170)

Furthermore, we can use that we already derived in Sec. 3.6.4 the two
dimensional representation of SU(2):

N+
i =

σi
2

(3.171)

where σi denotes once more the Pauli matrices, which were defined
in Eq. 3.81. On the other hand, we have

N+
i =︸︷︷︸
Eq. 3.161

1
2
(Ji + iKi) =︸︷︷︸

Eq. 3.170

1
2
(iKi + iKi) = iKi (3.172)

Comparing Eq. 3.171 with Eq. 3.172 tells us that

iKi =
σi
2

→ Ki =
σi
2i

=
iσi
2i2

=
−i
2

σi (3.173)

Eq. 3.170 → Ji = iKi =
−i2

2
σi =

1
2

σi. (3.174)

We conclude that a Lorentz rotation in this representation is given by

Rθ = ei�θ�J = ei�θ�σ2 (3.175)

and a Lorentz boost by

Bθ = ei�φ�K = e�φ
�σ
2 . (3.176)

By writing out the exponential function as series expansion we can
easily get the representation of the Lorentz group from the represen-
tation of the generators. For example, rotations about the x-axis e.g.
are given by

Rx(θ) = eiθ J1 = eiθ 1
2 σ1 = 1 +

i
2

θσ1 +
1
2

(
i
2

θσ1

)2
+ . . . (3.177)
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And if we use the explicit matrix form of σ1 as defined in Eq. 3.81,
together with the fact that σ2

1 = 1 we get122 122 The steps are completely analogous
to what we did in Sec. 3.4.1

Rx(θ) =

(
1 0
0 1

)
+

i
2

θ

(
0 1
1 0

)
− 1

2

(
θ

2

)2
(

1 0
0 1

)
+ . . .

=

(
cos( θ

2 ) i sin( θ
2 )

i sin( θ
2 ) cos( θ

2 )

)
. (3.178)

Analogous we can compute the transformation matrix for rotations
around other axes or boosts. One important thing to notice is we
have here complex 2 × 2 matrices, representing the Lorentz trans-
formations. These transformations certainly do not act on the four-
vectors of Minkowski space, because these have 4 components. The
two-component123 objects this representation acts on are called left- 123 We will learn later that these two

components correspond to spin-up and
spin-down states.

chiral spinors124:

124 This name will make more sense
after the definition of right-chiral
spinors. Then we can see that parity
transformations transform a left-chiral
spinor transformation into a right-
chiral spinor transformation and vice
versa. These spinors are often called
left-handed and right-handed, but this
can be confusing, because these terms
correspond originally to a concept
called helicity, which is not the same
as chirality. Recall what the parity
operator does: changing a left-handed
coordinate system into a right-handed
coordinate system and vice versa.
Hence the name.

χL =

(
(χL)1

(χL)2

)
(3.179)

Spinors in this context are two component objects. A possible
definition for left-chiral spinors is that they are objects that transform
under Lorentz transformations according to the ( 1

2 , 0) representation
of the Lorentz group. Take note that this is not just another way to
describe the same thing, because spinors have properties that usual
vectors do not have. For instance, the factor 1

2 in the exponent. This
factor shows us that a spinor125 is after a rotation by 2π not the same,

125 There is much more one can say
about spinors. See, for example, chapter
3.2 in J. J. Sakurai. Modern Quantum
Mechanics. Addison Wesley, 1st edition,
9 1993. ISBN 9780201539295

but gets a minus sign. This is a pretty crazy property, because all
objects we deal with in everyday life are exactly the same after a
rotation by 360◦ = 2π.

"One could say that a spinor is the most basic sort of mathematical
object that can be Lorentz-transformed."

- A. M. Steane126

126 Andrew M. Steane. An introduction
to spinors. ArXiv e-prints, December
20133.7.6 The (0, 1

2) Representation

This representation can be constructed analogous to the ( 1
2 , 0) repre-

sentation but this time we use the 1 dimensional representation for
N+

i , i.e. N+
i = 0 and the two dimensional representation for N−

i , i.e.
N−

i = 1
2 σi . A first guess could be that this representation looks ex-

actly like the ( 1
2 , 0) representation, but this is not the case! This time

we get from the definition of N+ in Eq. 3.161

N+
i =

1
2
(Ji + iKi) = 0 (3.180)
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→ Ji = −iKi. (3.181)

Take notice of the minus sign. Using the two-dimensional representa-
tion of SU(2) for N+, which was derived in Sec. 3.6.4, yields

N−
i =

1
2

σi =
1
2
(Ji − iKi) =︸︷︷︸

Eq. 3.181

1
2
(−iKi − iKi) = −iKi (3.182)

From this we get the (0, 1
2 ) representation of the generators

−iKi =
1
2

σi → Ki =
−1
2i

σi =
−i
2i2

σi =
i
2

σi. (3.183)

And from Eq. 3.181 we get

Ji = −iKi =
1
2

σi. (3.184)

We conclude that in this representation a Lorentz rotation is given by

Rθ = ei�θ�J = ei�θ�σ2 (3.185)

and a Lorentz boost by

Bθ = ei�φ�K = e−�φ�
σ
2 . (3.186)

Therefore, rotations are the same as in the ( 1
2 , 0) representation, but

boosts differ by a minus sign in the exponent. We conclude both
representations act on objects that are similar but not the same. We
call the objects the (0, 1

2 ) representation of the Lorentz group acts on
right-chiral spinors:

χR =

(
(χR)

1

(χR)
2

)
(3.187)

The generic name for left- and right-chiral spinors is Weyl spinors.

3.7.7 Van der Waerden Notation

Now we introduce a notation that makes working with spinors very
convenient. We know that we have two kinds of objects that trans-
form differently and therefore must be distinguished. We will learn
in a moment that they are different, but not too different. In fact,
there is a connection between the objects transforming according to
the ( 1

2 , 0) representation (left-chiral spinors) and the objects trans-
forming according to the (0, 1

2 ) representation (right-chiral spinors).
To be able to describe these different objects using one notation we
introduce the notions of dotted and undotted indices, sometimes
called Van der Waerden notation, after their inventor. This will help
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us to keep track of which object transforms in what way. This will
become much clearer in a minute, as soon as we have set up the full
formalism.

Let’s define that a left-chiral spinor χL has a lower, undotted index

χL = χa (3.188)

and a right-chiral spinor χR has an upper, dotted index

χR = χȧ. (3.189)

Next, we introduce the "spinor metric". The spinor metric enables
us to transform a right-chiral spinor into a left-chiral and vice versa,
but not alone as we will see. We define the spinor metric127 as

127 Take note that this is the Levi-Civita
symbol in two dimensions as defined in
appendix B.5.5.

εab =

(
0 1
−1 0

)
(3.190)

and show that it has the desired properties. Furthermore, we de-
fine128 128 Maybe a short comment on the

strange notation χC
L is in order. The su-

perscript C denotes charge conjugation,
as will be explained in Sec. 3.7.10 in
more detail. Here we see that this op-
eration flips one label, i.e. a left-chiral
spinor becomes right-chiral. Later we
will see this operation flips all labels,
including for example, the electric
charge.

χC
L ≡ εχ�

L (3.191)

where the � denotes complex conjugation. We will now inspect how
χC

L transforms under Lorentz transformations and see that it trans-
forms precisely as a right-chiral spinor. The defining feature of a
right-chiral spinor is its transformation behaviour and therefore we
will conclude that χC

L is a right-chiral spinor. Let us have a look at
how χC

L transforms under boosts, where we use

(−ε)(ε) = 1 (3.192)

and
(ε)σ�

i (−ε) = −σi (3.193)

for each Pauli matrix σi, as you can check. Transforming yields129 129 We use the notation �φ�σ =

∑i σiφi =︸︷︷︸
summation convention

σiφi . The "vector"�σ

shouldn’t be taken too seriously, be-
cause it’s just a shorthand, conventional
notation.

χC
L → χ′C

L = ε(χ′)�L

= ε(e
�φ
2�σχL)

�

= ε(e
�φ
2�σ (−ε)(ε)︸ ︷︷ ︸
=1 see Eq. 3.192

χL)
�

= ε(e
�φ
2�σ

�
(−ε)︸ ︷︷ ︸

Eq. 3.193: =e−
�φ
2�σ

(ε)χ�
L)

= e−
�φ
2�σ εχ�

L︸︷︷︸
=χC

L

= e−
�φ
2�σχC

L , (3.194)
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which is exactly the transformation behaviour of a right-chiral

spinor130. To get to the fifth line, we use the series expansion of e
�φ
2�σ130 The transformation behaviour of

right-chiral spinors under boosts was

derived in Eq. 3.186: Bθ = ei�φ�K = e−�φ�
σ
2 .

Compare this to how left-chiral spinors
transform under boosts, as derived in
Eq. 3.176: Bθ = ei�φ�K = e�φ

�σ
2

and Eq. 3.193 on every term. You can check in the same way that
the behaviour under rotations is not changed by complex conjuga-
tion and multiplication with ε, as it should be, because χL and χR

transform in the same way under rotations:

χC
L → χ′C

L = ε(χ′)�L = ε(e
i�θ
2�σχ)�L = e

i�θ
2�σε(χL)

�. (3.195)

Furthermore, you can check that ε is invariant under all transforma-
tions and that if you want to go the other way round, i.e. transform a
right-chiral spinor into a left-chiral spinor you have to use (-ε).

Therefore, we define in analogy with the tensor notation of special
relativity that our "metric" raises and lowers indices

εχL =︸︷︷︸
written in index notation

εacχc = χa (3.196)

where summation over identical indices is implicitly assumed (Ein-
stein summation convention). Furthermore, we know that if we want
to get χR from χL we need to use complex conjugation as well

χR = εχL
� (3.197)

This means that complex conjugation transforms an undotted index
into a dotted index:

χR = εχL
� = χȧ. (3.198)

Therefore, we can get a lower, dotted index by complex conjugating
χL

χL
� = χa

� = χȧ (3.199)

and an upper, undotted index, by complex conjugating χR

χR
� = (χȧ)� = χa (3.200)

It is instructive to investigate how χȧ and χa transform, because
these objects are needed to construct terms from spinors, which do
not change at all under Lorentz transformations131. From the trans-131 Terms like this are incredibly impor-

tant, because we need them to derive
physical laws that are the same in all
frames of reference. This will be made
explicit in a moment.

formation behaviour of a left-chiral spinor

χL = χa → χ′
a =

(
ei�θ�σ2 +�φ

�σ
2

)b

a
χb (3.201)

we can derive how a spinor with lower, dotted index transforms:

χ�
L = χ�

a = χȧ → χ′̇
a = (χ′

a)
� =

((
ei�θ�σ2 +�φ

�σ
2

)b

a

)�

χ�
b

=

(
e−i�θ �σ�2 +�φ

�σ�
2

)ḃ

ȧ
χḃ (3.202)
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Analogously, we use the transformation behaviour of a right-chiral
spinor:

χR → χ′
R = χ′ȧ =

(
ei�θ�σ2 −�φ�σ2

)ȧ

ḃ
χḃ (3.203)

to derive how a spinor with upper, undotted index transforms:

χ�
R = (χȧ)� = χa → χ′a = (χ′ȧ)� =

((
ei�θ�σ2 −�φ�σ2

)ȧ

ḃ

)�

(χḃ)�

=

(
e−i�θ �σ�2 −�φ �σ�

2

)a

b
χb (3.204)

To be able to write products of spinors that do not change un-
der Lorentz transformations, we need one more ingredient: Recall
how the scalar product of two vectors is defined: �a ·�b = �aT�b. In the
same spirit we mustn’t forget to transpose one of the spinors in a
spinor product. We can see this, because at the moment we have the
complex conjugate of the Pauli matrices σ�

i in the exponent, for ex-

ample, e−i�θ �σ�2 . Together with transposing this becomes the Hermitian
conjugate: σ†

i = (σ�
i )

T , where the symbol † is called "dagger". The
Hermitian conjugate of every Pauli matrix, is again the same Pauli
matrix

σ†
i = (σ�

i )
T = σi, (3.205)

as you can easily check by looking at the explicit form of the Pauli
matrices, as defined in Eq. 3.81.

By comparing Eq. 3.201 with Eq. 3.204 and using Eq. 3.205, we
see that the transformation behaviour of a transposed spinor with
lower, undotted index is exactly the opposite of a spinor with upper,
undotted index. This means a term of the form (χa)Tχa is invariant
(=does not change) under Lorentz transformations, because132 132 As explained in appendix B.5.5, the

symbol δc
b is called Kronecker symbol

and denotes the unit matrix in index
notation. This means δc

b = 1 for b = c
and δc

b = 0 for b �= c.(χa)Tχa → (χ′a)Tχ′
a =

((
e−i�θ �σ�2 −�φ �σ�

2

)a

b
χb

)T (
ei�θ�σ2 +�φ

�σ
2

)c

a
χc

= (χb)T

(
e−i�θ

�(σ�)T
2 −�φ �(σ�)T

2

)a

b

(
ei�θ�σ2 +�φ

�σ
2

)c

a
χc

=︸︷︷︸
Eq. 3.205

(χb)T
(

e−i�θ�σ2 −�φ�σ2
)a

b

(
ei�θ�σ2 +�φ

�σ
2

)c

a︸ ︷︷ ︸
=δc

b

χc

= (χc)Tχc (3.206)

In the same way we can combine an upper, dotted index with a
lower, dotted index as you can verify by comparing Eq. 3.202 with
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Eq. 3.203. In contrast, a term of the form (χȧ)Tχa=̂χT
RχL isn’t invari-

ant under Lorentz transformations, because

χT
RχL = (χȧ)Tχa → (χ′ȧ)Tχ′

a = χḃ
(

ei�θ
�σT
2 −�φ �σT

2

)ȧ

ḃ

(
ei�θ�σ2 +�φ

�σ
2

)c

a︸ ︷︷ ︸
�=δc

b

χc

(3.207)
Therefore a term combining a left-chiral with a right-chiral spinor

is not Lorentz invariant. We conclude, we must always combine an
upper with a lower index of the same type133 in order to get Lorentz133 In this context dotted a

a
or undotted ȧ

ȧ invariant terms. Or formulated differently, we must combine the
complex conjugate of a right-chiral spinor with a left-chiral spinor
χ†

RχL = (χ�
R)

TχL=̂(χa)Tχa, or the complex conjugate of a left-chiral
spinor with a right-chiral spinor χ†

LχR = (χ�
L)

TχR = (χȧ)Tχȧ to
get Lorentz invariant terms. We will use this later, when we look for
invariant terms that we can use to formulate our laws of nature.

In addition, we have now another justification for calling εab the
spinor metric, because the invariant spinor product in Eq. 3.206, can
be written as

χT
a χa =︸︷︷︸

Eq. 3.196

χT
a εabχb. (3.208)

Compare this to how we defined in Eq. 2.31 the invariant product of
Minkowsi space, using the Minkowski metric ημν:

xμyμ = xμημνyν. (3.209)

The spinor metric is indeed what the Minkowski metric is for four-
vectors134.

134 Don’t get confused why we have
no transposition for the four-vectors
here. These equations can be read in
two ways. On the one hand as vector
equations and on the other hand as
component equations. It’s conventional
and sometimes confusing to use the
same symbol xμ for a four-vector
and its components. If we read the
equation as a component equation we
need no transposition. The same is of
course true for our spinor products.
Nevertheless, we have seen above that
we mustn’t forget to transpose and in
order to avoid errors we included the
explicit superscript T, although the
spinor equation here can be read as
component equation that do not need it.
In contrast, for three component vectors
there is a clear distinction using the
little arrow: �a has components ai .

After setting up this notation we can now write the spinor "metric"
with lowered indices

εab =

(
0 −1
1 0

)
(3.210)

because we need135 (−ε) to get from χR to χL. In addition, we can

135 You can check this yourself, but it’s
not very important for what follows.

now write the two transformation operators as one object Λ. For
example, when it has dotted indices we know it multiplies with a
right-chiral spinor and we know which transformation operator to
choose:

χR → χ′
R = χ′ȧ = Λȧ

ḃχḃ =
(

ei�θ�σ2 −�φ�σ2
)ȧ

ḃ
χḃ (3.211)

and analogous for left-chiral spinors

χL → χ′
L = χ′

a = Λ b
a χb =

(
ei�θ�σ2 +�φ

�σ
2

) b

a
χb . (3.212)
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Therefore:

Λ( 1
2 ,0) =

(
ei�θ�σ2 +�φ

�σ
2

)
=̂Λ b

a (3.213)

and

Λ(0, 1
2 )

=
(

ei�θ�σ2 −�φ�σ2
)
=̂Λȧ

ḃ (3.214)

This notation will prove to be very useful because as we have seen
the two different objects χL and χR aren’t so different after all. In fact
we can transform them into each other and a unified notation is the
logical result.

Now we move on to the next irreducible representation, which will
turn out to be an old acquaintance.

3.7.8 The (1
2 , 1

2) Representation

For this representation we use the 2-dimensional representation, for
both copies of the SU(2) Lie algebra136 N+

i and N−
i . This time let’s 136 Mathematically we have

( 1
2 , 1

2 ) = ( 1
2 , 0)⊗ (0, 1

2 )have a look at what kind of object our representation is going to act
on first. The copies will not interfere with each other, because N+

i
and N−

i commute, i.e. [N+
i , N−

j ] = 0. Therefore, our objects will
transform separately under both copies. Let’s name the object we
want to examine v. This object will have 2 indices vḃ

a, each trans-
forming under a separate two-dimensional copy of SU(2). Here the
notation we introduced in the last section comes in handy.

We know from the fact that both indices can take on two values
( 1

2 and − 1
2 ), because each representation is 2 dimensional, that our

object v will have 4 components. Therefore, the objects can be 2 × 2
matrices, but it’s also possible to enforce a four component vector
form, as we will see137. 137 Remember that when we talked

about rotations of the plane we were in
the same situation. The rotation could
be described by complex numbers
acting on complex numbers. Doing
the map to real matrices we had real
matrices acting on real matrices, but
the same action could be described by a
real matrix acting on a column vector.

But first let’s look at the complex matrix choice. A general 2 × 2
matrix has 4 complex entries and therefore 8 free parameters. As
noted above, we only need 4. We can write every complex matrix M
as a sum of a Hermitian (H† = H) and an anti-Hermitian (A† = −A)
matrix: M = H + A. Both Hermitian and anti-Hermitian matrices
have 4 free parameters. In addition, we will see in a moment that our
transformations in this representation always transform a Hermitian
2 × 2 matrix into another Hermitian 2 × 2 matrix and equivalently
an anti-Hermitian matrix into another anti-Hermitian matrix. This
means Hermitian and anti-Hermitian matrices are invariant subsets
and as explained in Sec. 3.5 this means that working with a gen-
eral matrix here, corresponds to having a reducible representation.
Putting these observations together, we conclude that we can assume
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that our irreducible representation acts on Hermitian 2 × 2 matrices.
A basis138 for Hermitian 2 × 2 matrices is given by the σ matri-138 This means that an arbitrary Her-

mitian 2 × 2 matrix can be written
as a linear combination of the form:
a01 + aiσi

ces139 together with the identity matrix.

139 Defined in Eq. 3.81

Instead of examining vḃ
a, we will have a look at vaḃ, because then

we can use the Pauli matrices as defined in Eq. 3.81. Take note that vḃ
a

and vaḃ can be transformed into each other by multiplication with εḃċ

and therefore if you want to work with vḃ
a, you simply have to use the

Pauli matrices that have been multiplied with ε.

If we define σ0 = I2×2 =

(
1 0
0 1

)
, we can write

vaḃ = vνσν
aḃ = v0

(
1 0
0 1

)
+ v1

(
0 1
1 0

)
+ v2

(
0 −i
i 0

)
+ v3

(
1 0
0 −1

)
.

(3.215)
As explained above, we could use140 vḃ

a = vμσ
μ
aċεḃċ instead, which140 This is really just a basis choice and

here we choose the basis that gives
us with our definition of the Pauli
matrices, the transformation behaviour
we derived earlier for vectors.

means we would use the basis (σ̃ḃ)μ = σ
μ
aċεḃċ. We therefore write a

general Hermitian matrix as

vaḃ =

(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
. (3.216)

Remember that we have learned in the last section that different
indices transform differently. To be specific: A lower dotted index
transforms differently than a lower undotted index.

Now we have a look at how vaḃ transforms and use the transfor-
mation operator for an lower undotted index as derived in Eq. 3.202

v → v′ = v′aḃ =
(

ei�θ�σ2 +�φ
�σ
2

) c

a
vcḋ

((
e−i�θ �σ�2 +�φ

�σ�
2

) ˙d

ḃ

)T

=
(

ei�θ�σ2 +�φ
�σ
2

) c

a
vcḋ

(
e−i�θ

�σ†
2 +�φ

�σ†
2

)ḋ

ḃ

=︸︷︷︸
σ†

i =σi

(
ei�θ�σ2 +�φ

�σ
2

) c

a
vcḋ

(
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ
(3.217)

We can now see that a Hermitian matrix is after such a transforma-
tion still Hermitian, as promised above141

141 Exactly the same computation
shows that an anti-Hermitian matrix
is still anti-Hermitian after such a
transformation. To see this, use in
the last step instead of v†

cḋ
= vcḋ that

v†
cḋ

= −vcḋ.
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(
ei�θ�σ2 +�φ

�σ
2

) c

a
vcḋ

(
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ
→

((
ei�θ�σ2 +�φ

�σ
2

) c

a
vcḋ

(
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ

)†

=︸︷︷︸
(ABC)†=C†B† A†

((
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ

)†

v†
cḋ

((
ei�θ�σ2 +�φ

�σ
2

) c

a

)†

=

(
ei�θ

�σ†
2 +�φ

�σ†
2

)ḋ

ḃ
v†

cḋ

(
e−i�θ

�σ†
2 +�φ

�σ†
2

) c

a

=︸︷︷︸
if v†

cḋ
=vcḋ

(
ei�θ�σ2 +�φ

�σ
2

) c

a
vcḋ

(
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ
�

(3.218)

The explicit computation142 for an arbitrary transformation is long 142 See, for example, page 128 in
Matthew Robinson. Symmetry and
the Standard Model. Springer, 1st edition,
August 2011. ISBN 978-1-4419-8267-4

and tedious so we will look at one specific example. Let’s boost v
along the z-axis143

143 This means �φ = (0, 0, φ)T . Such a
boost is the most easiest because σ3
is diagonal. For boosts along other
axes the exponential series must be
evaluated in detail.

vaḃ → v′aḃ =
(

eφ
σ3
2

)c

a
vcḋ

(
eφ

σ3
2

)ḋ

ḃ

=

(
e

φ
2 0

0 e−
φ
2

)(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)(
e

φ
2 0

0 e−
φ
2

)

=

(
eφ(v0 + v3) v1 − iv2

v1 + iv2 e−φ(v0 − v3)

)
(3.219)

where we have used the fact that σ3 is diagonal144 and that 144 σ3 =

(
1 0
0 −1

)
eA =

(
eA11 0

0 eA22

)
holds for every diagonal matrix. Comparing

the transformed object we computed in Eq. 3.219 with a generic
object v′ yields

v′aḃ =

(
v′0 + v′3 v′1 − iv′2
v′1 + iv′2 v′0 − v′3

)
=

(
eφ(v0 + v3) v1 − iv2

v1 + iv2 e−φ(v0 − v3)

)

This tells us how the components of the transformed object are re-
lated to the untransformed components145 145 We rewrite the equations using

the connection between the hyper-
bolic sine, the hyperbolic cosine
function and the exponential func-
tion e−φ = (cosh (φ)− sinh (φ)) and
eφ = (cosh (φ) + sinh (φ)), which is
conventional in this context. If you are
unfamiliar with these functions you
can either take notice of their defini-
tions: cosh (φ) ≡ 1

2

(
eφ + e−φ

)
and

sinh (φ) ≡ 1
2

(
eφ − e−φ

)
or rewrite the

few equations here in terms of eφ and
e−φ, which is equally good.

→ v′0 + v′3 = eφ(v0 + v3) = (cosh (φ) + sinh (φ)) (v0 + v3)

→ v′0 − v′3 = e−φ(v0 − v3) = (cosh (φ)− sinh (φ)) (v0 − v3).

The addition and subtraction of both equations yields

→ v′0 = cosh(φ)v0 + sinh(φ)v3

→ v′3 = sinh(φ)v0 + cosh(φ)v3 (3.220)
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which is exactly what we get using the 4-vector formalism146146 See 3.146 for the explicit form of the
matrix for a boost along the z-axis. ⎛

⎜⎜⎜⎝
v′0
v′1
v′2
v′3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

cosh(φ) 0 0 sinh(φ)
0 1 0 0
0 0 1 0

sinh(φ) 0 0 cosh(φ)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v0

v1

v2

v3

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

cosh(φ)v0 + sinh(φ)v3

v1

v2

sinh(φ)v0 + cosh(φ)v3

⎞
⎟⎟⎟⎠ . (3.221)

This is true for arbitrary Lorentz transformations, as you can check
by computing the other possibilities. What we have shown here is
that the ( 1

2 , 1
2 ) representation is the vector representation. We can

simplify our transformation laws by using the enforced vector form,
because multiplying a matrix with a vector is simpler than the multi-
plication of three matrices. Nevertheless, we have seen how the famil-
iar 4-vector is related to the more fundamental spinors. A 4-vector is

a rank-2 spinor, which means a spinor with 2 indices that transforms
according to the ( 1

2 , 1
2 ) representation of the Lorentz group. Further-

more, we can now see that 4-vectors aren’t appropriate to describe

every physical system on a fundamental level, because they aren’t

fundamental. There are physical systems they cannot describe.

We can now understand why some people say that "spinors are
the square root of vectors". This is meant in the same way as vectors
are the square root of rank-2 tensors147. A rank-2 tensor has two147 A rank-2 tensor is simply a matrix

Mμν. vector indices and a vector has two spinor indices. Therefore, the
most basic object that can be Lorentz transformed is indeed a spinor.

When we started our studies of the Lorentz group, we noted that
it consists of four components. These components are connected by
the parity and the time-reversal operator148. Therefore, to be able to148 See Eq. 3.134

describe all transformations that preserve the speed of light, we need
to find the parity and time-reversal transformation for each represen-
tation. In this text will restrict to parity transformations, because it
turns out that nature isn’t always symmetric under parity transfor-
mations, which we will discuss in later chapters. Similar to what we
discuss in the next section it’s possible to derive representations of
the time-reversal operator.

3.7.9 Spinors and Parity

Up to this point, there is no justification for why we called the objects
transforming according to the ( 1

2 , 0) representation left-chiral and
the objects transforming according to the (0, 1

2 ) representation right-
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chiral. After talking a bit about parity transformation, this will make
sense.

Recall that we already know the behaviour of the generators of
the Lorentz group under parity transformations. The result was
Eq. 3.153, which we recite here for convenience

Ji →︸︷︷︸
P

Ji Ki →︸︷︷︸
P

−Ki (3.222)

By looking at the definition of the generators N± in Eq. 3.161, which
we recite here, too

N±
i =

1
2
(Ji ± iKi) (3.223)

we can see that under parity transformations N+ ↔ N−. There-
fore, the (0, 1

2 ) representation of a transformation, becomes the ( 1
2 , 0)

representation of this transformation and vice versa under parity
transformations. This is the reason for talking about left- and right-
chiral spinors149. Just as a right-handed coordinate system changes 149 The conventional name is left- and

right-handed spinors, but this can
be quite confusing, because the no-
tions left-handed and right-handed
are directly related to a concept called
helicity, which is different from chi-
rality. Anyway the name should make
some sense, because something left is
changed into something right under
parity transformations.

into a left-handed coordinate system under parity transformations,
these two representations change into each other.

Rotational transformations look the same for both representations,
but boost transformations differ by a sign and it is easy to make the
above statement explicit:

(Λ�K)( 1
2 ,0) = e�φ�K →︸︷︷︸

P

e−�φ�K = (Λ�K)(0, 1
2 )

(3.224)

(Λ�K)(0, 1
2 )

= e−�φ�K →︸︷︷︸
P

e�φ�K = (Λ�K)( 1
2 ,0). (3.225)

We learn here that if we want to describe a physical system that
is invariant under parity transformations, we will always need right-
chiral and left-chiral spinors. The easiest thing to do is to write them
below each other into a single object called Dirac spinor

Ψ =

(
χL

ξR

)
=

(
χa

ξ ȧ

)
(3.226)

Recalling the generic name for left- and right-chiral spinors is
Weyl spinors, we can say that a Dirac spinor Ψ consists of two Weyl
spinors χL and ξR. Note that we want to stay general here and don’t
assume any a priori connection between χ and ξ. A Dirac spinor of
the form

ΨM =

(
χL

χR

)
(3.227)
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is a special case, called Majorana spinor. A Dirac or Majorana spinor
is not a four-vector, because it transforms completely different. A
Dirac spinor transforms according to the ( 1

2 , 0) ⊕ (0, 1
2 ) representa-

tion150 of the Lorentz group, which means nothing more than writing150 This a reducible representation,
which is obvious because of the
block-diagonal form of the trans-
formation matrix. In contrast, four-
vectors transform according to the
( 1

2 , 1
2 ) = ( 1

2 , 0)⊗ (0, 1
2 ) representation.

the corresponding transformations in block-diagonal form into one
big matrix:

Ψ → Ψ′ = Λ( 1
2 ,0)⊕(0, 1

2 )
Ψ =

(
Λ( 1

2 ,0) 0

0 Λ(0, 1
2 )

)(
χL

ξR

)
. (3.228)

For example, a boost transformation is in this representation

Ψ → Ψ′ =

⎛
⎝e

�φ
2�σ 0

0 e
−�φ
2 �σ

⎞
⎠(

χL

ξR

)
. (3.229)

It is instructive to investigate how Dirac spinors behave under
parity transformations, because once we know how Dirac spinors
transform under parity transformations, we can check if a given
theory is invariant under such transformations. We can’t expect that
a Dirac spinor is after a parity transformation still a Dirac spinor
(an object transforming according to ( 1

2 , 0) ⊕ (0, 1
2 ) representation),

because we know that under parity transformations N+ ↔ N− and
therefore

(
0,

1
2

)
↔︸︷︷︸
P

(
1
2

, 0
)

. (3.230)

We conclude, if a Dirac spinor transforms according to the
( 1

2 , 0)⊕ (0, 1
2 ) representation, the parity transformed object trans-

forms according to the (0, 1
2 )⊕ ( 1

2 , 0) representation.

ΨP → (ΨP)′ = Λ(0, 1
2 )⊕( 1

2 ,0)Ψ
P =

(
Λ(0, 1

2 )
0

0 Λ( 1
2 ,0)

)(
ξR

χL

)
. (3.231)

Therefore

Ψ =

(
χL

ξR

)
→ ΨP =

(
ξR

χL

)
. (3.232)

A parity transformed Dirac spinor contains the same objects ξR, χL

as the untransformed Dirac spinor, only written differently. A parity
transformation does nothing like ξL → ξR, which is a different kind
of transformation we will talk about in the next section.
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3.7.10 Spinors and Charge Conjugation

In Sec. 3.7.7 stumbled upon a transformation, which yields χL → χR

and ξR → ξL. The transformation is χL → χC
L = εχ�

L = χR and
analogously for a right-chiral spinor ξR → ξC

R = (−ε)ξ�R = ξL. This
transformation is not part of the Lorentz group and we are now able
to understand it from a quite different perspective.

Up to this point, we used this transformation merely as a compu-
tational trick in order to raise and lower indices. Now, how does a
Dirac spinor transform under such a transformation? Naively we get:

Ψ =

(
χL

ξR

)
→ Ψ̃ =

(
χC

L
ξC

R

)
=

(
χR

ξL

)
. (3.233)

Unfortunately, this object does not transform like a Dirac spinor151, 151 Unlike for parity transformations,
we have a choice here and we prefer
to keep working with the same kind of
object. The object Ψ̃ can then be seen
as a Dirac spinor that has been parity
transformed and charge conjugated.

which transform under boosts

Ψ → Ψ′ =

⎛
⎝e

�θ
2�σ 0

0 e
−�θ
2 �σ

⎞
⎠(

χL

ξR

)
. (3.234)

The object Ψ̃ we get from the naive operation, transform as

Ψ̃ → Ψ̃′ =

⎛
⎝e−

�θ
2�σ 0

0 e
�θ
2�σ

⎞
⎠(

χL

ξR

)
. (3.235)

This is a different kind of object, because it transforms according to a
different representation of the Lorentz group. Therefore we write

Ψ =

(
χL

ξR

)
→ ΨC =

(
ξC

R
χC

L

)
=

(
ξL

χR

)
, (3.236)

which incorporates the transformation behaviour we observed ear-
lier and transforms like a Dirac spinor. This operation is commonly
called charge conjugation, which can be a little misleading. We know
that this transformation transforms a left-chiral spinor into a right-
chiral, i.e. flips one label we use to describe our elementary parti-
cles152. Later we will learn that this operator flips not only one, but 152 For the more advanced reader: Recall

that each Weyl spinor we are talking
about here, is in fact a two component
object. Later we will define a physical
measurable quantity, called spin, that
is described by 1

2 σ3. The matrix ε, flips
an object with eigenvalue + 1

2 for the
spin operator 1

2 σ3 into an object with
eigenvalue − 1

2 . This is commonly
interpreted as spin flip, which means an
object with spin 1

2 , becomes an object
with spin − 1

2 .

all labels we use to describe fundamental particles. One such label is
electric charge, hence the name charge conjugation, but before we are
able to show this, we need of course to understand first what electric
charge is. Nevertheless, it’s always important to remember that all
labels get flipped, not only electric charge.

We could now go on and derive higher-dimensional representa-
tions of the Lorentz group, but at this point we already have every
finite-dimensional irreducible representation we need for the purpose
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of this text. Nevertheless, there is another representation, the infinite-
dimensional representation, that is especially interesting, because we
need it to transform physical fields.

3.7.11 Infinite-Dimensional Representations

In the last sections, we talked about finite-dimensional representa-
tions of the Lorentz group and learned how we can classify them.
These finite-dimensional representations acted on constant one-, two-
or four-component objects so far. In physics the objects we are deal-
ing with are dynamically changing in space and time, so we need to
understand how such objects transform. So far we have dealt with
transformations of the form

Φa → Φ′
a = Mab(Λ)Φb (3.237)

where Mab(Λ) denotes the matrix of the particular finite-dimensional
representation of the Lorentz transformation Λ. This means Mab(Λ)

is a matrix that acts, for example, on a two-component object like a
Weyl spinor. The result of the multiplication with this matrix is sim-
ply that the components of the object in question get mixed and are
multiplied with constant factors. If our object Φ changes in space and
time, it is a function of coordinates153 Φ = Φ(x) and these coordi-153 Here x is a shorthand notation for all

spacetime coordinates t, x, y, z nates are affected by the Lorentz transformations, too. In general we
have

xμ → Λμ
ν xν, (3.238)

where Λμ
ν denotes the vector representation (= ( 1

2 , 1
2 ) representation)

of the Lorentz transformation in question. We have in this case154154 Most books use the Wigner con-
vention for symmetry operators:
Φa(x) → Mab(Λ)Φb(Λ−1x), but
unfortunately there is at this point no
way to motivate this convention.

Φa(x) → Mab(Λ)Φb(Λx). (3.239)

Our transformation will therefore consist of two parts. One part, rep-
resented by a finite-dimensional representation, acting on Φa and a
second part acting on the coordinates. This second part will act on
an infinite-dimensional155 vector space and we therefore need an

155 Each component of Φ is now a
function of x. The corresponding
operators act on Φa(x), i.e. functions
of the coordinates and the space of
functions is in this context infinite-
dimensional. The reason that the space
of functions is infinite-dimensional
is that we need an infinite number of
basis functions. The expansion of an
arbitrary function in terms of such an
infinite number of basis functions is the
idea behind the Fourier transform as
explained in appendix D.1.

infinite-dimensional representation. The infinite-dimensional repre-
sentation of the Lorentz group is given by differential operators156

156 The symbols ∂ν are a shorthand
notation for the partial derivative ∂

∂ν
.

Minf
μν = i(xμ∂ν − xν∂μ) (3.240)

you can check by straightforward computation that Minf
μν satisfies the

Lorentz algebra (Eq. 3.167) and transforms the coordinates as desired.
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The transformation of the coordinates is now given by157 157 Recall the definition of Mμν in
Eq. 3.165. The components of ωμν can
then be directly related to the usual
rotation angles θi = 1

2 εijkωjk and the
boost parameters φi = ω0i

Φ(Λx) = e−i ωμν

2 Minf
μν Φ(x), (3.241)

where the exponential function is, as usual, understood in terms
of its series expansion. The complete transformation is then a com-
bination of a transformation generated by the finite-dimensional
representation Mfin

μν and a transformation generated by the infinite-
dimensional representation Minf

μν of the generators:

Φa(x) →
(

e−i ωμν

2 Mfin
μν

)b

a
e−i ωμν

2 Minf
μν Φb(x). (3.242)

Because our matrices Mfin
μν are finite-dimensional and constant we can

put the two exponents together

Φa(x) →
(

e−i ωμν

2 Mμν

)b

a
Φb(x) (3.243)

with Mμν = Mfin
μν + Minf

μν . This representation of the generators of the
Lorentz group is called field representation.

We can now talk about a different kind of transformation: transla-

tions, which means transformations to another location in spacetime.
Translations do not result in a mixing of components and therefore,
we need no finite-dimensional representation, but it’s quite easy to
find the infinite-dimensional representation for translations. These
are not part of the Lorentz group, but the laws of nature should be
location independent. The Lorentz group (boosts and rotations) plus
translations is called the Poincare group, which is the topic of the
next section. Nevertheless, we will introduce the infinite-dimensional
representation for this kind of transformation here. For simplicity,
we restrict ourselves to one dimension. In this case an infinitesimal

translation of a function, along the x-axis is given by

Φ(x) → Φ(x + ε) = Φ(x) + ∂xΦ(x)︸ ︷︷ ︸
"rate of change" along the x-axis

ε,

which is, of course, again the first term of the Taylor series expansion.
It is conventional in physics to add an extra −i to the generator and
we therefore define

Pi ≡ −i∂i. (3.244)

With this definition an arbitrary, finite translation is

Φ(x) → Φ(x + a) = e−iai Pi Φ(x) = eai∂i Φ(x)

where ai denotes the amount we want to translate in each direction.
If we write the exponential function as Taylor series158, this equation 158 This is derived in appendix B.4.1.

can simply be seen as the Taylor expansion159 for Φ(x + a). If we
159 As derived in appendix B.3.want to transform to another point in time we use P0 = i∂0, for a

different location we use Pi = −i∂i.
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3.8 The Poincare Group

Let’s move on to the full spacetime symmetry group of nature: the
Poincare group. The Lorentz group includes rotations and boosts.
Further transformations that leave the speed of light invariant are
translations in space and time, because measuring the speed of light
at a different point in spacetime does not change its value. Or equiv-
alently, the speed of light does not depend on the choice of where
we put the origin of the coordinate system we use to describe some
process. When we add these symmetries to the Lorentz group we get
the Poincare group160160 The Poincare group is not the direct,

but the semi-direct, sum of the Lorentz
group and translations, but for the
purpose of this text we can neglect this
technical detail. Poincare group = Lorentz group plus translations

= Rotations plus boosts plus translations (3.245)

The generators of the Poincare group are the generators of the
Lorentz group Ji, Ki plus the generators of translations in Minkowski
space Pμ.

In terms of Ji, Ki and Pμ the algebra reads161161 This is not very enlightening, but
included for completeness.

[Ji, Jj] = iεijk Jk (3.246)

[Ji, Kj] = iεijkKk (3.247)

[Ki, Kj] = −iεijk Jk (3.248)

[Ji, Pj] = iεijkPk (3.249)

[Ji, P0] = 0 (3.250)

[Ki, Pj] = iδijP0 (3.251)

[Ki, P0] = −iPi (3.252)

Because this looks like a huge mess it is conventional to write this in
terms of Mμν, which was defined by

Ji =
1
2

εijk Mjk (3.253)

Ki = M0i. (3.254)
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With Mμν the Poincare algebra reads

[Pμ, Pν] = 0 (3.255)

[Mμν, Pρ] = i(ημρPν − ηνρPμ) (3.256)

and of course again

[Mμν, Mρσ] = i(ημρ Mνσ − ημσ Mνρ − ηνρ Mμσ + ηνσ Mμρ) (3.257)

For this quite complicated group it is very useful to label the rep-
resentations by using the fixed scalar values of the Casimir operators.
The Poincare group has two Casimir operators162 . The first one is: 162 Recall that a Casimir operator is

defined as an operator, constructed
from the generators, that commutes
with all other generators.PμPμ =: m2. (3.258)

We give the scalar value the suggestive name m2, because we will
learn later that it coincides with the mass of particles163. 163 Don’t worry, this will make much

more sense later.

The second Casimir operator is WμWμ with164
164 εμνρσ is the four-dimensional Levi-
Civita symbol, which is defined in
appendix B.5.5.Wμ =

1
2

εμνρσPν Mρσ (3.259)

which is called the Pauli-Lubanski four-vector. In a lengthy com-
putation it can be justified, that in addition to m, we use the number
j ≡ j1 + j2, which is commonly called spin. For the moment this is
just a name. Later we will understand why the name spin is appro-
priate. Exactly as for the Lorentz group, we have one ji for each of
the two165 representations of the SU(2) algebra. 165 Recall that the Lie algebra of the

Lorentz group could be seen to con-
sist of two copies of the Lie algebra of
SU(2). The representations of SU(2)
could be labelled by a number j and
consequently we used for representa-
tions of the double cover of the Lorentz
group two numbers (j1, j2).

For example, the (j1, j2) = (0, 0) representation is called spin 0
representation166. The (j1, j2) = ( 1

2 , 0) and (j1, j2) = (0, 1
2 ) are both

166 j1 + j2 = 0 + 0 = 0

called spin 1
2 representations167 and analogously the (j1, j2) = ( 1

2 , 1
2 )

167 j1 + j2 = 1
2 + 0 = 0 + 1

2 = 1
2

representation is called spin 1 representation168.

168 j1 + j2 = 1
2 + 1

2 = 1

The message to take away is that each representation is labelled
by two scalar values: m and j. m can take on arbitrary values, but j is
restricted to half-integer or integer values.

3.9 Elementary Particles

The labels for the irreducible representations of the Poincare group
are how elementary particles are labelled in physics169: by their 169 Some prefer to say: Elementary parti-

cles are the irreducible representations
of the Poincare group.

mass m and by their spin (= j here). An elementary particle with
given labels m and spin, say j = 1

2 , is described by an object, which
transforms according to the m, spin 1

2 representation of the Poincare
group.
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More labels, called charges, will follow later from internal sym-
metries. These labels are used to define an elementary particle. For
example, an electron is defined by

• mass: 9, 109 · 10−32 kg

• spin: 1
2

• electric charge: 1, 602 · 10−19 C

• weak charge, called weak isospin: − 1
2

• strong charge, called color charge: 0

These labels determine how a given elementary particle behaves
in experiments. The representations we derived in this chapter define
how we can describe them mathematically. An elementary particle
with170170 Remember that in the introductory

remarks about what we can’t derive,
it was said there is no real reason to
stop here after three representations.
We could go on to higher dimensional
representations, but there are no ele-
mentary particles, for example, with
spin 3

2 . Nevertheless, such representa-
tions can be used to describe composite
objects. In addition, there are many
physicists that believe the fundamen-
tal particle mediating gravity, called
graviton, has spin 2 and therefore a
corresponding higher dimensional
representation must be used to describe
it.

• spin 0 is described by an object Φ, called scalar, that transforms
according to the (0, 0), called spin 0 representation or scalar repre-
sentation. For example, the Higgs particle is described by a scalar
field.

• spin 1
2 is described by an object Ψ, called spinor, that transforms

according to the ( 1
2 , 0) ⊕ (0, 1

2 ) representation, called spin 1
2 rep-

resentation or spinor representation. For example, electrons and
quarks are described by spinors.

• spin 1 is described by an object A, called vector, that transforms
according to the ( 1

2 , 1
2 ), called spin 1 representation or vector

representation. For example photons are described by vectors.

This is an incredibly important, deep and beautiful insight, so
again:

What we get from deriving the irreducible representations of the
Poincare group are the mathematical tools we need to describe all

elementary particles. To describe scalar particles, like the Higgs
Boson, we use mathematical objects, called scalars, that transform
according to the spin 0 representation. To describe spin 1

2 particles

like electrons, neutrinos, quarks etc. we use mathematical objects,
called spinors, that transform according to the spin 1

2 representation.
To describe photons or other particles with spin 1 we use objects,
called vectors, transforming according to the spin 1 representation.

An explanation for the very suggestive name spin, will be given
in Sec. 8.5.5, after we talked about how and what we measure in
experiments. We first have to know how we are able to find out if
something is spinning, before we can justify the name spin. At this
point, spin is merely a label.
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Further Reading Tips

• John Stillwell - Naive Lie Theory171 is a very readable, math 171 John Stillwell. Naive Lie Theory.
Springer, 1st edition, 8 2008b. ISBN
9780387782140

orientated introduction to Lie Theory.

• N. Jeevanjee - An Introduction to Tensors and Group Theory for

Physicists172 is a very good introduction, with focus on the usage 172 Nadir Jeevanjee. An Introduction to
Tensors and Group Theory for Physicists.
Birkhaeuser, 1st edition, August 2011.
ISBN 978-0817647148

of Group Theory in physics.

3.10 Appendix: Rotations in a Complex Vector

Space

The concept of transformations that preserve the inner product can
be used with complex vector spaces, too. We want the inner prod-
uct of a vector with itself to be a real number, because by definition
this should result in the squared length of the vector, where a com-
plex number would make little sense. Therefore, the inner product of
complex vector spaces is defined with additional complex conjuga-
tion173 173 Because for z = a + ib we have

z� = a − ib and therefore
z�z = (a + ib)(a − ib) = a2 + b2, which

is real.

a · a = (aT)�a = a†a. (3.260)

The symbol †, called dagger, denotes Hermitian conjugation, which
means complex conjugation and transposing. We see that a trans-
formation that preserves this inner product must fulfil the condition
U†U = 1:

(Ua) · (Ua) = a†U†Ua = a†a (3.261)

Transformations like these form groups that are called U(n), where n
denotes the dimensions of the complex vector space and "U" stands
for unitary. Again the groups SU(n) are called special, because their
elements fulfil the extra condition det(U) = 1.

3.11 Appendix: Manifolds

A manifold M is a set of points if there exists a continuous 1-1 map
from each open neighborhood onto an open set of Rn. In easy words
this means that a manifold M looks locally like the standard Rn. This
map from each open neighborhood of M onto Rn associates with
each point P of M an n-tupel (x1(P), ...xn(P)) where the numbers
x1(P), ...xn(P) are called the coordinates of the point P. Therefore
another way of thinking about a n-dimensional manifold is that it’s
a set, which can be given n independent coordinates ins some neigh-
borhood of any point.
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An example for a manifold is the surface of a sphere. The surface
of the three-dimensional sphere is called two-sphere S2 and is de-
fined as the set of points in R3 for which x2 + y2 + z2 = r holds,
where r is the radius of the sphere. Take note that the surface of the
three-dimensional sphere is two-dimensional, because the definition
involves 3 coordinates and one condition, which eliminates one de-
gree of freedom. That is why it’s called mathematically two-sphere.
To see that the sphere is a manifold we need a map onto R2. This
map is given by the usual spherical coordinates.

Fig. 3.8: Illustration of the map from
one neighborhood of the sphere on to
Rn.

Almost all points on the surface of the sphere can be identified
unambiguously with a coordinate combination of the form (ϕ, θ). Al-
most all! Where is the pole ϕ = 0 mapped to? There is no one-to-one
identification possible, because the pole is mapped to a whole line,
as indicated in the image. Therefore this map does not work for the
complete sphere and we need another map in the neighborhood of
the pole to describe things there. A similar problem occurs for the
map on the semicircle θ = 0. Each point can be mapped in the R2

to θ = 0 and θ = 2π, which is again not a one-to-one map. This
illustrates the fact that for manifolds there is in general not one coor-
dinate system for all points of the manifold, only local coordinates,
which are valid in some neighborhood. This is no problem because
the defining feature of a manifold is that it looks locally like Rn.

The spherical coordinate map is only valid in the open neighbor-
hood 0 < ϕ < π, 0 < θ < 2π and we need a second map to cover
the whole sphere. We can use, for example, a second spherical coor-
dinate system with different orientation, such that the problematic
poles lie at different points for this map and no longer at ϕ = 0. With
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this second map every point of the sphere has a map onto R2 and the
two-sphere can be seen to be a manifold.

A trivial example for a manifold is of course Rn.



4

The Framework

The basic idea of this chapter is that we get the correct equations of
nature, by minimizing something. What could this something be? One
thing is for sure: The object mustn’t change under Lorentz transfor-
mations, because otherwise we get different laws of nature for differ-
ent frames of reference. In mathematical terms this means the object
we are searching for must be a scalar, which is an object transforming
according to the (0, 0) representation of the Lorentz group. Together
with restricting to the simplest possible choice this will be enough to
derive the correct equations of nature. Nature likes it simple.

Starting with this idea, we will introduce a framework called the
Lagrangian formalism. By minimizing the central object of the the-
ory we get the equations of motion that describe the physical system
in question. The result of this minimization procedure is called the
Euler-Lagrange equations.

The Lagrangian formalism enables us to derive one of the most-
important theorems of modern physics: Noether’s Theorem. This
theorem reveals the deep connection between symmetries and con-
served quantities1. We will use this connection in the next chapter

1 A conserved quantity is a quantity
that does not change in time. Famous
examples are the energy or the momen-
tum of a given system. In mathematical
terms this means ∂tQ = 0 → Q =const.

to understand how the quantities we measure in experiments can be
described by the theory.

4.1 Lagrangian Formalism

The Lagrangian formalism is an incredibly powerful framework2 that

2 There are of course other frameworks,
e.g. the Hamiltonian formalism, which
has the Hamiltonian as its central
object. The problem with the Hamilto-
nian is that it is not Lorentz invariant,
because the energy, it represents, is
just one component of the covariant
energy-impulse vector.

is used in most parts of fundamental physics. It is relatively simple,
because the fundamental object, the Lagrangian, is a scalar3. The for-

3 A scalar is an object transforming
according to the (0, 0) representation
of the Lorentz group. This means that
it does not change at all under Lorentz
transformations.

malism is very useful if one wants to use symmetry considerations.
If we demand the action, the integral over the Lagrangian, to be in-
variant under some symmetry transformation, we ensure that the

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_4
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dynamics of the system in question respects this symmetry.

4.1.1 Fermat’s Principle

"Whenever any action occurs in nature, the quantity of action em-
ployed by this change is the least possible."

- Pierre de Maupertius44 "Recherche des loix du mouvement"
(1746)

The basic idea of the Lagrangian formalism emerged from Fer-
mat’s principle, which states that light always chooses the path q(t)
between two points in space that minimizes the time it takes to travel
between the points. Mathematically we can write this, if we define
the action of a given path q(t) to be

Slight[q(t)] =
∫

dt

and our task is to find the specific path q(t) that minimizes the ac-
tion5. To find the minimum6 of a given function, we take the deriva-5 The action is here simply the integral

over the time for a specific path, but
in general the action will be a bit
more complicated, as we will see in a
moment.

6 In general, we want to find ex-
tremums, which means minimums
and maximums. The idea outlined in
the next section is capable of finding
both. Nevertheless, we will continue to
talk about minimums.

tive and set it to zero. Here we want to find the minimum of a func-

tional S[q(t)], which means a function S of a function q(t) and we
need a new mathematical idea, called variational calculus.

Fig. 4.1: Variations of a path with fixed
starting- and end-point.

4.1.2 Variational Calculus - the Basic Idea

If we want to develop a new theory capable of finding the minima
of functionals, we need to take a step back and think about what
characterises a mathematical minimum. The answer of variational
calculus is that a minimum is characterised by the neighbourhood
of the minimum. For example, let’s find the minimum xmin of an
ordinary function f (x) = 3x2 + x. We start by looking at one specific
x = a and take a close look at its neighborhood. Mathematically this
means a + ε, where ε denotes an infinitesimal (positive or negative)
variation. We put this variation of a into our function f (x):

f (a + ε) = 3(a + ε)2 + (a + ε) = 3(a2 + 2aε + ε2) + a + ε.

If a is a minimum, first order variations in ε must vanish, because
otherwise we can choose ε to be negative ε < 0 and then f (a + ε)

is smaller than f (a). Therefore, we collect all terms linear in ε and
demand this to be zero

3 · 2aε + ε
!
= 0 → 6a + 1 !

= 0.

So we find the minimum

xmin = a =
−1
6

,
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which is of course exactly the same result we get if we take the
derivative f (x) = 3x2 + x → f ′(x) = 6x + 1 and demand this to
be zero. In terms of ordinary functions this is just another way of do-
ing the same thing, but varational calculus is in addition able to find
the extrema of functionals. We will see in a moment how this can be
done for a general action functional.

The idea of the Lagrangian formalism is that a principle like the
Fermat principle for light exists for massive objects, too. Unfortu-
nately, massive objects do not simply obey Fermat’s principle, but we
can make a more general ansatz

S[q(t)] =
∫

L dt,

where L is a, in general non-constant, parameter, called the La-
grangian. This parameter happens to be constant for light. In general,
the Lagrangian is a function of the position q(t) of the object on ques-
tion and in addition, the Lagrangian can depend on the velocity of
the object: L = L(q(t), ∂

∂t q(t)). This will be discussed in more detail
in the next section7. Before we take a closer look at the usage of the 7 Our task will be to find the path q(t)

with lowest possible action for a given
Lagrangian and given initial conditions.
Before we are able to do that, we
need to find the correct Lagrangian,
describing the physical system in
question. Here is where the symmetries
we talked about in the last chapters
come in handy. Demanding that the
Lagrangian is invariant under all
transformations of the Lorentz group,
will lead us to the correct Lagrangians.

variational calculus idea for a functional like this, we need to talk
about two small things.

4.2 Restrictions

As already noted in Chap. 1.1 there are restrictions to our present
theories we can’t motivate from first principles. We only know that
we must respect these restrictions in order to get a sensible theory.

One important restriction is that we are only allowed to use the
lowest possible, non-trivial order derivatives in the Lagrangian. Triv-
ial in this context means with no influence of the dynamics of the
system, i.e. on the equations of motion. For some theories this will be
first order and for others second order. The lowest order of a given
theory is determined by the condition that the Lagrangian must be
Lorentz invariant8, because otherwise we would get different equa- 8 In fact, the action must be Lorentz

invariant, but if the Lagrangian is
Lorentz invariant, the action certainly
is, too.

tions of motions for different frames of reference. For some theories
we can’t get an invariant term with first order derivatives and there-
fore second order derivatives are the lowest possible order.

We simply do not know how to work with theories including
higher order derivatives and there are deep systematic problems
with such theories9. In addition, higher order derivatives in the La-

9 These problems are known as Os-
trogradski instabilities. The energy
in theories with higher order deriva-
tives can be arbitrarily negative, which
would mean that every state in such
theory would always decay into lower
energy states. There are no stable states
in such theories.

grangian lead to higher order derivatives in the equations of motion
and therefore more initial conditions would be required.
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It is sometimes claimed that the constraint to first order derivatives
is a consequence of our demand to get a local10 theory, but this only10 Locality is a consequence of the basis

postulates of special relativity, as shown
in Sec. 2.4.

rules out an infinite number of derivatives. A non-local interaction is
of the form11

11 We will discuss Lagrangians for
particle theories, where we search for
particle paths and Lagrangians for
field theories, where we search for field
configurations Φ(x). This is the topic of
the next section.

Φ(x − h)Φ(x), (4.1)

that is, two fields interacting with each other at two different points
in spacetime with arbitrary distance h. Using the Taylor expansion
we can write

Φ(x − h) =
∞

∑
k=0

((
∂

∂x

)k
Φ(x)

∣∣∣
x=h

)
(x − h)k

k!
(4.2)

which shows that allowing an infinite number of derivatives would
result in a non-local interaction theory.

Another restriction is that in order to get a theory describing free
(=non-interacting) fields/particles we must stop at the second power
order. This means we only include the terms1212 From another perspective, this means

again that we only include the lowest
possible, non-trivial terms. Terms with
Φ0 and Φ1 are trivial, as we will see
later and therefore we use once more
only the lowest possible, non-trivial
order, now in Φ.

Φ0, Φ1, Φ2

into our considerations. For example, a term of the form Φ2∂μΦ is of
third order in Φ and therefore not included in the Lagrangian for our
free theory.

4.3 Particle Theories vs. Field Theories

Currently we have two frameworks to describe nature. On the one
hand, we have particle theories that describe physical systems in
terms of positions of particles depending on time, i.e. �q = �q(t). We
use the symbol q instead of x, because there is no need to describe
nature in terms of Cartesian coordinates13. For such theories the13 Another possibility are spherical

coordinates. Lagrangian depends on the position �q, the velocity ∂t�q and the time t:

L = L(�q, ∂t�q, t). (4.3)

A famous example is the Lagrangian L = 1
2 m�̇q2, from which we

can derive Newton’s equation of motion for classical mechanics. This
will be discussed later in great detail.

On the other hand, we have field theories that do not use the
location �q(t) of individual particles to describe nature, but fields14. In

14 An especially beautiful feature of
quantum field theory is how particles
come into play. In Chap. 6 we will see
that fields are able to create and destroy
particles.

such theories space and time form the stage the fields Φ(�x, t) act on.
Using the restrictions we get1515 The usage of a different symbol L

here is intentional, because in field
theories we will work most of the time
with the Lagrangian density L . The
Lagrangian density is related to the
Lagrangian via L =

∫
d3xL .

L = L (Φ(�x, t), ∂μΦ(�x, t),�x) (4.4)
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A famous example is the Lagrangian L = 1
2 (∂μΦ∂μΦ − m2Φ2),

from which we will derive the Klein-Gordon equation.

The big advantage of field theories is that they treat space and
time on an equal footing. In a particle theory we use the space coor-
dinates �q(t) to describe our particle as a function of time. Notably,
there is no term like ∂�qt in the Lagrangian and if it would be there,
how should we interpret it? It is clear what we mean when we talk
about the location of a particle, but there is no obvious way to make
sense of a similar sentence for time.

Having discussed all this, we are able to return to the original
minimizing problem, proposed at the beginning of this chapter. We
want to find the minimum of some functional

S[q(t)] =
∫

Ldt,

which will give us the correct equations of motion.

The solutions of these equations are for particles the correct paths
that minimize the functional. For a field theory the solutions are the
correct field configurations.

For the moment, do not worry about the object L, because we
will describe in the following chapters in great detail how we can
derive the correct Lagrangian L for the systems in question. Here, we
work with a general L and use the machinery of variational calculus,
introduced above, to derive the minimum of the functional S[q(t)].
This minimization procedure will give us the equations of motion for
the system.

4.4 Euler-Lagrange Equation

We will start with a particle theory and this means, we want to find
out how a particle moves between two fixed points. The mathemat-
ical problem we have to solve is to find the function q(t) for which
the action

S =
∫ t2

t1

L
(

q(t),
dq(t)

dt
, t
)

dt

is an extremum (e.g. maximum, minimum).
We use the notation

q̇(t) ≡ dq(t)
dt

.

Analogous to the example above, we fix q(t) = a(t) and vary this
function a little bit

a(t) + ε(t)



96 physics from symmetry

where ε is again infinitesimal. Considering a particle, we are not only
able to vary the path, but in the same way we can vary the velocity
ȧ(t) + ε̇(t) with ε̇(t) = dε(t)

dt .
At the boundary, the transformed path must be equivalent to the

untransformed path:

0 = ε(t1) = ε(t2), (4.5)

because we are searching for the path between two fixed points that
extremizes the action integral.
This variation of the fixed function results in the functional

S =
∫ t2

t1

dtL(q + ε, q̇ + ε̇, t).

Analogous to the example above, where we searched for the mini-
mum of a function, we will demand here that the terms linear in the
variation ε vanish. Because we work with a general L we expand L
as Taylor series16 and demand the first order terms to vanish16 We are using a generalization of the

formula, derived in appendix B.3 for
functions with more than one variable:
L(q + ε, q̇ + ε̇, t) = L(q) + (q + ε − q) ∂L

∂q

+(q̇ + ε̇ − q̇) ∂L
∂q̇ + . . .

= L(q) + ε ∂L
∂q + ε̇ ∂L

∂q̇ + . . .

∫ t2

t1

dt
[

ε(t)
∂L
∂q

+

(
d
dt

ε(t)
)

∂L
∂q̇

]
!
= 0. (4.6)

We integrate the last term by parts17, which yields

17 Integration by parts is a direct conse-
quence of the product rule and derived
in appendix B.2.

∫ t2

t1

dt
(

d
dt

ε(t)
)

∂L(q, q̇, t)
∂q̇

= ε(t)
∂L(q, q̇, t)

∂q̇

∣∣∣∣t2

t1

−
∫ t2

t1

dtε(t)
d
dt

(
∂L(q, q̇, t)

∂q̇

)
Using Eq. 4.5 we have

ε(t)
∂L(q, q̇, t)

∂q̇

∣∣∣∣t2

t1

= 0

So, we can rewrite Eq. 4.6 as

∫ t2

t1

dtε(t)
[

∂L(q, q̇, t)
∂q

− d
dt
(

∂L(q, q̇, t)
∂q̇

)

]
!
= 0

and we can see that this only vanishes for arbitrary variations ε(t)
if the expression in the square bracket [ ] is identically zero. This
yields18

18 Maybe you wonder about the two
different symbols for derivatives. d

dt is
called the total derivative with respect
to t, whereas ∂

∂t is called the partial
derivative. The total derivative gives
us the total change, which is for a
function f given by sum of the change
rates, also known as partial derivatives,
times the change of the quantity itself.
For example, the total change of a
function f (x(t), y(t), z(t)) in three
dimensional space is given by d f

dt =
∂ f
∂x

∂x
∂t +

∂ f
∂y

∂y
∂t +

∂ f
∂z

∂z
∂t +

∂ f
∂t

∂t
∂t . The change

rate times the distance it is changed.
In contrast the partial derivative is just
one part of this total change. For a
function that does not explicitly depend
on t the partial derivative is zero. For
example, for f (x(t), y(t)) = x2y + y3,
we have ∂ f

∂t = 0, but ∂ f
∂x = 2xy �= 0

and ∂ f
∂y = x2 + 3y2 �= 0. Therefore,

d f
dt = 2xy ∂x

∂t + (x2 + 3y2) ∂y
∂t . In contrast

for another function g(x(t), y(t), t) =

x2t + y we have ∂g
∂t = x2.

∂L(q, q̇, t)
∂q

− d
dt

(
∂L(q, q̇, t)

∂q̇

)
= 0 (4.7)

which is the famous Euler-Lagrange equation.
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For a field theory we can follow a similar route. First notice that in
this case we treat time and space equally. Therefore, we introduce the
Lagrangian density L :

L =
∫

d3xL (Φi, ∂μΦi) (4.8)

and we can write the action in terms of the Lagrangian density

S =
∫

dtL =
∫

d4xL (Φi, ∂μΦi) (4.9)

Following the same steps as above, we get the equations19 of motion 19 Plural because we get one equa-
tion for each field component, i.e.
Φ1, Φ2, . . ..

for a field theory:

∂L

∂Φi − ∂μ

(
∂L

∂(∂μΦi)

)
= 0 (4.10)

In the next section we will derive, using the Lagrangian formalism,
one of the most important theorems of modern physics. We need
this theorem to see the deep connection between symmetries and
conserved quantities. The conserved quantities are the appropriate
quantities20 to describe nature and from this theorem we learn how 20 We can see them as anchors in an

otherwise extremely complicated
world. While everything changes, the
conserved quantities stay the same.

we can work with them in a theoretical context.

4.5 Noether’s Theorem

Noether’s theorem shows that each symmetry of the Lagrangian is
directly related to one conserved quantity. Or formulated slightly
different: The notions physicists commonly use to describe nature
(the conserved quantities) are directly connected to symmetries.
This certainly is one of the most beautiful insights in the history of
science.

4.5.1 Noether’s Theorem for Particle Theories

Let’s have a look at what we can say about conserved quantities in
particle theories. We will restrict to continuous symmetries, because
then we can look at infinitesimal changes. As we have seen in earlier
chapters, we can built up finite changes by repetition of infinitesimal
changes. The invariance of the Lagrangian under an infinitesimal
transformation21 q → q′ = q + δq can be expressed mathematically 21 The symbol for a small variation δ

may not be confused with the symbol
for partial derivatives ∂.

δL = L
(

q,
dq
dt

, t
)
−L

(
q + δq,

d(q + δq)
dt

, t
)

= L
(

q,
dq
dt

, t
)
−L

(
q + δq,

dq
dt

+
dδq
dt

, t
)

!
= 0. (4.11)
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Demanding that the Lagrangian is invariant can be too restrictive.
What really needs to be invariant for the dynamics to stay the same
is the action and not the Lagrangian. Of course, if the Lagrangian is
invariant, the action is automatically invariant:

δS =
∫

dtL
(

q,
dq
dt

, t
)
−

∫
L

(
q + δq,

dq
dt

+
dδq
dt

, t
)
=

∫
dtδL =︸︷︷︸

if δL=0

0

(4.12)

How can the Lagrangian change, while the action stays the same? It
turns out we can always add the total time derivative of an arbitrary
function G to the Lagrangian

L → L+
dG
dt

without changing the action because2222 Using δG = ∂G
∂q δq, because G = G(q)

and we vary q. Therefore the variation
of G is given by the rate of change ∂G

∂q
times the variation of q.

δS → δS′ = δS +
∫ t2

t1
dt

d
dt

δG = δS +
∂G
∂q

δq
∣∣t2
t1︸ ︷︷ ︸

=0 because δq(t1)=δq(t2)=0

.

In the last step, we use that the variation δq vanishes at the initial and
final moments of time (t1, t2). We conclude, there is no need for us to
demand that the variation of the Lagrangian δL vanishes, rather we
have a less restrictive condition

δL !
=

dG
dt

. (4.13)

This means the Lagrangian can change without changing the ac-
tion and therefore the equation of motion, as long as the change can
be written as total derivative of some function dG

dt . Rewriting Eq. 4.11,
now with dG

dt instead of 0 on the right hand side yields

δL = L
(

q,
dq
dt

, t
)
−L

(
q + δq,

dq
dt

+
dδq
dt

, t
)

!
=

dG
dt

(4.14)

We expand the second term as Taylor series, keep only terms of first
order in δq, because δq is infinitesimal and use the notation dq

dt = q̇:

→ δL = L−L− ∂L
∂q

δq − ∂L
∂q̇

δq̇ !
=

dG
dt

→ δL = −∂L
∂q

δq − ∂L
∂q̇

δq̇ !
=

dG
dt

(4.15)

We can rewrite Eq. 4.15 by using the Euler-Lagrange equation23. This23 Eq. 4.7: ∂L
∂q = d

dt

(
∂L
∂q̇

)
yields

→ δL = − d
dt

(
∂L
∂q̇

)
δq − ∂L

∂q̇
δq̇ =

dG
dt

.
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This can be rewritten, using the product rule24 24 If you’re unsure about the product
rule, have a look at appendix B.1.

→ δL = − d
dt

(
∂L
∂q̇

δq
)
=

dG
dt

→ d
dt

(
∂L
∂q̇

δq + G
)

︸ ︷︷ ︸
≡J

= 0. (4.16)

Therefore, we have found a quantity J that is conserved in time:

J =
∂L
∂q̇

δq + G, (4.17)

because we have
d
dt

J = 0 → J = const.

To illustrate this, we will use one later result from Sec. 10.2: New-
ton’s second law for a free particle with constant mass is25 25 If q denotes the position of some ob-

ject, dq
dt = q̇ is the velocity of the object

and d
dt

dq
dt = d2q

dt2 = q̈ the acceleration.m�̈q = 0. (4.18)

The Lagrangian that reproduces this famous equation of motion is26 26 We work now with more than one
spatial dimension, which means instead
of q and a, we use vectors �q and�a.L =

1
2

m�̇q2 (4.19)

as you can check, by putting it into the Euler-Lagrange equation
(Eq. 4.7).

Let us compute for this Lagrangian for different symmetries the
corresponding conserved quantities.

Our Lagrangian is invariant (δL = 0) under spatial translations
�q → �q′ = �q +�a, where�a denotes some constant vector, because
L = 1

2 m�̇q2 does not depend on �q. The corresponding conserved
quantity reads, with G = 0, which certainly fulfils the condition
Eq. 4.13

Jtrans =
∂L
∂�̇q

�a = m�̇q�a = �p�a, (4.20)

where �p = m�̇q is what we usually call momentum in classical
mechanics. The equation d

dt J = 0 holds for arbitrary�a and therefore
the momentum is conserved, because the Lagrangian is invariant

under spatial translations.

We now want to look at rotations and therefore need more than
one dimension, because a rotation in one dimension makes no sense.
Instead of working with vectors like �q, we can use an index nota-
tion, which is quite useful here. We can simply rewrite all equations
with q → qi. Let’s now have a look at an infinitesimal rotation27 27 Here we write the generator of

rotations by using the Levi-Civita
symbol. This was explained in the text
below Eq. 3.63.

qi → q′i = qi + εijkqjak and therefore δqi = εijkqjak. Our Lagrangian is
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invariant under such transformations, because again, L = 1
2 m�̇q2 does

not depend on q, and the corresponding conserved quantity is28
28 This was derived in Eq. 4.16, again we
work here with G = 0.

Jrot =
∂L(qi, q̇i, t)

∂q̇i
δqi =

∂L(qi, q̇i, t)
∂q̇i

εijkqjak

= mq̇iεijkqjak = piεijkqjak

→ Jrot = (�p ×�q) ·�a ≡ �L ·�a (4.21)

In the last step we rewrite our term in vector notation, where × is
called the cross product and �L is what we usually call angular mo-

mentum in classical mechanics. Therefore, invariance under rota-

tions leads us to conservation of angular momentum.

Next let’s have a look at invariance under time translations29. An29 This means that physics doesn’t care
about if we perform an experiment
yesterday, today or in 50 years, given
the same initial conditions, the physical
laws stay the same.

infinitesimal time displacement t → t′ = t + ε has the effect

δL = L
(

q(t),
dq(t)

dt
, t
)
−L

(
q(t + ε),

dq(t + ε)

dt
, t + ε

)

= −∂L
∂q

∂q
∂t

ε − ∂L
∂q̇

∂q̇
∂t

ε − ∂L
∂t

ε =︸︷︷︸
The left hand side is exactly the total derivative

−dL
dt

ε, (4.22)

which tells us that in general δL �= 0, but the condition in Eq. 4.13 is
fulfilled anyway with G = −L.

We can put this into Eq. 4.16, which yields

d
dt

(
∂L
∂q̇

q̇ − L
)

︸ ︷︷ ︸
≡H

= 0 (4.23)

The conserved quantity H is called the Hamiltonian and represents
the total energy of the system. For our example Lagrangian, we have

H =
∂L
∂q̇

q̇ −L =

(
∂

∂q̇
1
2

mq̇2
)

︸ ︷︷ ︸
=mq̇

q̇ − 1
2

mq̇2

= mq̇2 − 1
2

mq̇2 =
1
2

mq̇2, (4.24)

which is exactly the kinetic energy of our system. The kinetic energy
is the total energy, because we worked without a potential/external
force. The Lagrangian that leads to Newton’s second law for a parti-
cle in an external potential: mq̈ = dV

dq is

L =
1
2

mq̇2 − V(q).

The Hamiltonian is then

H =
1
2

mq̇2 + V
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which is the correct total energy=kinetic energy+potential energy.

The conserved quantity that follows from boost invariance is
rather strange and the corresponding computation can be found in
the appendix Sec. 4.6. The resulting conserved quantity is

J̃boost = pt − 1
2

mvt︸ ︷︷ ︸
≡ p̃t

−mq = p̃t − mq. (4.25)

We can see that this quantity depends on the starting time and by
choosing the starting time appropriately we can make it zero. Be-
cause this quantity is conserved, this conservation law tells us that
zero stays zero for all times.

To summarize for particle theories we have the following connec-
tions:

• Translational invariance in space ⇒ conservation of momentum

• Boost invariance30 ⇒ conservation of p̃t − mq 30 Another name for a boost is transla-
tion in momentum space, because the
transformation q → q + vt, changes the
momentum to mq̇ → m(q̇ + v).

• Rotational invariance ⇒ conservation of angular momentum

• Translational invariance in time ⇒ conservation of energy

Noether’s theorem shows us why those notions31 are used in every 31 Except for the conserved quantity
following from boost invariance.physical theory of nature in one or another form. As long as we

have the usual spacetime symmetries of our physical laws we have
momentum, energy and angular momentum as conserved quantities.

It is instructive to have a look at how those notions occur in field
theories. For field theories we have two kinds of symmetries. On the
one hand, our Lagrangian can be invariant under transformations
of spacetime, which means a transformation like a rotation. On the
other hand, we can have invariance under transformations of the field
itself, which are called internal symmetries.

4.5.2 Noether’s Theorem for Field Theories - Spacetime

Symmetries

For fields one has to distinguish between different kinds of changes
that can happen under spacetime transformations. Observer S′ sees
the field Ψ′(x′) whereas observer S sees the field Ψ(x). This is the
same field, just from another perspective and the two observers do
not see the same numerical field components. The two different
descriptions are related by the appropriate transformations of the
Lorentz group. We introduced in Sec. 3.7.11 the field representation,
which we will be using now. The (infinite-dimensional) differential
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operator representation changes x → x′. This means by using this
representation we can compute the field components at a different
point in spacetime or in a rotated frame. The finite-dimensional
transformation of the Lorentz group changes Ψ → Ψ′, i.e. mixes
the field components32.32 Remember for example, that a Weyl

spinor has two- and a vector field
has four-components. If we look at

the vector field Aμ =

⎛
⎜⎜⎝

A0
A1
A2
A3

⎞
⎟⎟⎠ from a

different perspective, i.e. describe it in
a rotated coordinate system it can look

like A′
μ =

⎛
⎜⎜⎝

A′
0

A′
1

A′
2

A′
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A0
−A2
A1
A3

⎞
⎟⎟⎠. A′

μ and

Aμ describe the same field in coordinate
systems that are rotated by 90◦ around
the z-axis relative to each other.

A complete transformation, for a field that depends on spacetime,
needs to consider both parts. We will look at these parts separately,
starting with the change x → x′. For rotations the conserved quantity
that follows is not really conserved, because we neglected the sec-
ond part of the transformation. Only the sum of the two conserved
quantities that follow from x → x′ and Ψ → Ψ′ is conserved.

To make this more concrete consider a general Lagrangian density
L ((Φ(xμ), ∂μΦ(xμ), xμ). Symmetry means we have

L ((Φ(xμ), ∂μΦ(xμ), xμ) = L ((Φ′(x′μ), ∂μΦ′(x′μ), x′μ). (4.26)

In general, the total change of a function-of-a-function, when the
independent functions are changed and the point at which they are
evaluated is also changed, is given by3333 If this is new to you: This is often

called the total derivative. The total
change is given by the sum of the
change rates, also known as derivatives,
times the change of the quantity itself.
For example, the total change of a
function f (x, y, z) in three dimensional
space is given by ∂ f

∂x δx + ∂ f
∂y δy + ∂ f

∂z δz.
The change rate times the distance it
is changed. We consider infinitesimal
changes and therefore this can be
seen as the first terms in the Taylor
expansion, where we can neglect higher
order terms.

d f (g(x), h(x), ...) =
∂ f
∂g

δg +
∂ f
∂h

δh + ... +
∂ f
∂x

δx. (4.27)

Applying this to the Lagrangian yields

δL =
∂L

∂Φ
δΦ +

∂L

∂(∂μΦ)
δ(∂μΦ) +

∂L

∂xμ
δxμ, (4.28)

which we can rewrite using the Euler-Lagrange equations34

34 See Eq. 4.10: ∂L
∂Φ = ∂μ(

∂L
∂(∂μΦ)

)

δL = ∂μ

(
∂L

∂(∂μΦ)

)
δΦ +

∂L

∂(∂μΦ)
δ(∂μΦ)︸ ︷︷ ︸
=∂μδΦ

+
∂L

∂xμ
δxμ

=︸︷︷︸
Product rule

∂μ

(
∂L

∂(∂μΦ)
δΦ

)
+

∂L

∂xμ
δxμ (4.29)

The variation δΦ has now two parts

δΦ = εμνSμνΦ(x)− ∂Φ(x)
∂xμ

δxμ, (4.30)

with the transformation parameters εμν, the transformation operator
Sμν in the corresponding finite-dimensional representation and a con-
ventional minus sign. Sμν is related to the generators of rotations by
Si =

1
2 εijkSjk and to the generators of boosts by Ki = S0i, analogous to

the definition of Mμν in Eq. 3.165. This definition of the quantity Sμν

enables us to work with the generators of rotations and boosts at the
same time.
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The first part is only important for rotations and boosts, because
translations do not lead to a mixing of the field components. For
boosts the conserved quantity will not be very enlightening, just as
in the particle case, so in fact this term will become only relevant for
rotational symmetry.

Let’s start with the simplest field transformation: A translation in
spacetime, i.e.

xμ → x′μ = xμ + δxμ = xμ + aμ. (4.31)

From Eq. 4.30 we have for translations, with εμν = 0, because field
components do not mix under translations

δΦ = − ∂Φ
∂xμ

δxμ

and thus from Eq. 4.29, if we want to investigate the consequences of
invariance ( δL = 0)

−∂ν

(
∂L

∂(∂νΦ)

∂Φ
∂xμ

δxμ

)
+

∂L

∂xμ
δxμ = 0 (4.32)

→ −∂ν

(
∂L

∂(∂νΦ)

∂Φ
∂xμ

− δν
μL

)
δxμ = 0 (4.33)

From Eq. 4.31 we have δxμ = aμ, which we put into Eq. 4.33. This
yields

−∂ν

(
∂L

∂(∂νΦ)

∂(Φ)

∂xμ
− δν

μL

)
aμ = 0, (4.34)

and we define the energy-momentum tensor

Tν
μ :=

∂L

∂(∂νΦ)

∂(Φ)

∂xμ
− δν

μL . (4.35)

Equation 4.34 tells us that Tν
μ fulfils a continuity equation, because aμ

is arbitrary
∂νTν

μ = 0 (4.36)

→ ∂νTν
μ = ∂0T0

μ − ∂iTi
μ = 0 (4.37)

for each component μ. This tells us directly that we have conserved
quantities, because for example for μ = 0 we get35

35 Using ∂0 = ∂t and ∂iT0
i = ∇�T

and the famous divergence theorem∫
V d3x∇A =

∫
δV d2xA, which enables

us to rewrite the integral over some
volume V, as an integral over the cor-
responding surface δV. A very illumi-
nating proof of the divergence theorem,
there called Gauss’ theorem, can be
found at http://www.feynmanlectures.
caltech.edu/II_03.html which is
chapter 3 of the freely online avail-
able Richard P. Feynman, Robert B.
Leighton, and Matthew Sands. The
Feynman Lectures on Physics: Volume 2.
Addison-Wesley, 1st edition, 2 1977.
ISBN 9780201021172

∂0T0
0 + ∂iTi

0 = 0 → ∂0T0
0 = −∂iTi

0

∂tT0
0 = −∇�T →︸︷︷︸

Integrating over some infinite volume V

∫
V

d3x∂tT0
0 = −

∫
V

d3x∇�T

→ ∂t

∫
V

d3xT0
0 = −

∫
V

d3x∇�T
Divergence theorem; δV cenotes the surface of the volume V︷︸︸︷

= −
∫

δV
d2x�T =︸︷︷︸

Because fields vanish at infinity

0 (4.38)

http://www.feynmanlectures.caltech.edu/II_03.html
http://www.feynmanlectures.caltech.edu/II_03.html
http://www.feynmanlectures.caltech.edu/II_03.html
http://www.feynmanlectures.caltech.edu/II_03.html
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→ ∂t

∫
V

d3xT0
0 = 0 (4.39)

In the last step we use that if we have an infinite volume V, like
a sphere with infinite radius r, and we have to integrate over the
surface of this volume δV, we need to evaluate our fields at r =

∞. We discovered in Sec. 2.3 that we have an upper speed limit for
everything in physics. Therefore the field configuration infinitely far
away, can’t have any influence on physics at a finite x and we say that
fields vanish at infinity.

We conclude: The invariance under translations in spacetime leads
us to 4 conserved quantities36, one for each component μ . Equation36 Because ∂0T0

μ aμ = ∂0T0
0 a0 − ∂0T0

i ai =
0, with arbitrary aμ we get a separate
continuity equation for each compo-
nent.

4.39 tells us these are

E =
∫

d3xT0
0 (4.40)

Pi =
∫

d3xT0
i , (4.41)

where as always i = 1, 2, 3. These quantities are called the total en-
ergy E of the system, which is conserved because we have invariance
under time-translations x0 → x0 + a0 and the total momentum of the
field configuration Pi, which is conserved because we have invariance
under spatial-translations xi → xi + ai.

4.5.3 Rotations and Boosts

Next, we take a look at invariance under rotations and boosts. We
will start the second part of Eq. 4.30 and then look afterwards at
the implications of the first part. We will get a quantity from the
first part and a quantity from the second part, which are together

conserved. A scalar field has no components that could mix, hence
for a scalar field the first part is zero, which means Sμν = 0, because
we use for scalars the 1-dimensional representation of the generators
of the Lorentz group that were derived in Sec. 3.7.4. Therefore what
we derive in this first section is the complete conserved quantity for a
scalar field.

The second part of the transformation is given by

xμ → x′μ = xμ + δxμ = xμ + Mσ
μxσ

where Mσ
μ is the generator of rotations and boost in its infinite-

dimensional representation, which means we use differential oper-
ators, as defined in Eq. 3.240.
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Putting δxμ = Mσ
μxσ into Eq. 4.33 yields

∂ν

(
∂L

∂(∂νΦ)

∂(Φ)

∂xμ
− δν

μL

)
Mμσxσ = 0 (4.42)

→︸︷︷︸
Eq. 4.35

∂νTν
μ Mμσxσ = 0

We can write this a little differently to bring it into the conventional
form

=
1
2
(∂νTμ

ν Mμσxσ + ∂νTμ
ν Mμσ︸︷︷︸
=−Mσμ

xσ) =
1
2
(∂νTμ

ν Mμσxσ − ∂νTμ
ν Mσμxσ)

=︸︷︷︸
Renaming dummy indices

1
2
(∂νTμ

ν Mμσxσ − ∂νTσ
ν Mμσxμ) =

1
2
(∂νTμ

ν xσ − ∂νTσ
ν xμ)Mμσ

=
1
2

∂ν(Tμνxσ − Tσνxμ)Mμσ = 0

→ with (Jν)σμ ≡ Tμνxσ − Tσνxμ → ∂ν(Jν)σμ = 0. (4.43)

The quantity Jν we introduced in the last step is called Noether

current. Note that, because of the anti-symmetry of Mμσ = −Mσμ,
which follows from the definition in Eq. 3.165, we have Mμμ = 0.
Therefore, we found 6 different continuity equations ∂ν(Jν) = 0, one
for each non-vanishing Mμσ. With the same arguments from Eq. 4.39
we conclude that the quantities conserved in time are

Qμν =
∫

d3x(Tμ0xσ − Tσ0xμ) (4.44)

For rotational37 invariance, we therefore have the conserved quanti- 37 Recall the connection between the
generator of rotations Ji and Mμν

from Eq. 3.165: Ji = 1
2 εijk Mjk , which

means we now restrict to the spatial
components i = j = {1, 2, 3} here and
write i, j instead of μ = ν = {0, 1, 2, 3}.

ties

Li
orbit =

1
2

εijkQjk =
1
2

εijk
∫

d3x(Tk0xj − Tj0xk), (4.45)

which we call the orbital angular momentum of our field38.
38 The subscript orbit will become clear
in a moment, because actually this is
just one part of the conserved quantity
and we will have a look at the second
part in a moment.

Equivalently, we have the conserved quantity for boosts39

39 Recall the connection between the
boost generators Ki and Mμν: Ki = M0i .

Q0i =
∫

d3x(Ti0x0 − T00xi), (4.46)

which is discussed a bit more in the appendix Sec. 4.7.

4.5.4 Spin

Next, we want to take a look at the implications of the first part of
Eq. 4.30, which is what we missed in our previous derivation of the
conserved quantity that follows from rotations. We now consider

δΦ = εμνSμνΦ(x), (4.47)
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where Sμν is the appropriate finite-dimensional representation of the
transformation in question40. This gives us in Eq. 4.29 the extra term40 The finite-dimensional representa-

tions are responsible for the mixing of
the field components. For example, the
two dimensional representation of the
rotation generators: Ji =

1
2 σi , mix the

components of Weyl spinors.

∂ρ

(
∂L

∂(∂ρΦ)
εμνSμνΦ(x)

)
(4.48)

which leads to an additional term in Eq. 4.45. The complete con-
served quantity is

Li =
1
2

εijkQij =
1
2

εijk
∫

d3x
(

∂L

∂(∂0Φ)
SjkΦ(x) + (Tk0xj − Tj0xk)

)
(4.49)

and therefore we write

Li = Li
spin + Li

orbit. (4.50)

The first part is something new, but needs to be similar to the
usual orbital angular momentum we previously considered, because
the two terms are added and appear when considering the same
invariance. The standard point of view is that the first part of this
conserved quantity is some-kind of internal41 angular momentum.41 We will see later that fields create

and destroy particles. A spin 1
2 field

creates spin 1
2 particles, which is an un-

changeable property of an elementary
particle. Hence the usage of the word
"internal". Orbital angular momentum
is a quantity that describes how two
or more particles revolve around each
other.

Recall that we label the representations of the Poincare group by
something we call spin, too. Now this notion appears again. We will
learn in the next chapter and in great detail in Sec. 8.5.5, how we are
able to measure this new kind of angular momentum, called spin
and see later that it indeed coincides with the label we use for the
representations of the Poincare group.

4.5.5 Noether’s Theorem for Field Theories

- Internal Symmetries

We now take a look at internal symmetries42. The invariance of a42 Internal symmetries will be incredibly
important for interacting field theories.
In addition, one conserved quantity,
following from one of the easiest
internal symmetries will provide us
with the starting point for quantum
field theory.

Lagrangian (δL = 0) under some infinitesimal transformation of the
field itself

Φi → Φ′
i = Φi + δΦi (4.51)

can be written mathematically

δL = L (Φi, ∂μΦi)−L (Φi + δΦi, ∂μ(Φi + δΦi))

= −∂L (Φi, ∂μΦi)

∂Φi
δΦi −

∂L (Φi, ∂μΦi)

∂(∂μΦi)
∂μδΦi

!
= 0, (4.52)

where we used the Taylor expansion to get to the second line and
only keep terms of first order in δΦi, because the transformation is
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infinitesimal. From the Euler-Lagrange equation (Eq. 4.10) for fields
we know

∂L

∂Φi
= ∂μ

(
∂L

∂(∂μΦi)

)
.

Putting this into Eq. 4.52, we get

δL = −∂μ

(
∂L

∂(∂μΦi)

)
δΦi − ∂L

∂(∂μΦi)
∂μδΦi = 0

which is, using the product rule, the same as

∂μ

(
∂L

∂(∂μΦi)
δΦi

)
= 0 (4.53)

This means that, if the Lagrangian is invariant under the transfor-
mation Φi → Φ′

i = Φi + δΦi, we get again a quantity, called Noether
current

Jμ ≡ ∂L

∂(∂μΦi)
δΦi, (4.54)

which fulfils the continuity equation

Eq. 4.53 → ∂μ Jμ = 0. (4.55)

Furthermore, following the same steps as in Eq. 4.39, we are able to
derive a quantity that is conserved in time

∂t

∫
d3xJ0 = 0. (4.56)

Let’s have a look at one very important example: Invariance under
displacements of the field itself43, which means δΦ = −iε in Eq. 4.51: 43 Take note that at this point we made

no assumptions about the field being
complex or real. The constant ε is
arbitrary and could be entirely complex
if we want to move our field by a real
value. The i is included at this point to
make the generator Hermitian (which is
by no means obvious at this point) and
therefore the eigenvalues real, as will be
shown later. Don’t get confused at this
point. You could simply see this extra i
as a convention, because we could just
as well absorb it into the constant by
defining ε′ := iε.

Φ → Φ′ = Φ − iε. (4.57)

or for more than one field component

Φi → Φ′
i = Φi − iεi. (4.58)

The generator of this transformation is −i ∂
∂Φ , because

Φ′ = e−iε ∂
∂Φ Φ =

(
1 − iε

∂

∂Φ
+ . . .

)
Φ ≈ Φ − iε (4.59)

The corresponding conserved quantity is called conjugate momen-
tum Π. It’s conventional to introduce the conjugate momentum den-
sity44 π ≡ J0 and with Eq. 4.53, Eq. 4.56 and using that δΦ = −iε 44 This rather abstract quantity is one of

the most important notions in quantum
field theory, as we will see in Chap. 6.

doesn’t need to be included in order to get a conserved quantity. we
get45

45 The δΦ in Eq. 4.54 becomes a constant
ε and because the quantity is conserved
for arbitrary ε we define our conserved
quantity without it.

∂tΠ = 0 → ∂tΠ = ∂t

∫
d3xJ0 = ∂t

∫
d3xπ = 0
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with J0 = π =
∂L

∂(∂0Φ)
(4.60)

Take note that this is different from the physical momentum den-
sity of the field, which arises from the invariance under spatial trans-
lations Φ(x) → Φ(x′) = Φ(x + ε) and is given by

pi = T0i =
∂L

∂(∂0Φ)

∂Φ
∂xi

,

which we derived in Eq. 4.41. In later chapters we will look at many
more internal symmetries, which will prove to be invaluable when
developing interaction theories. Now let’s summarize what we
learned about symmetries and conserved quantities in field theories:

• Translational invariance in space ⇒ conservation of physical mo-
mentum Pi =

∫
d3xT0i =

∫
d3x ∂L

∂(∂0Φ)
∂Φ
∂xi

• Boost invariance46 ⇒ constant velocity of the center of energy.46 Another name for a boost is a transla-
tion in momentum space.

• Rotational invariance ⇒ conservation of the total angular mo-
mentum Li = 1

2 εijk ∫ d3x
(

∂L
∂(∂0Φ)

SjkΦ(x) + (Tk0xj − Tj0xk)
)

=

Li
spin + Li

orbit consisting of spin and orbital angular momentum.

• Translational invariance in time ⇒ conservation of energy
E =

∫
d3xT00 =

∫
d3x

(
∂L

∂(∂0Φ)
∂Φ
∂x0

−L
)

.

• Displacement invariance of the field itself ⇒ conservation of the
conjugate momentum Π =

∫
d3x ∂L

∂(∂0Φ)
=

∫
d3xπ.

Further Reading Tips

• Cornelius Lanczos - The Variational Principles of Mechanics4747 Cornelius Lanczos. The Variational
Principles of Mechanics. Dover Pub-
lications, 4th edition, 3 1986. ISBN
9780486650678

is a brilliant book about the usage of the Lagrangian formalism in
classical mechanics.

• Herbert Goldstein - Classical Mechanics48 is the standard book48 Herbert Goldstein, Charles P. Poole
Jr., and John L. Safko. Classical Mechan-
ics. Addison-Wesley, 3rd edition, 6 2001.
ISBN 9780201657029

about classical mechanics with many great explanations regarding
the Lagrangian formalism.

4.6 Appendix: Conserved Quantity from Boost

Invariance for Particle Theories

In this appendix we want to find the conserved quantity that follows
for our example Lagrangian L = 1

2 m�̇q2 from boost invariance. A
boost transformation is q → q′ = q + δq = q + vt, where v denotes a
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constant velocity. Our Lagrangian is not invariant under boosts, but
this is no problem at all, as we have seen above:
For our equations of motion to be unchanged under transformations
the Lagrangian is allowed to change up to the total derivative of an
arbitrary function. This condition is clearly fulfilled for our boost
transformation q → q′ = q + vt ⇒︸︷︷︸

v=const!

q̇′ = q̇ + v and therefore our

Lagrangian

L =
1
2

mq̇2

is changed by

δL = L(q, q̇, t)−L(q′, q̇′, t) =
1
2

mq̇2 − 1
2

mq̇′2

=
1
2

mq̇2 − 1
2

m(q̇ + v)2 = −mq̇v − 1
2

mv2,

which is the total derivative of the function49 49 dG
dt = d

dt (−mqv − 1
2 mv2t) = −mq̇v −

1
2 mv2, because v and m are constant.

−G ≡ −mqv − 1
2

mv2t.

We conclude that our equations of motion50 stay unchanged51 and 50 Another way to see this is by looking
directly at the equation of motion:
mq̈ = 0. We have the transformation

q → q′ = q + vt, with v =const
and therefore q̇ → q̇′ = q̇ + v and
q̈ → q̈′ = q̈.

51 The Lagrangian is changed, i.e.
δL �= 0, but the action is only changed
up to a total derivative and we therefore
get the same equation of motion.

we can find a conserved quantity.

For boosts, the conserved quantity is (Eq. 4.16)

Jboost =
∂L
∂q̇︸︷︷︸
≡p

δq︸︷︷︸
=vt

−G = pvt − mvq − 1
2

mv2t,

where we can cancel one v from every term, because in Eq. 4.16 we
have a zero on the right hand side. This gives us

J̃boost = pt − 1
2

mvt︸ ︷︷ ︸
≡ p̃t

−mq = p̃t − mq (4.61)

This is a rather strange conserved quantity because its value de-
pends on the starting time. We can choose a suitable zero time, which
makes this quantity zero. Because it is conserved, this zero stays zero
for all times.

4.7 Appendix: Conserved Quantity from Boost

Invariance for Field Theories

For invariance under boosts in a field theory we have the conserved
quantities

Q0i =
∫

d3x(Ti0x0 − T00xi), (4.62)
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which we derived in Eq. 4.46 and using Ki = M0i.
How can we interpret this quantity? Q0i is conserved, which

means

0 =
∂Q0i

∂t
=

∫
d3x

∂Ti0

∂t
x0︸ ︷︷ ︸

=x0 ∂
∂t

∫
d3xTi0

+
∫

d3xTi0 ∂x0

∂t︸︷︷︸
=1 because x0=t

− ∂

∂t

∫
d3x

∂T00

∂t
xi

= t
∂Pi

∂t
+ Pi − ∂

∂t

∫
d3xT00xi.

From Eq. 4.20 we know that Pi is conserved ∂Pi

∂t = 0 → Pi = const.
and we can conclude

∂

∂t

∫
d3xT00xi = Pi = const. (4.63)

Therefore this conservation law tells us52 that the center of energy52 Don’t worry about the meaning of
this term too much, because this isn’t
really a useful conserved quantity like
the others we derived so far.

travels with constant velocity. Or from a different perspective: The
momentum equals the total energy times the velocity of the centre-of-
mass energy.

Nevertheless, the conserved quantity derived in Eq. 4.46 remains
strange. By a suitable choice of the starting time the quantity can be
chosen to be zero. Because it is conserved, this zero stays zero in all
instances.



Part III

The Equations of Nature

"If one is working from the point of view of getting beauty into one’s
equation, ...one is on a sure line of progress."

Paul A. M. Dirac
in The evolution of the

physicist’s picture of nature.

Scientific American, vol. 208
Issue 5, pp. 45-53.

Publication Date: 05/1963



5

Measuring Nature

Now that we have discovered the connection between symmetries
and conserved quantities, we can utilize this connection. In more
technical terms: Noether’s Theorem establishes a connection between
the generator of a symmetry transformation and a conserved quan-
tity. We will utilize this connection in this chapter.

Conserved quantities are what physicists commonly use to de-
scribe physical systems, because no matter how complicated the
system changes, the conserved quantities stay the same. For example,
to describe what is happening in an experiment physicists use mo-
mentum, energy or angular momentum. Noether’s theorem hints us
towards and incredibly important idea: We identify the quantities we
use to describe nature with the corresponding generators:

physical quantity ⇒ generator of the corresponding symmetry. (5.1)

As we will see, this identification will naturally guide us towards
quantum theory. Let’s make this concrete by considering a particle
theory.

5.1 The Operators of Quantum Mechanics

It is conventional to use a hat: Ô to denote an operator.

The invariance of the Lagrangian under the action of the generator
of spatial-translations leads us to the conservation of momentum.
Therefore, we make the identification

momentum p̂i → generator of spatial-translations − i∂i

Analogous, the invariance under the action of the generator of
time-translations leads us to the conservation of energy. Conse-

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_5

113



114 physics from symmetry

quently

energy Ê → generator of time-translations i∂o.

There is no symmetry corresponding to the "conservation of loca-
tion" and therefore the location is not identified with a generator. We
simply have1

1 Alternatively, we can see this by
looking at the conserved quantity
corresponding to invariance under
boosts. Take note that we derived
in Sec. 4.6 the conserved quantity
corresponding to a non-relativistic
Galilei boost, because we started with
a non-relativistic Lagrangian. Nev-
ertheless, we can do the same for the
relativistic Lagrangian and end up
with the conserved quantity t�p − �xE.
The relativistic energy is given by
E =

√
m2 + p2. In the non-relativistic

limit c → ∞ we get E ≈ m and therefore
recover the formula we derived for a
Galilei boost from the Lorentz boost
conserved quantity. The conserved
quantity for a particle theory is then
Mi = (tpi − xiE) . The generator of
boosts is (see Eq. 3.240 with Ki = M0i)
Ki = i(x0∂i − xi∂0). Comparing the two
equations, with of course x0 = t, yields
Mi = (tpi − xiE) ↔ Ki = i(t∂i − xi∂0)
The identification is now, with the
identifications we made earlier, straight-
forward. Location x̂i → xi

location x̂i → xi.

The physical quantities we want to use in our theory to describe
nature are now given by (differential) operators. The logical next
thing to ask is: What do they act on and where is the connection to
things we can measure in experiments? We will discuss this in a later
chapter in detail. At this point it is sufficient to note that our physical
quantities, now operators, need to act on something. Here we want to
move on with an abstract thing that the operators act on. Let’s name
it Ψ. We will explore later what this something is.

At this point, we are able to derive one of the most important2

2 If you don’t know anything about
quantum mechanics, it may seem
strange to you, why this little equation
is so important, but maybe you have
heard of the Heisenberg uncertainty
principle. In Sec. 8.3 will take a closer
look at the formalism of quantum me-
chanics. Then we will be able to see
that this equation tells us that we aren’t
able to measure the momentum and
the location of a particle with arbitrary
precision. Our physical quantities are
interpreted as measurement opera-
tors and this equation tells us that a
measurement of location followed by a
measurement of momentum is not the
same as a measurement of momentum
followed by a measurement of location.

equations of quantum mechanics. As explained above, we will as-
sume that our operators act on something abstract Ψ. Then we have

[ p̂i, x̂j]Ψ = ( p̂i x̂j − x̂j p̂i)Ψ = (∂i x̂j − x̂j∂i)

=︸︷︷︸
product rule

(∂i x̂j)Ψ +����x̂j(∂iΨ)−���x̂j∂iΨ =︸︷︷︸
because ∂i x̂j=

∂xj
∂xi

iδijΨ. (5.2)

This equation holds for arbitrary Ψ, because we made no assump-
tions about Ψ and therefore we can write the equation without it3:

3 If this is a new idea to you, take note
that we could rewrite every vector
equation as an equation that involves
only numbers. For example Newton’s
second law: �F = m�̈x, could be written
as �F�C = m�̈x�C, which is certainly true
for any vector �C. Nevertheless, if the
equation is true for any �C, writing it all
the time makes little sense.

[ p̂i, x̂j] = iδij. (5.3)

5.1.1 Spin and Angular Momentum

In the last chapter (Sec. 4.5.4) we saw that the conserved quantity that
resulted from rotational invariance has two parts, at least for a non-
scalar theory. The second part could be identified with the orbital
angular momentum and we therefore make the identification with
the infinite dimensional representation of the generator

orb. angular mom. L̂i → gen. of rot. (inf. dim. rep. ) i
1
2

εijk(xj∂k − xk∂j)

Analogously we identify the first part, called spin, with the corre-
sponding finite dimensional representation of the generators4

4 Recall that this was the part of the
conserved quantity that resulted from
the invariance under mixing of the
field components. Hence the finite-
dimensional representation.

spin Ŝi → generators of rotations (fin. dim. rep.) Si.
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As explained in the text below Eq. 4.30 the relation between Sμν and
the generator of rotations Si is Si =

1
2 εijkSjk.

For example, when we consider a spin 1
2 field, we have to use the

two-dimensional representation we derived in Sec. 3.7.5:

Ŝi = i
σi
2

(5.4)

with the Pauli matrices σi. We will return to this very interesting
and very strange type of angular momentum in Sec. 8.5.5, after we
learned how to work with the operators we derive in this chapter.
Always keep in mind that only the sum of both parts is conserved.

5.2 The Operators of Quantum Field Theory

The central object in a field theory is, of course, the field as a func-

tion of the location in space and time5 Φ = Φ(x). Later we want 5 Here x = x0, x1, x2, x3 includes time
x0 = t.to describe interactions at points in spacetime and therefore work

with the densities of our dynamical variables π = π(x) and not the
total quantities that we get by integrating the densities over all space
Π =

∫
dx3π(x) �= Π(x).

We discovered in the last chapter for invariance under displace-
ments of the field itself Φ → Φ − iε a new conserved quantity, called
conjugate momentum Π. Analogous to the identifications we made
in the last section, we identify the conjugate momentum density with
the corresponding generator (Eq. 4.59)

conj. mom. density π(x) → gen. of displ. of the field itself : − i
∂

∂Φ(x)

We’ll see later that quantum field theory works a little differently and
the identification we make here will prove to be sufficient.

For the same reasons discussed in the last section, we need some-
thing our operators act on. Here we will work again with the abstract
Ψ, that we will specify in a later chapter. We are again able to derive
an incredibly important equation, this time of quantum field theory6 6 For the last step we use the analogue

to ∂xi
∂xj

= δij for the delta distribution
∂ f (xi)
∂ f (xj)

= δ(xi − xj), which can be shown

in a rigorous way. For some more infor-
mation have a look at appendix D.2.

[Φ(x), π(y)]Ψ =

[
Φ(x),−i

∂

∂Φ(y)

]
Ψ

=︸︷︷︸
product rule

�������−iΦ(x)
∂Ψ

∂Φ(y)
+
��������
iΦ(x)

(
∂Ψ

∂Φ(y)

)
+ i

(
∂Φ(x)
∂Φ(y)

)
Ψ = iδ(x − y)Ψ

(5.5)
Again, the equations hold for arbitrary Ψ and we can therefore write

[Φ(x), π(y)] = iδ(x − y) (5.6)
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Analogous we have for more than one field component

[Φi(x), πj(y)] = iδ(x − y)δij. (5.7)

As we will see later, almost everything in quantum field theory
follows from this little equation.
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Free Theory

In this chapter we will derive the basic equations for a physical the-
ory of free, which means non-interacting, fields1 from symmetry. We 1 Although we specify here for fields

we will see in a later chapter how the
equations we derive here can be used to
describe particles, too.

will

• derive the Klein-Gordon equation using the (0, 0) representation of
the Lorentz Group

• derive the Dirac equation using the ( 1
2 , 0)⊕ (0, 1

2 ) representation of
the Lorentz Group

• derive the Proca equation from the vector ( 1
2 , 1

2 ) representation
of the Lorentz Group which in the massless limit reduces to the
famous Maxwell equations

6.1 Lorentz Covariance and Invariance

In the following sections, we will derive the fundamental equations
of motion of the standard model of particle physics, which is the
best physical theory we have. We want these equations to look the
same in all inertial frames, because if this was not the case we would
have a different equation for each possible frame of reference. This
would be useless because there is no preferred frame of reference in
special relativity. The technical term is Lorentz covariance. An object
is Lorentz covariant if it transforms under a given representation of
the Lorentz group. For example, a vector Aμ, transforms according
to the ( 1

2 , 1
2 ) representation and is therefore Lorentz covariant. This

means Aμ → A′
μ, but not something completely different. On the

other hand, for example, a term of the form A1 + A3 is not Lorentz
covariant, because it does not transform according to a representation
of the Lorentz group. This does not mean that we do not know how
it transforms. The transformation properties can be easily derived
from the transformation laws for Aμ, but nevertheless this term looks

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_6
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completely different in different inertial frames. In a boosted frame,
it may look like A2 + A4. An equation that involves only Lorentz
covariant objects is called a Lorentz covariant equation. For example,

Aμ + 7Bμ + Cν AνDμ = 0

is a Lorentz covariant equation, because in another coordinate system
it reads

Λν
μ Aν + 7Λν

μBν + Cν Aν︸ ︷︷ ︸
= a Lorentz scalar, transforming according to the (0,0) representation

Λν
μDν = A′

μ + 7B′
μ + Cν AνD′

μ = 0.

We see that it looks the same. An equation containing only some
components of such objects is, in general, not Lorentz covariant and
therefore looks completely different in each inertial frame.

To make sure we only end up with Lorentz covariant equations,
we require the action S to be Lorentz invariant. This means it should
only contain terms that stay exactly the same when changing the
frame of reference. In other words: The action is only allowed to con-
tain terms that do not change under Lorentz transformations. We get
the equations of motion from the action2 S. Now if S depends on the2 Recall that we minimize the action and

the result of this minimization proce-
dure is the Euler-Lagrange equation,
which yields the equation of motion for
our system.

frame of reference, so would the terms in the equations that follow
from it and therefore these equations can not be Lorentz covariant.

As already discussed in the last chapter, we can use the more
restrictive requirement that the Lagrangian should be invariant.,
because if the Lagrangian is invariant the action is, too.

6.2 Klein-Gordon Equation

We now start with the simplest possible case: scalars, which trans-
form according to the (0, 0) representation of the Lorentz group. To
specify the equation of motion for scalars we need to find the corre-
sponding Lagrangian. A general Lagrangian that is compatible with
our restrictions3 is3 Discussed in Sec. 4.2: We only con-

sider terms of order 0, 1 and 2 in Φ. The
term with the lowest possible derivative
will become clear in a moment.

L = AΦ0 + BΦ + CΦ2 + D∂μΦ + E∂μΦ∂μΦ + FΦ∂μΦ (6.1)

Firstly, take note that we are considering the Lagrangian density
L and not L itself and we get our physical theory from the action

S =
∫

dxL , (6.2)

where dx is to be understood as the integral over space and time.
Therefore a term like Φ∂μ∂μΦ would be redundant, because it is
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equivalent to the term ∂μΦ∂μΦ, as we can see if we integrate by
parts4. 4 The boundary terms, as usual, vanish,

because fields vanish at infinity. Recall
that this follows, because we have an
upper speed limit in physics (Sec. 2.3).
Therefore fields infinitely far away can’t
have any influence at finite x.

In addition, Lorentz invariance restricts the Lagrangian to be a
scalar. Therefore, all odd powers in ∂μ, like in ∂μΦ are forbidden.
What about the constants i.e. a and c etc. having a Lorentz index?
This would mean that a, c are four-vectors, specifying a direction
in spacetime and therefore violating the assumption of isotropy of
space. We can neglect the constant term, i.e. A = 0, because we get
our physical theory from the Euler-Lagrange equation and a constant
in the Lagrangian has no influence on the equation of motion5. In 5 See Eq. 4.10: ∂L

∂Φ − ∂μ

(
∂L

∂(∂μΦ)

)
= 0

and therefore L → L + A with
some constant A does not change

anything: ∂(L+A)
∂Φ − ∂μ

(
∂(L+A)

∂(∂μΦ)

)
=

∂L
∂Φ − ∂μ

(
∂L

∂(∂μΦ)

)
addition, we can ignore the term linear in Φ, i.e. B = 0, because
it leads, using the Euler-Lagrange equation, to a constant in our
equations of motion6. What remains is

6 L → L + BΦ yields
∂(L+BΦ)

∂Φ − ∂μ

(
∂(L+BΦ)

∂(∂μΦ)

)
= ∂L

∂Φ −
∂μ

(
∂L

∂(∂μΦ)

)
+ B = 0, which is just an

additional constant in the equation of
motion.

L = CΦ2 + E∂μΦ∂μΦ (6.3)

As the heading of this chapter indicates we want to develop a free
theory, which means there is just one Φ and no terms of the form
Φ1Φ2. Terms like this will be investigated in the next chapter, when
we develop a theory describing interactions.

One last thing to note: We are left with only two constants C and
E. By using variational calculus we are able to combine these into
just one constant, because an overall constant in the Lagrangian has
no influence on the physics7. Nevertheless, it is conventional to in- 7 L → CL yields

∂(CL )
∂Φ − ∂μ

(
∂(CL
∂(∂μΦ)

)
= 0

�
∂(L )

∂Φ − ∂μ

(
∂(L

∂(∂μΦ)

)
= 0

clude an overall factor 1
2 into the Lagrangian and call the remaining

constant8 −m2. Therefore, we are finally left with

8 The suggestive name of this constant
will become clear later, because we will
see that it coincides with the mass of
particles described by this Lagrangian.

L =
1
2
(∂μΦ∂μΦ − m2Φ2) (6.4)

If we now use the variational calculus machinery, which means
putting this Lagrangian into the Euler-Lagrange equation (Eq. 4.10),
we get the equation of motion

∂L

∂Φ
− ∂μ

(
∂L

∂(∂μΦ)

)
= 0

→ ∂

∂Φ

(
1
2
(∂μΦ∂μΦ − m2Φ2)

)
− ∂μ

(
∂

∂(∂μΦ)

(
1
2
(∂μΦ∂μΦ − m2Φ2)

))
→ (∂μ∂μ + m2)Φ = 0 (6.5)

This is the famous Klein-Gordon equation, which is the correct
equation to describe free spin 0 fields/particles.

6.2.1 Complex Klein-Gordon Field

For spin 0 fields, we are able to construct a Lorentz invariant La-
grangian without using the complex conjugate of the scalar field.
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This will not be the case for spin 1
2 fields Ψ and this curious fact will

have very interesting consequences9. Nevertheless, nothing prevents9 To spoil the surprise: There is an
antiparticles for each spin 1

2 particle.
Using complex fields is the same as
considering two fields at the same
time as explained in the text below.
Therefore we are forced by Lorentz
invariance to use two (closely con-
nected) fields at the same time, which
are commonly interpreted as particle
and antiparticle fields.

us from investigating the equally Lorentz invariant Lagrangian

L = ∂μφ†∂μφ − m2φ†φ

as many textbooks do. This is simply the same as investigating the
interaction between two scalar fields of equal mass:

L =
1
2

∂μφ1∂μφ1 − 1
2

m2φ2
1 +

1
2

∂μφ2∂μφ2 − 1
2

m2φ2
2

because we have
φ ≡ 1√

2
(φ1 + iφ2) .

Again Lorentz symmetry dictates the form of the Lagrangian. El-
ementary scalar (spin 0) particles are very rare. In fact, only one is
experimentally verified: The Higgs boson, but this Lagrangian can be
used to describe composite systems like mesons. Therefore, we will
not investigate this Lagrangian any further and most textbooks use it
only for training purposes.

6.3 Dirac Equation

Another story told of Dirac is that when he first met Richard Feynman,
he said after a long silence "I have an equation. Do you have one too?"

- Anthony Zee1010 Anthony Zee. Quantum Field Theory in
a Nutshell. Princeton University Press,
1st edition, 3 2003. ISBN 9780691010199 In this section we want to find the equation of motion for free spin 1

2
fields/particles. We will use the ( 1

2 , 0)⊕ (0, 1
2 ) representation of the

Lorentz group, because a theory that respects symmetry under parity
transformations must include the ( 1

2 , 0) and (0, 1
2 ) representations at

the same time11. The objects transforming under this representation11 We showed in Sec. 3.7.9 that a parity
transformation transforms the ( 1

2 , 0)
representation, into the (0, 1

2 ) represen-
tation.

are called Dirac spinor, which combine right-chiral and left-chiral
spinors into one object. As already discussed in Sec. 3.7.9 a Dirac
spinor is defined by

Ψ ≡
(

χL

ξR

)
=

(
χa

ξ ȧ

)
. (6.6)

Now, we need to search for Lorentz invariant objects, constructed
from Dirac spinors, which we can then put into the Lagrangian. The
first step is to search for invariants constructed from our left-chiral
and right-chiral spinors.
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We will use the Van-der-Waerden notation introduced in Sec. 3.7.7.
Two possibilities are12 12 There are two other possibilities,

which go by the name Majorana mass
terms. We already know how we can
move spinor indices up and down
by using the spinor "metric" ε. We
can write down a Lorentz invariant
term of the form ε(χL)

†χL, because
ε(χL)

† = χa has an upper-undotted
index. ε(χL)

† transforms like a right-
chiral spinor, but by writing a term like
this we have less degrees of freedom.
ξR and χL both have two components,
and therefore we have four degrees
of freedom in a term like (ξR)

†χL.
In the term ε(χL)

†χL = χaχa, the
object that transforms like a right-chiral
spinor is not independent of χL and
we therefore only have two degrees of
freedom here. There is a lot more one
can say about Majorana spinors and
it is currently under (experimental)
investigation which type of term is the
correct one for neutrinos. Just one more
thing: A Majorana spinor is a "real"
Dirac spinor. I put real into quotation
marks, because usually real means

Ψ� !
= Ψ. For spinors this condition

is not Lorentz invariant (because the
Lorentz transformations are complex
in this representation). If we impose

the standard condition (Ψ� !
= Ψ)

in one frame, it will, in general, not
hold in another frame. Instead, it is
possible to derive a Lorentz invariant
"reality" condition for Dirac spinors:(

0 ε
−ε 0

)
Ψ� !

= Ψ, which is commonly

interpreted as charge conjugation.
This interpretation will be explained
in Sec. 7.1.5. Therefore, a Majorana
spinor describes a particle which is
equivalent to its charge conjugated
particle, commonly called anti-particle.
Majorana particles are their own anti-
particles and a Majorana spinor is a
Dirac spinor with an extra-condition:

ΨM ≡
(

χL
εχ�

L

)
or ΨM ≡

(−εξ�R
ξR

)

I1 := χT
ȧ ξ ȧ = (χ�

a)
Tξ ȧ = (χa)

†ξ ȧ = (χL)
†ξR (6.7)

and
I2 := (ξa)Tχa = ((ξa)�)Tχa = (ξR)

†χL, (6.8)

because we always need to combine a lower dotted with an upper
dotted and a lower undotted with an upper undotted index, in order
to get a Lorentz invariant term, as was shown explicitly in Sec. 3.7.7.
Here we see again that right-chiral and left-chiral spinors are needed
in pairs.

Furthermore, we can construct two Lorentz-invariant combinations
involving first order derivatives, as we will see in a moment. But first
we need to understand how we can write the derivative of a spinor.
We learned in Sec. 3.7.8 how we can construct four-vectors from
spinors

vaḃ = vνσν
aḃ

where vν transforms like of a four-vector. The derivation operator is
therefore in the spinor formalism

∂aḃ = ∂νσν
aḃ (6.9)

It is conventional to define σ̄0 = I2×2, σ̄i = −σi and then we can
construct the Lorentz invariant terms

I3 := (χȧ)
T∂μ(σ

μ)ȧbχb = (χL)
†∂μσ̄μχL (6.10)

and
I4 := (ξa)T∂μ(σ

μ)aḃξ ḃ = (ξR)
†∂μσμξR (6.11)

Instead of (σμ)aḃ, we need here (σμ)ȧb. The first index must be
dotted and the second index undotted to combine properly with the
other spinor indices. We get (σμ)ȧb by using the spinor metric twice:

(σμ)aḃ = ((σμ)T)ḃa = εḃċ((σμ)T)ċd(ε
ad)T

=

(
0 1
−1 0

)
(σμ)T

(
0 1
−1 0

)T

=

(
0 1
−1 0

)
(σμ)T

(
0 −1
1 0

)
= σ̄μ (6.12)

for example, for σ3(
0 1
−1 0

)(
1 0
0 −1

)
︸ ︷︷ ︸

=σT
3

(
0 −1
1 0

)
=

(
−1 0
0 1

)
︸ ︷︷ ︸
=σ̄3=−σ3

.
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Don’t let yourself get confused why ∂μ acts only on one spinor, be-
cause we are going to use these invariants in Lagrangians, which we
always evaluate inside of integrals13 and therefore, we can always13 Remember that we get the equations

of motion from the action, which is the
integral over the Lagrangian.

integrate by parts to get the other possibility. Therefore, our choice
here is no restriction14.

14 We will see this more clearly when
we derive the corresponding equations
of motion. We get the same equations
regardless of where we put ∂μ and we
could put both possibilities into the
Lagrangian. This would be longer, but
doesn’t gives us anything new.

If we introduce the matrices15

15 We get the matrix with lowered index
by using the metric: γμ = ημνγν =

ημν

(
0 σν

σ̄ν 0

)
=

(
0 ημνσν

ημνσ̄ν 0

)
=(

0 σ̄μ

σμ 0

)
, because ημνσν =⎛

⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

σ0

σ1

σ2

σ3

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

σ0

−σ1

−σ2

−σ3

⎞
⎟⎟⎠ = σ̄μ

γμ =

(
0 σμ

σ̄μ 0

)
→ γμ =

(
0 σ̄μ

σμ 0

)
(6.13)

we can write the invariants we just found using the Dirac spinor
formalism. Our invariants can be written using the matrices γμ and
Dirac spinors as

Ψ†γ0Ψ and Ψ†γ0γμ∂μΨ, (6.14)

because

Ψ†γ0Ψ =
(
(χL)

† (ξR)
†
)(

0 σ̄0

σ0 0

)(
χL

ξR

)
= (χL)

†σ̄0ξR︸ ︷︷ ︸
=I1

+ (ξR)
†σ0χL︸ ︷︷ ︸
=I2

which are exactly16 the first two invariants we found earlier and

16 Remember that σ0 is just the unit
matrix and we have σ̄0 = σ0.

Ψ†γ0γμ∂μΨ =
(
(χL)

† (ξR)
†
)(

0 σ̄0

σ0 0

)(
0 σμ∂μ

σ̄μ∂μ 0

)(
χL

ξR

)

= (χL)
†σ̄0σ̄μ∂μχL︸ ︷︷ ︸
=I3

+ (ξR)
†σ0σμ∂μξR︸ ︷︷ ︸
=I4

gives the other two invariants17, as promised. It is conventional to17 Take note that σμ∂μ = ∂μσμ, because
σμ are constant matrices. introduce the notation

Ψ̄ := (Ψ)†γ0. (6.15)

Now we have everything we need to construct a Lorentz-invariant
Lagrangian that is in agreement with the restrictions18 discussed in18 Recall, these were maximum order

two in Ψ and the lowest possible, non-
trivial order in ∂μ, which is here order
1.

Sec. 4.2 using Dirac spinors:

L = AΨ†γ0Ψ + BΨ†γ0γμ∂μΨ = AΨ̄Ψ + BΨ̄γμ∂μΨ.

Putting in the constants (A = −m, B = i) gives us the final Dirac-

Lagrangian

LDirac = −mΨ̄Ψ + iΨ̄γμ∂μΨ = Ψ̄(iγμ∂μ − m)Ψ. (6.16)

Take note that what appears here in our Lagrangian are two distinct
fields, because Ψ is complex19. This is a requirement, because other-19 Therefore the left-chiral and right-

chiral spinors inside each Dirac spinor,
are complex, too.
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wise we can’t get something Lorentz invariant. More explicitly, we
have

Ψ = Ψ1 + iΨ2

with two real fields Ψ1 and Ψ2. Instead of working with two real
fields it is conventional to work with two complex fields Ψ and Ψ̄, as
two distinct fields.
Now, if we put this Lagrangian into the Euler-Lagrange equation,
which we recite here for convenience

∂L

∂Ψ
− ∂μ

(
∂L

∂(∂μΨ)

)
= 0

we get
−mΨ̄ − i∂μΨ̄γμ = 0 → (i∂μΨ̄γμ + mΨ̄) = 0 (6.17)

and with the Euler-Lagrange equation for the field Ψ̄

∂L

∂Ψ̄
− ∂μ

(
∂L

∂(∂μΨ̄)

)
= 0

we get the equation of motion for Ψ

(iγμ∂μ − m)Ψ = 0, (6.18)

which is the famous Dirac equation. Take note that this is exactly
what we get if we integrate the Lagrangian by parts

−mΨ̄Ψ + iΨ̄γμ∂μΨ =︸︷︷︸
Integrate by parts. Just imagine here the action integral.

−mΨ̄Ψ − (i∂μΨ̄)γμΨ

and then use the Euler-Lagrange equation,

→ −mΨ + i∂μγμΨ = 0

so it really makes no difference and the way we wrote the Lagrangian
is no restriction, despite its asymmetry20. 20 You are free to use the longer La-

grangian that includes both possibili-
ties, but the results are the same.

6.4 Proca Equation

Now, we want to find the equation of motion for an object transform-
ing according to the ( 1

2 , 1
2 ) representation of the Lorentz group. We

already saw that this representation is the vector representation and
therefore this task is easy. We simply take an arbitrary vector field
Aμ and construct all possible Lorentz-invariants from it that are in
agreement with the restrictions from Sec. 4.2. We must combine an
upper with a lower index, because we defined the scalar product of
Minkowski space in Sec. 2.4 this way and scalars are what we need in
the Lagrangian. The possible invariants are21 21 Again, a term of the form ∂μ∂μ Aν Aν

is redundant to ∂μ Aν∂μ Aν, because we
can integrate by parts.
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I1 = ∂μ Aν∂μ Aν , I2 = ∂μ Aν∂ν Aμ

I3 = Aμ Aμ , I4 = ∂μ Aμ

and the Lagrangian reads

LProka = C1∂μ Aν∂μ Aν + C2∂μ Aν∂ν Aμ + C3 Aμ Aμ + C4∂μ Aμ. (6.19)

We can neglect the term ∂μ Aμ, because it gives, using the Euler-
Lagrange equation, a constant C4 in our equations of motion, which
does not have any influence. Therefore order 1 in ∂μ is trivial.

If we now want to compute the equations of motion using the
Euler-Lagrange equation for each field component independently

∂L

∂Aρ
= ∂σ

(
∂L

∂(∂σ Aρ)

)
,

we need to be very careful about the indices. Let us take a look at
the right-hand side of the Euler-Lagrange equation and pick the term
involving C1:

∂σ

(
∂

∂(∂σ Aρ)
(C1∂μ Aν∂μ Aν)

)

=︸︷︷︸
product rule

C1∂σ

(
(∂μ Aν)

∂(∂μ Aν)

∂(∂σ Aρ)
+ (∂μ Aν)

∂(∂μ Aν)

∂(∂σ Aρ)

)

=︸︷︷︸
lowering indices with the metric

C1∂σ

(
(∂μ Aν)gμκ gνλ ∂(∂κ Aλ)

∂(∂σ Aρ)
+ (∂μ Aν)

∂(∂μ Aν)

∂(∂σ Aρ)

)

= C1∂σ

(
(∂μ Aν)gμκ gνλδσ

κ δ
ρ
λ + (∂μ Aν)δσ

μδ
ρ
ν

)
= C1∂σ (∂

σ Aρ + ∂σ Aρ) = 2C1∂σ∂σ Aρ

Following similar steps we can compute

∂σ

(
∂

∂(∂σ Aρ)
(C2∂μ Aν∂ν Aμ)

)
= 2C2∂ρ(∂σ Aσ)

and therefore the equation of motion, following from the Lagrangian
in Eq. 6.19 reads

2C3 Aρ = 2C1∂σ∂σ Aρ + 2C2∂ρ(∂σ Aσ),

which gives us, if we put in the conventional constants

→ m2 Aρ =
1
2

∂σ(∂
σ Aρ − ∂ρ Aσ). (6.20)

These are called the Proca equations22, which are the wave equa-22 Plural, because we have one equation
for each component ρ.
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tions for massive spin 1 particles. For massless (m = 0) spin 1 parti-
cles, e.q. photons, the equation reads

→ 0 =
1
2

∂σ(∂
σ Aρ − ∂ρ Aσ). (6.21)

These are the inhomogeneous Maxwell equations in absence of
electric currents. It is conventional to define the electromagnetic
tensor

Fσρ := ∂σ Aρ − ∂ρ Aσ. (6.22)

Then the inhomogeneous Maxwell-equations read

∂ρFσρ = 0. (6.23)

Take note that we can rewrite the Lagrangian for massless spin 1
fields

LMaxwell =
1
2
(∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ)

as

LMaxwell =
1
4

FμνFμν

=
1
4
(∂μ Aν − ∂ν Aμ)(∂μ Aν − ∂ν Aμ)

=
1
4
(∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ − ∂ν Aμ∂μ Aν + ∂ν Aμ∂ν Aμ)

=︸︷︷︸
renaming dummy indices

1
4
(∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ − ∂μ Aν∂ν Aμ + ∂μ Aν∂μ Aν)

=
1
4
(2∂μ Aν∂μ Aν − 2∂μ Aν∂ν Aμ)

=
1
2
(∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ) �. (6.24)

LMaxwell =
1
4 FμνFμν is the conventional way to write the Lagrangian.

Equivalently, the Lagrangian for a massive spin 1 field can be written
as

LProca =
1
4

FμνFμν +m2 Aμ Aμ =
1
2
(∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ)+m2 Aμ Aμ.

(6.25)
In this chapter we derived the equations of motion that describe

free fields/particles. We want to understand what we can do with
these equations in order to get predictions for experiments, but first,
we need to derive some more equations, because experiments always
work through interactions. For example, we are only able to detect
an electron if we use another particle, like a photon. Therefore, in the
next chapter we will derive Lagrangians that describe the interaction
between different fields/particles.
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Interaction Theory

Summary

In this chapter we will derive how different fields interact with each
other. This will enable us, for example, to describe how electrons,
interact with photons1. 1 From a different point of view: How

electron (= massive spin 1
2 ) fields

interact with photon (=massless spin 1)
fields.

We will be guided to the correct form of the Lagrangians by inter-
nal symmetries, which are in this context often called gauge2 symme-

2 This strange name will be explained in
a moment.

tries. The starting point will be local3 U(1) symmetry and we end up

3 This means that instead of eiα, we
transform each point in spacetime with
a different factor, which is mathemati-
cally expressed as eiα(x). In other words:
The transformation parameter α = α(x)
is now a function of x and has therefore
a different value for different points in
spacetime.

with the Lagrangian

L = −mΨ̄Ψ + iΨ̄γμ∂μΨ + AμΨ̄γμΨ + ∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ,

which is the Lagrangian of quantum electrodynamics. This La-
grangian describes the interaction between charged, massive spin 1

2
fields and a massless spin 1 field (the photon field). The Lagrangian
is only then locally U(1) invariant, if we avoid "mass terms" of the
form mAμ Aμ in the Lagrangian. This coincides with the experimental
fact that photons, described by Aμ, are massless. Using Noether’s
theorem, we can derive a new conserved quantity from U(1) symme-
try, which is commonly interpreted as electric charge.

Then we move on to local SU(2) symmetry. For this purpose a two
component object

Ψ̄ :=
(

ψ̄1 ψ̄2

)
,

called doublet, is introduced. Such a doublet contains two spin 1
2

fields, for example, the electron and the electron neutrino field that
are "rotated" by SU(2) transformations into each other.

Using this doublet notation we are able to write down a locally
SU(2) invariant Lagrangian4

4 The object Wμν
j will be defined similar

for the three fields Wμ
j as Fμν for the

U(1) gauge field Aμ.
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L = iΨ̄γμ∂μΨ + Ψ̄γμσjW
μ
j Ψ − 1

4
(Wμν)i(Wμν)i,

which includes three spin 1 fields Wμ
j . We need three fields to make

the Lagrangian locally SU(2) invariant, because we have three basis
generators of the SU(2) group Ji =

σi
2 . We will see that local SU(2)

symmetry can only be achieved without "mass terms" of the form
mΨ̄Ψ, mWμWμ, with some arbitrary mass matrix m, because Ψ is
now a two-component object. So this time not only are the spin 1
fields Wμ

j required to be massless, but the spin 1
2 fields, too. Also

allowed are equal masses for the two spin 1
2 fields, but from experi-

ments we know that this is not the case: The electron mass is much
bigger than the electron-neutrino mass. In addition, we know from
experiments that the three spin 1 fields Wμ

j are not massless. This is
commonly interpreted as the SU(2) symmetry being broken.

This idea is the starting point for the Higgs formalism, which is
introduced afterwards. This formalism enables us to get a locally
SU(2) invariant Lagrangian that includes mass terms. This works by
adding the interaction with a spin 0 field, called Higgs field, into our
considerations. The same formalism enables us to add arbitrary mass
terms for the spin 1

2 fields, as required by experiments. The final
interaction Lagrangian describes a new interaction, called the weak

interaction, which is mediated by three5 massive spin 1 fields, called

5 To be precise: We start with the sym-
metry U(1)⊗ SU(2), which is broken
to U(1). This process results in three
massive vector bosons: W+, W−, Z,
and one massless vector boson: The
photon γ. Therefore it is often said
that electromagnetism (derived from
U(1) symmetry) and the theory of
weak-interactions (derived from SU(2)
symmetry) are unified. The U(1) sym-
metry we start with, is different from
the U(1) symmetry that remains at the
end. The photon and the Z-boson can
then be seen as linear combinations of
two vector bosons, commonly named
B and W3, that were introduced to
make the Lagrangian locally U(1) (B-
boson) and SU(2) (W1, W2, W3-bosons)
invariant.

W+,W− and Z. Using Noether’s theorem we will be able to derive
from SU(2) symmetry a new conserved quantity, called isospin,
which is the charge of weak interactions analogous to electric charge
for electromagnetic interactions.

Lastly, we will consider internal SU(3) symmetry, which will lead
us to a Lagrangian describing another new interaction, called the
strong interaction. For this purpose, we will introduce triplet objects

Q =

⎛
⎜⎝q1

q2

q3

⎞
⎟⎠ ,

that are transformed by SU(3) transformations and which contains
three spin 1

2 fields. These three spin 1
2 fields are interpreted as quarks

carrying different color, which is the strong interaction analogue to
the electrical charge of the electromagnetic interaction or isospin of
the weak interaction. Again, mass terms are forbidden, but this time
this coincides with the experimental fact that the 8 corresponding
bosons6, called gluons, are massless7. From experiments we know

6 8 because SU(3) has 8 basis genera-
tors.

7 In addition, we know from experi-
ments that the fields inside a SU(3)
triplet have the same mass, This is
a good thing, because local SU(3)
symmetry forbids a term with arbi-
trary mass matrix m for terms like
mQ̄Q, but allows a term of the form

Q̄
(

m 0
0 m

)
Q, which means that the

terms in the triplet have the same mass.
Therefore local SU(3) invariance pro-
vides no new obstacles regarding mass
terms in the Lagrangian and the SU(3)
symmetry is unbroken.

that only quarks (spin 1
2 ) and gluons (spin 1) carry color. The result-

ing Lagrangian
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L = −1
4

FA
αβFαβ

A + Q̄(iDμγμ − m)Q,

will only be cited, because the derivation is tedious and completely
analogous to what we did before.

To summarize the summary:

U(1) 

 1 gauge field 

 massless photons 

 electric charge

SU(2) 

 3 gauge fields 

 massive W- and Z-bosons (Higgs needed) 

 isospin

SU(3) 

 8 gauge fields 

 massless gluons 

 color charge

7.1 U(1) Interactions

To derive the correct interaction terms in the Lagrangian, we are
going to use internal symmetries, often called gauge symmetries.
The notion gauge symmetry, is used for historic reasons and doesn’t
make much sense for the type of symmetry we are considering here.
Weyl tried to derive electromagnetism8 8 Frank Wilczek. Riemann-einstein

structure from volume and gauge sym-
metry. Phys. Rev. Lett., 80:4851–4854, Jun
1998. doi: 10.1103/PhysRevLett.80.4851

"as a consequence of spacetime symmetry, specifically symmetry under
local changes of length scale."

Naming this kind of symmetry gauge symmetry makes sense, be-
cause this means, for example, that we can change the platinum bar
that defines a standard meter (and which was used to gauge objects
that measure length in experiments), arbitrarily without changing
physics. This attempt was unsuccessful, but some time later, Weyl
found the correct symmetry to derive electromagnetism and the
name was kept.

7.1.1 Internal Symmetry of Free Spin 1
2 Fields

Have a look again at the Lagrangian, we derived for a free spin 1
2

theory (Eq. 6.16)

LDirac = −mΨ̄Ψ + iΨ̄γμ∂μΨ = Ψ̄(iγμ∂μ − m)Ψ. (7.1)

We derived it by demanding Lorentz symmetry, but if we take a
sharp look we can discover another symmetry of this Lagrangian.
The Lagrangian does not change if we transform the field Ψ accord-
ing to

Ψ → Ψ′ = eiaΨ
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⇒ Ψ̄ → Ψ̄′ = Ψ′†γ0 = (eiaΨ)†γ0 = Ψ̄e−ia, (7.2)

where the minus sign comes from complex conjugation9 and a is an9 Remember Ψ̄ = Ψ†γ0

arbitrary real number. To see this we write the Lagrangian for the
transformed fields explicitly

L ′
Dirac = −mΨ̄′Ψ′ + iΨ̄′γμ∂μΨ′

= −m(Ψ̄e−ia)(eiaΨ) + i(Ψ̄e−ia)γμ∂μ(eiaΨ)

= −mΨ̄Ψ e−iaeia︸ ︷︷ ︸
=1

+iΨ̄γμ∂μΨ e−iaeia︸ ︷︷ ︸
=1

= −mΨ̄Ψ + iΨ̄γμ∂μΨ = LDirac, (7.3)

where we used that eia is just a complex number, which we can move
around freely10. Remembering that we learned in Chap. 3 that all10 Speaking more technically: A com-

plex number commutes with every
matrix, like, for example, γμ.

unit complex numbers can be written as eia and form a group called
U(1), we can put what we just discovered into mathematical terms,
by saying that the Lagrangian is U(1) invariant. This symmetry is an
internal symmetry, because it is clearly no spacetime transformation
and therefore transforms the field internally. This internal symmetry
does not look like a big thing. It may seem at a first glance like a
cute, but rather useless, mathematical side note. Stay tuned, because
will see in a moment that this observation is incredibly important!

Let’s take now a deeper look at what we just discovered. We
showed that we are free to multiply our field with an arbitrary unit
complex number without changing anything. The symmetry transfor-
mation Ψ → Ψ′ = eiaΨ is called a global transformation, because we
multiply the field Ψ = Ψ(x) at every point x with the same factor eia.

Now, why should this factor at one point in spacetime be corre-
lated to the factor at another point in spacetime? The choice at one
point in spacetime shouldn’t fix this immediately in the whole uni-
verse. This would be strange, because special relativity tells us that
no information can spread faster than light, as was shown in Sec. 2.4.
The global symmetry choice would be fixed immediately for any
point in the whole universe.

Let’s check if our Lagrangian is invariant if we transform each
point in spacetime with a different factor a = a(x). This is called a
local transformation.

If we transform

Ψ → Ψ′ = eia(x)Ψ

⇒Ψ̄ → Ψ̄′ = e−ia(x)Ψ̄, (7.4)

where the factor a = a(x) now depends on the position, we get the
transformed Lagrangian11

11 Maybe you wonder if the Lagrangian
that includes both possible derivatives,
which we neglected for brevity, is
locally U(1) invariant: L = −mΨ̄Ψ +
iΨ̄γμ∂μΨ + i(∂μΨ̄)γμΨ. This Lagrangian
is indeed locally U(1) invariant, as
you can check, but take note that the
addition of the second and the third
term yields zero:

iΨ̄γμ∂μΨ + i(∂μΨ̄)γμΨ

=︸︷︷︸
integration by parts

i(∂μΨ̄)γμΨ − i(∂μΨ̄)γμΨ = 0.

The correct Lagrangian that includes
both possible derivatives has a minus
sign between those terms:LDirac =
−mΨ̄Ψ + iΨ̄γμ∂μΨ − i(∂μΨ̄)γμΨ and is
therefore not locally U(1) invariant.
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L ′
Dirac = −mΨ̄′Ψ′ + iΨ̄′γμ∂μΨ′

= −m(Ψ̄ e−ia(x))(eia(x)︸ ︷︷ ︸
=1

Ψ) + i(Ψ̄e−ia(x))γμ∂μ(eia(x)Ψ)

= −mΨ̄Ψ + iΨ̄γμ(∂
μΨ) e−ia(x)eia(x)︸ ︷︷ ︸

=1

+︸︷︷︸
Product rule

i(e−ia(x)Ψ̄)γμΨ(∂μeia(x))

= −mΨ̄Ψ + iΨ̄γμ∂μΨ + i2(∂μa(x))Ψ̄γμΨ �= LDirac (7.5)

Therefore, our Lagrangian is not invariant under local U(1) symme-
try, because the product rule produces an extra term As discussed
above, our Lagrangian should be locally invariant, but isn’t. There is
something we can do about it, but first we must investigate another
symmetry.

7.1.2 Internal Symmetry of Free Spin 1 Fields

Next, let’s take a look at the Lagrangian we derived for free spin 1
particles12 12 See Eq. 6.25 and take note that we

neglect, for brevity, a conventional
factor 1

2 here.LProca = ∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ + m2 Aμ Aμ. (7.6)

We can discover a global internal symmetry here, too. If we trans-
form

Aμ → A′
μ = Aμ + aμ (7.7)

with some arbitrary constants aμ, the Lagrangian reads

L ′
Proca = (∂μ A′ν∂μ A′

ν − ∂μ A′ν∂ν A′
μ) + m2 A′μ A′

μ

= ∂μ(Aν + aν)∂μ(Aν + aν)− ∂μ(Aν + aν)∂ν(Aμ + aμ)) + m2(Aμ + aμ)(Aμ + aμ)

= ∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ + m2(Aμ + aμ)(Aμ + aμ). (7.8)

We conclude this transformation is a global symmetry transforma-
tion of this Lagrangian, if we restrict to massless fields , i.e. m = 0.

What about local symmetry here? We transform

Aμ → A′
μ = Aμ + aμ(x) (7.9)

and the transformed massless Lagrangian reads

L ′
Maxwell = (∂μ A′ν∂μ A′

ν − ∂μ A′ν∂ν A′
μ)

= ∂μ(Aν + aν(x))∂μ(Aν + aν(x))− ∂μ(Aν + aν(x))∂ν(Aμ + aμ(x))

= ∂μ Aν∂μ Aν + ∂μaν∂μ Aν + ∂μ Aν∂μaν(x) + ∂μaν(x)∂μaν(x)

− ∂μ Aν∂ν Aμ − ∂μ Aν∂νaμ(x)− ∂μaν(x)∂ν Aμ − ∂μaν(x)∂νaμ(x)
(7.10)
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which shows this is no local internal symmetry .
Nevertheless, we can find a local internal symmetry if we transform
instead Aμ → A′

μ = Aμ + ∂μa(x). This means we add the derivative
∂μa(x) of some arbitrary function instead of an arbitrary function.
This yields

L ′
Maxwell = ∂μ A′ν∂μ A′

ν − ∂μ A′ν∂ν A′
μ

= ∂μ(Aν + ∂νa(x))∂μ(Aν + ∂νa(x))− ∂μ(Aν + ∂νa(x))∂ν(Aμ + ∂μa(x))

= ∂μ Aν∂μ Aν + ∂μ(∂νa(x))∂μ Aν + ∂μ Aν∂μ(∂νa(x)) + ∂μ(∂νa(x))∂μ(∂νa(x))

− ∂μ Aν∂ν Aμ − ∂μ Aν∂ν(∂μa(x))− ∂μ(∂νa(x))∂ν Aμ − ∂μ(∂νa(x))∂ν(∂μa(x))

=︸︷︷︸
∂ν∂μ=∂μ∂ν and renaming dummy indices

∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ = LMaxwell (7.11)

and we see this is indeed an internal local symmetry transformation.
This may look again like a technical side note. Okay, we found some
internal, local symmetry, so now what?

7.1.3 Putting the Puzzle Pieces Together

Let’s summarize what we found out so far:

• We discovered the Lagrangian for free spin 1
2 fields has an internal

global symmetry Ψ → Ψ′ = eiaΨ. Formulated differently: The
Lagrangian for free spin 1

2 fields is invariant under global U(1)
transformations.

• We saw that this symmetry is not local (although it should be),
because for a = a(x), we get an extra term in the Lagrangian of the
form (Eq. 7.5).

−(∂μa(x))Ψ̄γμΨ. (7.12)

In other words: The Lagrangian isn’t locally U(1) invariant.

• In the last section we found an internal local symmetry for mass-
less spin 1 fields

Aμ → A′
μ = Aμ + ∂μa(x), (7.13)

which is only a local symmetry if we add the derivative of an
arbitrary function ∂μa(x), instead of an arbitrary function aμ.

This really looks like two pieces of a puzzle we should put to-
gether: An extra term AμΨ̄γμΨ in the Lagrangian transforms into

AμΨ̄γμΨ → (Aμ + ∂μa(x))Ψ̄γμΨ = AμΨ̄γμΨ + ∂μa(x)Ψ̄γμΨ. (7.14)
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Compare the second term to Eq. 7.12. The new term in the La-
grangian, coupling Ψ, Ψ̄ and Aμ together, therefore cancels exactly
the term which stopped the Lagrangian for free spin 1

2 from being
locally U(1) invariant. In other words: By adding this new term we

make the Lagrangian locally U(1) invariant.
Let’s study this in more detail. First take note that it’s conventional

to factor out a constant g in the exponent of the local U(1) transfor-
mation: eiga(x). Then the extra term becomes

−(∂μa(x))Ψ̄γμΨ → −g(∂μa(x))Ψ̄γμΨ. (7.15)

This extra factor g accounts for an arbitrary coupling constant13 13 A coupling constant always tells us
how strong a given interaction is. Here
we are talking about electromagnetic
interactions and g determines its
strength.

g, as we will see now. We then add to the Lagrangian for free spin 1
2

fields the new term

gAμΨ̄γμΨ,

where we included γμ to make the term Lorentz invariant, because
otherwise Aμ has an unmatched index μ and therefore wouldn’t be
Lorentz invariant, and inserted the coupling constant14 g. This yields 14 We can see here that g determines

how strong Ψ, Ψ̄ and Aμ couple to-
gether.

the Lagrangian

LDirac+Extra-Term = −mΨ̄Ψ + iΨ̄γμ∂μΨ + gAμΨ̄γμΨ.

Transforming this Lagrangian according to the rules for local trans-
formations of Ψ, Ψ̄ and Aμ yields15 15 The combined transformation of

Ψ, Ψ̄ and Aμ is called U(1) gauge

transformation.L ′
Dirac+Extra-Term = −mΨ̄′Ψ′ + iΨ̄′γμ∂μΨ′ + gA′

μΨ̄′γμΨ′

=︸︷︷︸
See Eq. 7.5

−mΨ̄Ψ + iΨ̄γμ∂μΨ − g(∂μa(x))Ψ̄γμΨ + gA′
μΨ̄′γμΨ′

= −mΨ̄Ψ + iΨ̄γμ∂μΨ − g(∂μa(x))Ψ̄γμΨ + g(Aμ + ∂μa(x))(e−iga(x)Ψ̄)γμ(eiga(x)Ψ)

= −mΨ̄Ψ + iΨ̄γμ∂μΨ −��������
g(∂μa(x))Ψ̄γμΨ + gAμΨ̄γμΨ + g�������(∂μa(x))Ψ̄γμΨ︸ ︷︷ ︸

=(∂μa(x))Ψ̄γμΨ

= −mΨ̄Ψ + iΨ̄γμ∂μΨ + gAμΨ̄γμΨ = LDirac+Extra-Term.
(7.16)

Therefore, by adding an extra term we get, as promised, a locally
U(1) invariant Lagrangian. To describe a system consisting of mas-
sive spin 1

2 and massless spin 1 fields we must add the Lagrangian
for free massless spin 1 fields to the Lagrangian as well. This gives us
the complete Lagrangian

LDirac+Extra-Term+Maxwell = −mΨ̄Ψ+ iΨ̄γμ∂μΨ+ gAμΨ̄γμΨ+ ∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ.
(7.17)

It is conventional to introduce a new symbol

Dμ ≡ i∂μ + gAμ, (7.18)
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called covariant derivative. The Lagrangian then reads

LDirac+Extra-Term+Maxwell = −mΨ̄Ψ + Ψ̄γμ (i∂μ + gAμ)︸ ︷︷ ︸
≡Dμ

Ψ + ∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ

= −mΨ̄Ψ + Ψ̄γμDμΨ + ∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ. (7.19)

This is the correct Lagrangian for the quantum field theory of elec-

trodynamics, commonly called quantum electrodynamics. We are
able to derive this Lagrangian simply by observing internal symme-
tries of the Lagrangians describing free spin 1

2 fields and free spin 1
fields.

The next question we have to answer is: What equations of motion
follow from this Lagrangian?

7.1.4 Inhomogeneous Maxwell Equations and

Minimal Coupling

To spoil the surprise: This Lagrangian gives us the inhomogeneous
Maxwell equations in the presence of currents.

The process is again straightforward: We simply put the La-
grangian

LDirac+Extra-Term+Proca = −mΨ̄Ψ + iΨ̄γμ∂μΨ + gAμΨ̄γμΨ + ∂μ Aν∂μ Aν − ∂μ Aν∂ν Aμ

into the Euler-Lagrange equation for each field

∂L

∂Ψ
− ∂μ

(
∂L

∂(∂μΨ)

)
= 0

∂L

∂Ψ̄
− ∂μ

(
∂L

∂(∂μΨ̄)

)
= 0

∂L

∂Aρ
− ∂σ

(
∂L

∂(∂σ Aρ)

)
= 0.

This yields
Ψ̄(iγμ∂μ + m) + gAμΨ̄γμ = 0 (7.20)

(iγμ∂μ − m)Ψ − gAμγμΨ = 0 (7.21)

∂σ(∂
σ Aρ − ∂ρ Aσ) + gΨ̄γμΨ = 0 (7.22)

The first two equations describe the behaviour of spin 1
2 parti-

cles/fields in an external electromagnetic field. In many books the
derivation of these equations uses the notion minimal coupling, by
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which is meant that in the presence of an external field the derivative
∂μ has to be changed into the covariant derivative

∂μ → Dμ = i∂μ + Aμ (7.23)

to yield the correct equations. The word "minimal" is used, because
only one gauge field Aμ, with four components μ = 0, 1, 2, 3, is used.

Now that we have the equation that describes how Dirac spinors
behave in the presence of an external electromagnetic field (Eq. 7.21),
we can show something that we promised in Sec. 3.7.10. There we
claimed that a transformation, which we called very suggestively
charge conjugation, changes the electric charge of the object it de-
scribes. In other words, if Ψ describes something of charge +e,
the charge conjugate spinor ΨC describes something of charge −e.
Electrical charge determines the coupling strength of spin 1

2 parti-
cles/fields to an external spin 1 field and we therefore investigate
now, which equation of motion holds for ΨC. Afterwards we will talk
about the third equation, i.e. Eq. 7.22.

7.1.5 Charge Conjugation, Again

Before we can derive the corresponding equation, we need to find an
explicit form of the charge conjugation operator for Dirac spinors. We
derived in Sec. 3.7.10 the transformation (Eq. 3.236)

Ψ =

(
χL

ξR

)
→ ΨC =

(
ξL

χR

)
. (7.24)

This transformation can now be described easily using one of the γμ

matrices. Using the definition of γ2 in Eq. 6.13, we have

ΨC = iγ2Ψ� = i

(
0 σ2

−σ2 0

)(
χ�

L
ξ�R

)
, (7.25)

because we can rewrite this, using that iσ2 = ε is exactly the spinor
metric

=

(
0 ε

−ε 0

)(
χ�

L
ξ�R

)
=

(
εξ�R
−εχ�

L

)
. (7.26)

This is equivalent to

=

(
ξL

χR

)
, (7.27)

as was shown in Sec. 3.7.7, specifically Eq. 3.194. Therefore we start
with Eq. 7.21:

(iγμ∂μ − m)Ψ − gAμγμΨ =
(
(γμ(i∂μ − gAμ)− m

)
Ψ = 0, (7.28)
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and complex conjugate this equation, as a first step towards an equa-
tion for ΨC:

→ (
γ�

μ(−i∂μ − gAμ)− m
)
Ψ� = 0. (7.29)

Now, we multiply this equation from the left-hand side with γ2 and
add a 1 = γ−1

2 γ2 in front of Ψ:

→ γ2
(
γ�

μ(−i∂μ − gAμ)− m
)

γ−1
2 γ2︸ ︷︷ ︸
=1

Ψ� = 0. (7.30)

→ (
γ2γ�

μγ−1
2︸ ︷︷ ︸

=−γμ

(−i∂μ − gAμ)− mγ2γ−1
2

)
γ2Ψ� = 0. (7.31)

→︸︷︷︸
Multiplying the equation with i

(− γμ(−i∂μ − gAμ)− m
)

iγ2Ψ�︸ ︷︷ ︸
=ΨC see Eq. 7.25

= 0. (7.32)

→ (
(γμ(i∂μ + gAμ)− m

)
ΨC = 0, (7.33)

This is exactly the same equation of motion as for Ψ, but with op-
posite coupling strength g → −g. This justifies the name charge
conjugation16.16 It is important to note that Ψc �=

Ψ̄. Ψc = iγ2Ψ� and Ψ̄ = Ψ†γ0 =
(Ψ�)Tγ0. Charge conjugation is the
correct transformation that enables
us to interpret things in terms of
antiparticles, as we will discuss later in
detail.

Next, we turn to the third equation of motion derived the last
section, Eq. 7.22, which is called inhomogeneous Maxwell equation

in the presence of an electric current. To make this precise we need
again Noether’s theorem.

7.1.6 Noether’s Theorem for Internal U(1) Symmetry

In Sec. 4.5.5 we learned that Noether’s theorem connects each inter-
nal symmetry with a conserved quantity. What conserved quantity
follows from the U(1) symmetry we just discovered? Noether’s the-
orem for internal symmetries tells us that a transformation of the
form

Ψ → Ψ′ = Ψ + δΨ

leads to a Noether current

Jμ =
∂L

∂(∂μΨ)
δΨ

which fulfils a continuity equation

∂μ Jμ = 0. (7.34)

A global17 U(1) transformation is

17 Recall that the Lagrangian for free
spin 1

2 fields was only globally U(1)
invariant. The final Lagrangian of the
last section was locally U(1) invariant.
Global symmetry is a special case of
local symmetry with a =const. There-
fore, if we have a locally U(1) invariant
Lagrangian, it is automatically globally
U(1) invariant, too. Considering global

symmetry U(1) here will give us a
quantity that is conserved for free and

interacting fields.

Ψ → Ψ′ = eigaΨ = (1 + iga + . . .)Ψ.
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We stop the series expansion of the exponential function, as usual,
after the first term, because U(1) is a Lie group and arbitrary trans-
formations can be built of infinitesimal ones. An infinitesimal trans-
formation reads

Ψ → Ψ′ = Ψ + igaΨ.

Therefore we have δΨ = igaΨ and as we derived in Sec. 4.5.5 the
corresponding Noether current is

Jμ =
∂L

∂(∂μΨ)
δΨ

=
∂(−mΨ̄Ψ + iΨ̄γμ∂μΨ)

∂(∂μΨ)
igaΨ

= −Ψ̄γμgaΨ = −gaΨ̄γμΨ. (7.35)

We can ignore18 the arbitrary constant a, because the continuity equa- 18 We keep the conventional constant
g, which is not arbitrary but has one
fixed value that is determined in
experiments.

tion holds for arbitrary a and therefore, we define

Jμ ≡ −gΨ̄γμΨ (7.36)

This is usually called the electric four-current. The zeroth component
is the electric charge density, which gives us if we integrate over all
space a quantity that is conserved in time19 19 This can be seen by following the

same steps as in Eq. 4.39.

Q =
∫

d3x ρ︸︷︷︸
Charge density

=
∫

d3xJ0 = −g
∫

d3xΨ̄γ0Ψ. (7.37)

In the quantum framework the objects Ψ will be related to probability
amplitudes which will require that

∫
d3xΨ̄γ0Ψ = 1, because the over-

all probability must be 100% = 1. Therefore, the conserved quantity
is in fact the coupling strength g, which is for electromagnetism pro-
portional to electric charge. Therefore, global U(1) symmetry leads

us to conservation of electric charge.

If we now take a look again at Eq. 7.22, we can write it, using the
definition in Eq. 7.36, as

∂σ(∂
σ Aρ − ∂ρ Aσ) + gΨ̄γρΨ︸ ︷︷ ︸

=−Jρ

= 0

→ ∂σ(∂
σ Aρ − ∂ρ Aσ) = Jρ. (7.38)

Using the electromagnetic tensor as defined in Eq. 6.22 this equation
reads

∂σFρσ = Jρ. (7.39)

These are the inhomogeneous Maxwell equations in the presence
of an external electromagnetic current. These equations20, together 20 Plural, because we have an equation

for each component ρ.
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with the homogeneous Maxwell equations, which follow immedi-
ately21 from the definition of Fρσ, are the basis for the classical theory21 We will see this in Chap. 11.
of electrodynamics.

Next we take a quick look at interactions of massive spin 1 and
spin 0 fields.

7.1.7 Interaction of Massive Spin 0 Fields

Take note that the Lagrangian we derived for spin 0 fields

L =
1
2
(∂μΦ∂μΦ − m2Φ2)

is not U(1) invariant, as we can see by transforming Φ → Φ′ = eiaΦ.
Nevertheless, the complex scalar theory

L =
1
2
(∂μΦ�∂μΦ − m2Φ�Φ). (7.40)

has U(1) symmetry, because then we have Φ → Φ′ = eiaΦ and
Φ� → (Φ�)′ = e−iaΦ�. Therefore it is possible to derive, analogous to
what we did in Sec. 7.1 for spin 1

2 fields, an interaction theory for this
Lagrangian. The derivation is completely analogous22 and one gets22 The correct Lagrangian can

be computed by substituting
∂μ → Dμ = i∂μ + Aμ as introduced
in Eq. 7.23. L =

1
2
(
(
(∂μ − iqAμ)Φ�

)
((∂μ + iqAμ)Φ)− m2Φ�Φ) (7.41)

Using the Euler-Lagrange equations

∂L

∂Φ
− ∂μ

(
∂L

∂(∂μΦ)

)
= 0

∂L

∂Φ�
− ∂μ

(
∂L

∂(∂μΦ�)

)
= 0,

we find the corresponding equations of motion

(∂μ − iqAμ)(∂
μ + iqAμ)Φ� − m2Φ� = 0 (7.42)

(∂μ − iqAμ)(∂
μ + iqAμ)Φ − m2Φ = 0, (7.43)

which describe each a charged spin 0 field coupled to a massless spin
1 field.

7.1.8 Interaction of Massive Spin 1 Fields

The interaction of a massive spin 1 field with a massless spin 1 field
is dictated by symmetry, too. The Lagrangian for massless spin 1
fields is given by

LMaxwell =
1
4

FμνFμν.
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To distinguish between a massless and a massive spin 1 field, we
name the massive field Bμ and define

Gμν := ∂μBν − ∂νBμ.

The Lagrangian for this massive spin 1 field reads (Eq. 6.19)

LProca =
1
2

GμνGμν + m2BμBμ.

Lorentz symmetry dictates the interaction term in the Lagrangian to
be of the form

LProca-interaction = CGμνFμν,

with the coupling constant C we need to measure in experiments. If
you’re interested you can derive yourself the corresponding equa-
tions of motion, by using the Euler-Lagrange equations.

7.2 SU(2) Interactions

Motivated by the success with U(1) symmetry we want to answer the
question: Is U(1) the only internal symmetry of our Lagrangians?

It turns out that we can find an internal symmetry for two mass-

less spin
1

2 fields. We get the Lagrangian for two spin
1

2 fields by
addition of two copies of the Lagrangian we derived in Sec. 6.3. The
final Lagrangian we derived can be found in Eq. 6.16:

LDirac = ψ̄(iγμ∂μ − m)ψ.

Here we neglect mass terms, which means m = 0, because other-
wise the Lagrangian isn’t invariant as we will see in a moment. We
will see later how we can include mass terms, without spoiling the
symmetry. The addition yields

LD1+D2 = iψ̄1γμ∂μψ1 + iψ̄2γμ∂μψ2 (7.44)

and this can be rewritten, if we define

Ψ :=

(
ψ1

ψ2

)

→ Ψ̄ :=
(

ψ̄1 ψ̄2

)
where the newly defined object Ψ is called a doublet. Thus

LD1+D2 = iΨ̄γμ∂μΨ. (7.45)

This Lagrangian is invariant under global SU(2) transformations

Ψ → Ψ′ = eiai
σi
2 Ψ (7.46)
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⇒ Ψ̄ → Ψ̄′ = Ψ̄e−iai
σi
2 , (7.47)

where a sum over the index "i" is implicitly assumed, ai denotes
arbitrary real constants and σi

2 are the usual generators of SU(2),
with the Pauli matrices σi.

To see the invariance we take a look at the transformed Lagrangian2323 We neglect mass terms here, be-
cause these would be −m1Ψ̄1Ψ1 and
−m2Ψ̄2Ψ2 and we could write them,
using the two component definition for
Ψ and defining

m :=
(

m1 0
0 m2

)
as

LD1+D2 = −Ψ̄mΨ.

Unfortunately, this term is not invariant
under SU(2) transformations, because

LD1+D2 = −Ψ̄′mΨ′ = Ψ̄ e−iai
σi
2 meiai

σi
2︸ ︷︷ ︸

�=m

Ψ.

For equal masses m1 = m2 it would
be invariant again, but we are going to
see how we can include arbitrary mass
terms without violating this symmetry.
We know from experiments that the
two fields in the doublet do not create
particles of equal mass, i.e. m1 �= m2.
This will be discussed later in detail.

L ′
D1+D2 = iΨ̄′γμ∂μΨ′

= iΨ̄e−iai
σi
2 γμ∂μeiai

σi
2 Ψ

= iΨ̄γμ∂μΨ = LD1+D2, � (7.48)

where we got to the last line because our transformation eiai
σi
2 acts

on our newly defined two-component object Ψ, whereas γμ acts on
the objects in our doublet, i.e. the Dirac spinors. We can express this
using indices[(

e−iai
σi
2
)

abδαβ

] [
δbcγ

βδ
μ

] [(
eiai

σi
2
)

cdδδε

]
=

[
δadγαε

μ

]
This symmetry should be a local symmetry, too. The SU(2) trans-

formations mix the two components of the doublet. Later we will
give these two fields names like electron and electron-neutrino field.
Our symmetry here tells us that it does not matter what we call
electron and what electron-neutrino field, because by using SU(2)
transformations we can mix them as we like. If this is only a global
symmetry, as soon as we fix one choice24, which means we decide24 This is known as choosing a gauge.

what we call electron and what electron-neutrino field, this choice
would be fixed immediately for the complete universe. Therefore we
investigate if this is a local symmetry. Again we find that it isn’t, but
as for local U(1) symmetry we will do everything we can to make the
Lagrangian locally SU(2) invariant.

The problem here is again the derivative, which produces an extra
term:

L ′
D1+D2 = iΨ̄′γμ∂μΨ′

= iΨ̄e−iai(x) σi
2 γμ∂μeiai(x) σi

2 Ψ

=︸︷︷︸
product rule

iΨ̄γμ∂μΨ − Ψ̄γμ(∂μai(x)
σi
2
)Ψ �= LD1+D2. (7.49)

We already know what to do next from the experience with U(1),
which we discussed in Sec. 7.1. We will, step by step, derive a locally
SU(2) invariant Lagrangian, which will take some time. To avoid
confusion, the steps that follow are summarized in the following list:
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• The final result will be that we get a locally SU(2) invariant La-
grangian, by adding the extra term iΨ̄γμWμ

i σiΨ to the Lagrangian,

which describes interactions between two spin 1
2 fields

(
ψ1

ψ2

)
and

three massive spin 1 fields Wμ
i .

• In addition, this is only invariant if we transform

(Wμ)i → (W ′
μ)i = (Wμ)i + ∂μai(x) + εijkaj(x)(Wμ)k

instead of

(Wμ)i → (W ′
μ)i = (Wμ)i + ∂μai(x),

which we used to fix local U(1) symmetry.

• This is only a symmetry for the free (Wμ)i Lagrangian

L =
1
4
(Wμν)i(Wμν)i

if we define

(Wμν)i = ∂μ(Wν)i − ∂ν(Wμ)i + εijk(Wμ)j(Wν)k

instead of

(Wμν)i = ∂μ(Wν)i − ∂ν(Wμ)i.

In other words: In order to get a locally SU(2) invariant La-
grangian, we must redefine the free Lagrangian for our three Wμ

i
fields, such that it is invariant under

(Wμ)i → (W ′
μ)i = (Wμ)i + ∂μai(x) + εijkaj(x)(Wμ)k.

Now we will go through these steps in detail. We know the inter-
nal symmetry of spin 1 fields from Eq. 7.11

Aμ → A′
μ = Aμ + ∂μa(x)

and here we are going to use three spin 1 fields, Wμ
1 , Wμ

2 and Wμ
3 ,

because we have three generators σi
2 for SU(2) and need one field for

each extra term, produced by the sum ai(x) σi
2 in the exponent. These

possess the local internal symmetry

Wμ
i → W ′μ

i = Wμ
i + ∂μai(x)

and therefore, we try adding the term

Ψ̄γμ
σj

2
Wμ

j Ψ
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to the Lagrangian. Unfortunately, this does not lead to a locally
SU(2) invariant Lagrangian:

L ′
D1+D2+Extra = iΨ̄′γμ∂μΨ′ + Ψ̄′γμ

σj

2
W ′μ

j Ψ′

= iΨ̄e−iai(x) σi
2 γμ∂μeiai(x) σi

2 Ψ

+ Ψ̄e−iai(x) σi
2 γμ

σj

2
(Wμ

j + ∂μaj(x))eiai(x) σi
2 Ψ

= iΨ̄γμ∂μΨ − Ψ̄γμ(∂μai(x)
σi
2
)Ψ

+ Ψ̄ e−iai(x) σi
2 γμ

σj

2
Wμ

j eiai(x) σi
2︸ ︷︷ ︸

�=γμ
σj
2 Wμ

j because [
σi
2 ,

σj
2 ]=εijk

σk
2 �=0

Ψ

+ Ψ̄e−iai(x) σi
2 γμ

σj

2
(∂μaj(x))e−iai(x) σi

2 Ψ

= iΨ̄γμ∂μΨ −��������Ψ̄γμ(∂μai(x)σi)Ψ + Ψ̄γμσiW
μ
i Ψ

+��������Ψ̄γμσi(∂μai(x))Ψ

= iΨ̄γμ∂μΨ + Ψ̄γμσiW
μ
i Ψ = LD1+D2+Extra � (7.50)

We can see that the reason here is that the generators of SU(2) do not
commute25. Let us take a closer look at the difficulty. We will look25 Mathematicians call a group with non

commuting elements non-abelian. In
contrast, U(1) is abelian and therefore
everything was easier.

at, as usual for Lie groups, infinitesimal transformations, ignoring
higher order terms:

e−iai(x) σi
2

σj

2
eiai(x) σi

2 ≈
(

1 − iai(x)
σi
2

) σj

2

(
1 + iai(x)

σi
2

)
=

σj

2
− ai(x)

σi
2

σj

2
+ ai(x)

σj

2
σi
2
+O(a2)

=
σj

2
+ ai(x)

[
σj

2
,

σi
2

]
+O(a2)

=
σj

2
− ai(x)εijk

σk
2
+O(a2) �= σj

2
(7.51)

Therefore, the infinitesimal transformed, which means we can ignore
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terms of order O(a2) and higher, Lagrangian is

L ′
D1+D2+Extra = iΨ̄′γμ∂μΨ′ + Ψ̄′γμ

σj

2
W ′μ

j Ψ′

=︸︷︷︸
Eq. 7.50

iΨ̄γμ∂μΨ − Ψ̄γμ(∂μai(x)
σi
2
)Ψ + Ψ̄e−iai(x) σi

2 γμ
σj

2
Wμ

j eiai(x) σi
2 Ψ

+ Ψ̄e−iai(x) σi
2 γμ

σj

2
(∂μaj(x))e−iai(x) σi

2 Ψ

≈︸︷︷︸
Eq. 7.51

iΨ̄γμ∂μΨ − Ψ̄γμ(∂μai(x)
σi
2
)Ψ + Ψ̄γμ(

σj

2
− ai(x)εijk

σk
2
)Wμ

j Ψ

+ Ψ̄γμ(
σj

2
− ai(x)εijk

σk
2
)(∂μaj(x))Ψ

= iΨ̄γμ∂μΨ −
��������
Ψ̄γμ(∂μai(x)

σi
2
)Ψ + Ψ̄γμ

σj

2
Wμ

j Ψ − Ψ̄γμai(x)εijk
σk
2

Wμ
j Ψ +

���������
Ψ̄γμ

σj

2
(∂μaj(x))Ψ

− Ψ̄γμai(x)εijk
σk
2
(∂μaj(x))Ψ︸ ︷︷ ︸

O(a2)

= iΨ̄γμ∂μΨ + Ψ̄γμ
σj

2
Wμ

j Ψ − Ψ̄γμai(x)εijk
σk
2

Wμ
j Ψ (7.52)

The internal symmetry of (Wμ)i that would fix local SU(2) invariance
is

(Wμ)i → (W ′
μ)i = (Wμ)i + ∂μai(x) + εijkaj(x)(Wμ)k

because this gives an extra term in the Lagrangian that cancels ex-
actly the symmetry-destroying term

L ′
D1+D2+Extra = iΨ̄′γμ∂μΨ′ + Ψ̄′γμ

σj

2
W ′μ

j Ψ′

=︸︷︷︸
Eq. 7.52

iΨ̄e−iai(x) σi
2 γμ∂μeiai(x) σi

2 Ψ + Ψ̄e−iai(x) σi
2 γμ

σj

2
(Wμ

j + ∂μaj(x) + εjlmal(x)Wμ
m)eiai(x) σi

2 Ψ

= iΨ̄γμ∂μΨ + Ψ̄γμ
σj

2
Wμ

j Ψ −
����������
Ψ̄γμai(x)εijk

σk
2

Wμ
j Ψ +

����������
Ψ̄γμ

σj

2
εjlmal(x)Wμ

mΨ

= LD1+D2+Extra � (7.53)

We therefore have to take a step back now and have a look if this is
an internal symmetry of the three free spin 1 field Lagrangian. The
Lagrangian for the three massless spin 1 fields is

L3xMaxwell =
1
4
(Wμν)1(Wμν)1 +

1
4
(Wμν)2(Wμν)2 +

1
4
(Wμν)3(Wμν)3

=
1
4
(Wμν)i(Wμν)i (7.54)

with
(Wμν)i = ∂μ(Wν)i − ∂ν(Wμ)i.

We want to see if this Lagrangian is invariant under

(Wμ)i → (W ′
μ)i =

(
(Wμ)i + ∂μai(x) + εijkaj(x)(Wμ)k

)
(7.55)
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The transformed Lagrangian is

L ′
3xMaxwell =

1
4
(W ′

μν)i(W ′μν)i

=︸︷︷︸
See Eq. 6.25

(∂μ(W ′ν)i∂μ(W ′
ν)i − ∂μ(W ′ν)i∂ν(W ′

μ)i)

= (∂μ
(
(Wν)i + ∂νai(x) + εijkaj(x)(Wν)k

)
∂μ

(
(Wν)i + ∂νai(x) + εijkaj(x)(Wν)k

)
− ∂μ

(
(Wν)i + ∂νai(x) + εijkaj(x)(Wν)k

)
∂ν

(
(Wμ)i + ∂μai(x) + εijkaj(x)(Wμ)k

)
)

=︸︷︷︸
Ignoring terms of order O(a2)

∂μ(Wν)i∂μ(Wν)i +���������
(∂μ(Wν)i)∂μ∂νai(x) + (∂μ(Wν)i)∂μεijkaj(x)(Wν)k

+��������
∂μ∂νai(x)∂μ(Wν)i + ∂μεijkaj(x)(Wν)k∂μ(Wν)i

− ∂μ(Wν)i∂ν(Wμ)i −��������
∂μ(Wν)i∂ν∂μai(x)− ∂μ(Wν)i∂νεijkaj(x)(Wμ)k

−��������
∂μ∂νai(x)∂ν(Wμ)i − ∂μεijkaj(x)(Wν)k∂ν(Wμ)i

= ∂μ(Wν)i∂μ(Wν)i − ∂μ(Wν)i∂ν(Wμ)i︸ ︷︷ ︸
=L3xMaxwell

+(∂μ(Wν)i)∂μεijkaj(x)(Wν)k

+ ∂μεijkaj(x)(Wν)k∂μ(Wν)i − ∂μ(Wν)i∂νεijkaj(x)(Wμ)k − ∂μεijkaj(x)(Wν)k∂ν(Wμ)i,

=︸︷︷︸
product rule

L3xSpin1 − (∂μ(Wν)i)εijk(∂μaj(x))(Wν)k − (∂μ(Wν)i)εijkaj(x)(∂μ(Wν)k)

− εijk(∂
μaj(x))(Wν)k∂μ(Wν)i − εijkaj(x)(∂μ(Wν)k)∂μ(Wν)i

+ ∂μ(Wν)iεijk(∂νaj(x))(Wμ)k + ∂μ(Wν)iεijkaj(x)(∂ν(Wμ)k)

+ εijk(∂
μaj(x))(Wν)k∂ν(Wμ)i + εijkaj(x)(∂μ(Wν)k)∂ν(Wμ)i (7.56)

which show that this is no internal symmetry of the Lagrangian.
However we can make this an internal symmetry by adding the term

−εijk(Wμ)j(Wν)k

to the field tensor Wμν. We have then

(Wμν)i = ∂μ(Wν)i − ∂ν(Wμ)i − εijk(Wμ)j(Wν)k,

which gives us a new Lagrangian for the three free spin 1 fields

L3xMaxwell =
1
4
(Wμν)i(Wμν)i

=
(

∂μ(Wν)i − ∂ν(Wμ)i − εijk(Wμ)j(Wν)k

)
×

×
(

∂μ(Wν)i − ∂ν(Wμ)i − εijk(Wμ)j(Wν)k

)
(7.57)

You can check the invariance of this Lagrangian by yourself, but be
warned the computation is quite long and tedious. We have therefore
found the locally SU(2) invariant Lagrangian, which we write

LD1+D2+Interaction+ 3xMaxwell = iΨ̄γμ∂μΨ+ Ψ̄γμ
σj

2
Wμ

j Ψ− 1
4
(Wμν)i(Wμν)i

(7.58)
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7.3 Mass Terms and Unification of SU(2) and U(1)

In the last chapter we couldn’t add mass terms like m1Ψ̄Ψ and
m2(Wμ)i(Wμ)i to the Lagrangian without destroying the SU(2) sym-
metry. From experiments we know that the corresponding particles26 26 For example, the electron e− and

the electron-neutrino νe, described by
Ψ and the three bosons, described by
(Wμ)i .

have mass and this is conventionally interpreted as the SU(2) sym-
metry being broken. This means the symmetry exists at high energy
and spontaneously breaks at lower energies.

So far we derived a locally U(1) invariant Lagrangian and it this
context it’s conventional to name the corresponding spin 1 field Bμ:

Llocally U(1) invariant = −mψ̄ψ + ψ̄γμ(i∂μ + gBμ)ψ − 1
4

BμνBμν (7.59)

with
Bμν := ∂μBν − ∂νBμ

The spin 1 field Bμ is often called U(1) gauge field, because it makes
the Lagrangian U(1) invariant.

The locally SU(2) invariant Lagrangian is27 27 The coupling constant for the three
Wμ

i fields, we neglected so far for
brevity, is here called g′.

Llocally SU(2) invariant = Ψ̄γμ(i∂μ + g′σjW
μ
j )Ψ − 1

4
(Wμν)i(Wμν)i

with

(Wμν)i = ∂μ(Wν)i − ∂ν(Wμ)i + εijk(Wμ)j(Wν)k

and the doublet

Ψ :=

(
ψ1

ψ2

)

As above, the three spin 1 fields (Wν)i are often called SU(2) gauge
fields, because they make the Lagrangian locally SU(2) invariant.

We can combine them into one locally U(1) and locally SU(2)
invariant Lagrangian

LSU(2) and U(1) = Ψ̄γμ(i∂μ + gBμ + g′σjW
μ
j )Ψ− 1

4
(Wμν)i(Wμν)i − 1

4
BμνBμν.

(7.60)
Now, how can add mass terms to this Lagrangian without spoiling

the SU(2) symmetry? The only ingredient we haven’t used so far is a
spin 0 field, so let’s see. The globally U(1) invariant Lagrangian for a
complex spin 0 field is given by, as we derived in Eq. 7.40

Lspin0 =
1
2

(
∂μφ†∂μφ − m2φ†φ

)
. (7.61)

We can add to this Lagrangian the next higher power in φ without
violating any symmetry constraints28. Thus we write, renaming the 28 Recall that only higher order deriva-

tives were really forbidden in order to
get a sensible theory. Higher powers
of φ describe the self-interaction of the
field φ and were omitted in order to get
a "free" theory.
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constants to their conventional names

Lspin0+extraTerm = ∂μφ†∂μφ + ρ2φ†φ − λ(φ†φ)2. (7.62)

We already know from Eq. 7.41 how we can add a coupling term
between this spin 0 field and a U(1) gauge field Bμ, which makes the
Lagrangian locally U(1) invariant:

Lspin0+extraTerm+spin1Coupling =
(
(∂μ − i

1
2

gBμ)φ
†
)(

(∂μ + i
1
2

gBμ)φ
)

+ ρ2φ†φ − λ(φ†φ)2 (7.63)

with the symmetries2929 See Eq. 7.13 and recall that an overall
constant in the Lagrangian has no
influence. Bμ → B′

μ = Bμ + ∂μa(x) (7.64)

φ(x) → φ′(x) = eia(x)φ(x). (7.65)

In the same way we derived in the last chapter the locally SU(2)
invariant Lagrangian for spin 1

2 fields, we can write a locally SU(2)
invariant Lagrangian for doublets of spin 0 fields30 as30 Φ =

(
φ1
φ2

)

LSU(2) and U(1) =
(
(∂μ − ig′σi(Wμ)i − i

1
2

gBμ)Φ†
)(

(∂μ + ig′σi(Wμ)i + i
1
2

gBμ)Φ
)

+ ρ2Φ†Φ − λ(Φ†Φ)2︸ ︷︷ ︸
≡−V(Φ)

(7.66)

with the doublet Φ :=

(
φ1

φ2

)
and the symmetries (Eq. 7.55)

(Wμ)i → (W ′
μ)i =

(
(Wμ)i + ∂μbi(x) + εijkbj(x)(Wμ)k

)
(7.67)

and
Φ → Φ′ = eibi(x)σi Φ , Φ̄ → Φ̄′ = Φ̄e−ibi(x)σi (7.68)

We start with this locally SU(2) invariant Lagrangian and inves-
tigate in the following how this Lagrangian gives us mass terms
for the fields Wμ

i and Bμ
i . Adding mass terms "by hand" to the La-

grangian does not work, because these terms spoil the symmetry and
this leads to an insensible theory31.31 The reason is quite complicated and

will not be discussed in this book. In
technical terms: We need a locally
SU(2) symmetric Lagrangian to get
a renormalizable theory. You are
encouraged to read about this in the
books mentioned at the end of this
chapter.

The term we defined above

V(Φ) = −ρ2Φ†Φ + λ(Φ†Φ)2

= −ρ2φ†
1φ1 + λ(φ†

1φ1)
2 − ρ2φ†

2φ2 + λ(φ†
2φ2)

2

= V1(φ2) + V2(φ2) (7.69)
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is often called Higgs potential. A two-dimensional plot for different
values of ρ, with λ > 0 can be seen in Fig. 7.1.

The idea is that at very high temperatures, e.g. in the early uni-
verse, the potential looks like in the image to the left. The minimum,
in this context called the vacuum value, is without ambiguity at
φ = 0. With sinking temperature the parameters λ and ρ change, and
with them the shape of the potential. After the temperature dropped
below some critical value the potential no longer has its minimum at
φ = 0, as indicated in the pictures to the right. Now there is not only
one location with the minimum value, but many.

Fig. 7.1: Two-dimensional illustration of
the Higgs potential for different values
of ρ, which is believed to have changed
as the universe cooled down as a
result of the expansion of the universe.
Figure adapted from "Spontaneous
symmetry breaking" by FT2 (Wikimedia
Commons) released under a CC BY-SA
3.0 licence: http://creativecommons.
org/licenses/by-sa/3.0/deed.en.
URL: http://commons.wikimedia.org/
wiki/File:Spontaneous_symmetry_

breaking_(explanatory_diagram).png ,
Accessed: 8.12.2014

In fact, the potential has an infinite number of possible minima.
The minimum of the potential can be computed in the usual way

V(φ) = −ρ2|φ|2 + λ|φ|4 (7.70)

∂V(φ)

∂φ
= −2ρ2|φ|+ 4λ|φ|3 !

= 0 (7.71)

→ |φ|(−2ρ2 + 4λ|φ|2) !
= 0 (7.72)

→ |φ|2 !
=

ρ2

2λ
(7.73)

→ |φ| !
=

√
ρ2

2λ
(7.74)

φmin =

√
ρ2

2λ
eiϕ. (7.75)

This is a minimum for every value of ϕ and we therefore have an
infinite number of minima. All these minima lie on a circle with
radius

√
ρ2

2λ . This can be seen in the three dimensional plot of the
Higgs potential in Fig. 7.2. Like a marble that rolls down from the
top of a sombrero, spontaneously and maybe randomly, one new
vacuum value is chosen out of the infinite possibilities.

Fig. 7.2: 3-dimensional plot of the
Higgs potential. Figure adapted from
"Mexican hat potential polar" by Rupert
Millard (Wikimedia Commons) released
under a public domain licence. URL:
http://commons.wikimedia.org/wiki/

File:Mexican_hat_potential_polar.

svg , Accessed: 7.5.2014

From Eq. 7.69 we see that for the doublet, both components have
this choice to make. We therefore have for the doublet the minimum

Φmin =

(
φ1min

φ2min

)
(7.76)

An economical choice32 for the minimum is

32 Recall that symmetry breaking means
that one minimum is chosen out of the
infinite possibilities.

Φmin =

(
0√

ρ2

2λ

)
≡

(
0
v√
2

)
, (7.77)
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where the factor 1
2 is just a convention to make computations easier

and we define for brevity v ≡
√

ρ2

λ . The next step is that we expand
the field Φ around this minimum in order to learn something about
its physical particle content. We will learn later that in quantum field
theory computations are always done as a series expansion around
the minimum, because no exact solutions are available. In order to
get sensible results, we must shift the field to the new minimum. We
therefore consider the field

Φ =

(
φ1r + iφ1c

v√
2
+ φ2r + iφ2c

)
. (7.78)

This can be rewritten as3333 This form is very useful as we will see
in a moment.

Φ = eiθi
σi
2

(
0

v+h√
2

)
, (7.79)

because if we consider the series expansion of the exponential func-
tion and the explicit form of the Pauli matrices σi, we can see that in
first order

eiθi
σi
2

(
0

v+h√
2

)
≈ (1 + i

1
2

θiσi)

(
0

v+h√
2

)

= (1 + i
1
2

θ1σ1 + i
1
2

θ2σ2 + i
1
2

θ3σ3)

(
0

v+h√
2

)

=

(
1 + i 1

2 θ3
1
2 θ1 − i 1

2 θ2
1
2 θ1 + i 1

2 θ2 1 − i 1
2 θ3

)(
0

v+h√
2

)

=

(
( 1

2 θ1 − i 1
2 θ2)

v+h√
2

(1 − i 1
2 θ3)

v+h√
2

)

redefinitions → ≡
(

φ1r + iφ1c
v√
2
+ φ2r + iφ2c

)
.

(7.80)

Writing the complex spin 0 doublet in this form is useful, because
we can now use the local SU(2) (gauge) symmetry to make com-
putations simpler. In order to get physical results one gauge must
be chosen and we prefer to work with a gauge that makes life the
easiest34.34 For different computations, different

gauges can be useful. Here we will
work with what is called the unitary
gauge, that is particularly useful to
understand the physical particle content
of a theory.

A general local SU(2) transformation is

Φ → Φ′ = eibi(x) σi
2 Φ, (7.81)

which enables us to eliminate the exponential factor in Eq. 7.79, by
choosing appropriate bi(x). The complex scalar doublet is then, in
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this unitary gauge

Φun =

(
0

v+h√
2

)
. (7.82)

Another possible way to understand this is that of the original four
components that appeared in our complex scalar doublet, three are
equivalent to our SU(2) gauge freedom35. Therefore, these three 35 Take note that this is only possible,

because we have a local SU(2) theory,
because our fields θ = θ(x), of course
depend on the location in spacetime.
For a global symmetry, these compo-
nents can’t be gauged away, and are
commonly interpreted as massless
bosons, called Goldstein bosons.

fields aren’t physical36 and can’t be measured in experiments. What

36 The local SU(2) symmetry is nothing
that can be measured in experiments.
This is merely a symmetry of our equa-
tions and the gauge freedom disappears
from everything that is measurable in
experiments. Otherwise there would
be no possible way to make predictions
from our theory, because we would
have an infinite number of equivalently
possible predictions (that are connected
by SU(2) transformations). Neverthe-
less, this symmetry is far from being
useless, because it guides us to the
correct form of the Lagrangian.

remains is one physical field h, which is called the Higgs field.

Next, we want to take a look at the implications of this symmetry
breaking on the Lagrangian. We recite here the Lagrangian in ques-
tion for convenience, which was derived in Eq. 7.63, and rename all
constants to the standard choice

L =
(
(∂μ − ig′ 1

2
σi(Wμ)i − i

1
2

gBμ)Φ†
)(

(∂μ + ig′σi(Wμ)i + i
1
2

gBμ)Φ
)

− V(Φ) (7.83)

We substitute now the field Φ with the shifted field in the unitary
gauge , which was defined in Eq. 7.82. Of particular interest for us
will be the newly appearing terms that include the constant vacuum
value v. The other terms describe the self-interaction of the Higgs-
field and the interaction of the Higgs field with the other fields,
which we will not examine any further. If we put in the minimum

value Φ → Φmin =

(
0
v√
2

)
, which means we ignore h, we get

(
(∂μ − ig′σi(Wμ)i − i

1
2

gBμ)Φ†
min

)(
(∂μ + ig′ 1

2
σi(Wμ)i + i

1
2

gBμ)Φmin

)

=
∣∣∣((∂μ + ig′ 1

2
σi(Wμ)i + i

1
2

gBμ)Φmin

)∣∣∣2

=
∣∣∣((∂μ + ig′ 1

2
σi(Wμ)i + i

1
2

gBμ)

√
1
2

(
0
v

))∣∣∣2

=
v2

8

∣∣∣((g′σi(Wμ)i + gBμ)

(
0
1

))∣∣∣2
.

Now using that we have behind Bμ an implicit 2 × 2 identity matrix
and the explicit form of the Pauli matrices37 σi yields 37 σiWi =

(
W3 W1 − iW2

W1 + iW2 −W3

)
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=
v2

8

∣∣∣
(

g′Wμ
3 + gBμ g′Wμ

1 − ig′Wμ
2

g′Wμ
1 + ig′Wμ

2 −g′Wμ
3 + gBμ

)(
0
1

) ∣∣∣2

=
v2

8

∣∣∣(
(

g′Wμ
1 − ig′Wμ

2
−g′Wμ

3 + gBμ

))∣∣∣2

=
v2

8

(
(g′)2

(
(Wμ

1 )
2 + (Wμ

2 )
2
)
+ (g′Wμ

3 − gBμ)2
)

(7.84)

Next we define two new spin 1 fields from the old ones we have
been using so far

Wμ
+ ≡ 1√

2
(Wμ

1 − iWμ
2 ) (7.85)

Wμ
− ≡ 1√

2
(Wμ

1 + iWμ
2 ), (7.86)

where Wμ
+ is the complex conjugate of Wμ

−. The first term in Eq. 7.84
is then

(Wμ
1 )

2 + (Wμ
2 )

2 = 2(W+)μ(W−)μ (7.87)

and thus we have, including the constants,

⎛
⎜⎜⎝ g′v

2︸︷︷︸
≡mW

⎞
⎟⎟⎠

2

(W+)μ(W−)μ (7.88)

which then looks like a typical "mass" term.

The second term in Eq. 7.84 can be written in matrix form

(g′Wμ
3 − gBμ)2 =

(
Wμ

3 , Bμ

)(
g′2 −gg′

−gg′ g′2

)
︸ ︷︷ ︸

≡G

(
Wμ

3
Bμ

)
(7.89)

In order to be able to interpret this as mass-terms, we need to diag-
onalize38 the matrix G. The standard linear-algebra way to do this38 We will see in a moment that a

diagonalized matrix gives us terms
that look exactly like the other mass
terms. This enables us to interpret the
corresponding fields as physical fields
that can be observed in experiments.
We could work with fields Wμ

3 and Bμ,
but the physical interpretation would
be much harder.

needs the eigenvalues λ1, λ2 and normalized39 eigenvectors v1, v2 of

39 Which means length 1, i.e. v · v = 1.

the matrix G, which are

λ1 = 0 → v1 =
1√

g2 + g′2

(
g
g′

)

λ2 = (g2 + g′2) → v2 =
1√

g2 + g′2

(
g′

−g

)
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The matrix G is then diagonalized by the matrix M build from the
eigenvectors as its columns, i.e. Gdiag = M−1GM, with

M =
1√

g2 + g′2

(
g g′

g′ −g

)
(7.90)

and

Gdiag =

(
λ1 0
0 λ2

)
=

(
0 0
0 (g2 + g′2)

)
(7.91)

The matrix M is orthogonal (MT = M−1), because we work with
normalized eigenvectors:

MT M =
1√

g2 + g′2

(
g g′

g′ −g

)
1√

g2 + g′2

(
g g′

g′ −g

)

=
1

(g2 + g′2)

(
g2 + g′2 gg′ − gg′

gg′ − gg′ g2 + g′2

)
=

(
1 0
0 1

)
. (7.92)

We therefore add two unit matrices 1 = MT M, into Eq. 7.89:

(
Wμ

3 , Bμ

)
MMT︸ ︷︷ ︸
=1

G MMT︸ ︷︷ ︸
=1

(
Wμ

3
Bμ

)
=

(
Wμ

3 , Bμ

)
M MTGM︸ ︷︷ ︸

=Gdiag

MT

(
Wμ

3
Bμ

)
.

(7.93)

The remaining task is then to evaluate MT

(
Wμ

3
Bμ

)
, in order to get the

definition of two new fields, which have easily interpretable mass
terms in the Lagrangian:

MT

(
Wμ

3
Bμ

)
=

1√
g2 + g′2

(
g g′

g′ −g

)(
Wμ

3
Bμ

)

=
1√

g2 + g′2

(
(gWμ

3 + g′Bμ)

(g′Wμ
3 − gBμ)

)
≡

(
Aμ

Zμ

)
(7.94)

We can therefore write the second term as(
Aμ Zμ

)
Gdiag

(
Aμ

Zμ

)
=

(
Aμ Zμ

)(
0 0
0 (g2 + g′2)

)(
Aμ

Zμ

)

= (g2 + g′2)(Zμ)2 + 0 · (Aμ)2. (7.95)

To summarize: We started with a Lagrangian, without mass terms
for the spin 1 fields Wμ

i and Bμ

(
(∂μ − iq′ 1

2
σi(Wμ)i − i

1
2

qBμ)Φ†
)(

(∂μ + iq′σi(Wμ)i + i
1
2

qBμ)Φ
)

.
(7.96)
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After the process of spontaneous symmetry breaking, we have new
terms in the Lagrangian that are interpreted as mass terms

1
8

v2g′2︸ ︷︷ ︸
= 1

2 M2
W

(W+)μ(W−)μ +
1
8

v2(g2 + g′2)︸ ︷︷ ︸
= 1

2 M2
Z

Z2
μ +

1
8

v20︸ ︷︷ ︸
photon mass =0

·A2
μ (7.97)

We can see that one of the spin 1 fields Aμ remains massless after
spontaneous symmetry breaking. This is the photon field of electro-
magnetism and all experiments up to now verify that the photon is
massless 40. An important observation is that the field responsible for40 Take note that I omitted some very

important notions in this section:
Hypercharge and the Weinberg angle.
The Weinberg angle θW is simply
defined as cos(θW) = g√

g2+g′2
or

sin(θW) = g′√
g2+g′2

. This can be used

to simplify some of the definitions
mentioned in this section. Hypercharge
is a bit more complicated to explain
and those who want to dig deeper are
referred to the standard texts about
quantum field theory, some of which
are recommended at the end Chap. 9.

Z-bosons Zμ and the field responsible for photons Aμ are orthogonal
linear combinations of the fields Bμ and W3

μ. Therefore we can see
that both have a common origin!

The same formalism can be used to get mass terms for spin 1
2

fields without spoiling the local SU(2) symmetry, but before we
discuss this, we need to talk about one very curious fact of nature:
Parity violation.

7.4 Parity Violation

One of the biggest discoveries in the history of science was that na-
ture is not invariant under parity transformations. In layman’s terms
this means that some experiments behave differently than their mir-
rored analogue. The experiment that discovered the violation of
parity symmetry was the Wu experiment. A full description of this
experiment, although fascinating, strays from our current subject, so
let’s just discuss the final result.

The Wu experiment discovered that the particles mediating the
weak force (the W+, W−, Z bosons) only couple to left-chiral parti-
cles. In other words: Only left-chiral particles interact via the weak-

force and we will discuss at the end of this section why this means
that parity is violated. All particles produced in weak interactions
are left-chiral. Neutrinos interact exclusively via the weak force and
therefore it is possible that there are no right-chiral neutrinos41. All41 We will see in a moment that massive,

left-chiral particles always get a right-
chiral component during propagation.
It is known from experiments that
neutrinos have mass and therefore
there should be a right-chiral neutrino
component. Nevertheless, this right-
chiral component does not participate
in any known interaction.

other particles can be produced via other interactions and therefore
can be right-chiral, too.

Up to this point, we used left-chiral and right-chiral as labels for
objects transforming according to different representations of the
Lorentz group. Although this seems like something very abstract, we
can measure the chirality of particles, because there is a correlation to
a more intuitive concept called helicity42.42 We will not discuss this here, because

the details make no difference for the
purpose of the text. The message to
take away is that it can be done. A very
nice discussion of these matters can
be found in Alessandro Bettini. Intro-
duction to Elementary Particle Physics.
Cambridge University Press, 2nd edi-
tion, 4 2014. ISBN 9781107050402

In fact, most of the time particles do not have a specified chirality,
which means they aren’t definitely left-chiral or right-chiral and the
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corresponding Dirac spinor Ψ has both components. Parity viola-
tion was no prediction of the theory and a total surprise for every
physicist. Until the present day, no one knows why nature behaves so
strangely. Nevertheless, it’s easy to accommodate this discovery into
our framework. We only need something that makes sure we always
deal with left-chiral spinors when we describe weak interactions.

Recall that the symbols χ and ξ denote Weyl spinors (two compo-
nent objects), ψ Dirac spinors (four component objects, consisting of
two Weyl spinors)

ψ =

(
χL

ξR

)
(7.98)

and Ψ doublets of Dirac spinors

Ψ =

(
ψ1

ψ2

)
. (7.99)

Then this "something" is the projection operator PL:

PLψ = PL

(
χL

ξR

)
=

(
χL

0

)
≡ ψL. (7.100)

Such a projection operator can be constructed using the matrix43

43 Recall the definition of the γμ matri-
ces in Eq. 6.13 and don’t let yourself get
confused about the missing γ4 matrix.
There is an alternative convention that
uses γ4 instead of γ0 and to avoid inter-
ference between those conventions, the
matrix here is commonly called γ5.

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
. (7.101)

The matrix γ5 is called the chirality operator, because states of pure

chirality

(
χL

0

)
or

(
0

ξR

)
are eigenstates of γ5 with eigenvalue −1

and +1 respectively.

The projection operator PL is then44

44 Maybe you wonder why we define
PL as so complicated and do not start
with the explicit matrix form right
away. We do this, because it’s possible
to work in a different basis where the
matrices γμ look completely different.
(For more information about this have a
look at Sec. 8.10). Take note that in the
Lagrangian the Dirac spinors appear al-
ways in combination with the matrices
γμ. We can always add a 1 = U−1U,
with some arbitrary invertible ma-
trix U, between them. For example,
∂μΨ̄γμΨ = ∂μΨ̄ U−1U︸ ︷︷ ︸

=1

γμ U−1U︸ ︷︷ ︸
=1

Ψ =

∂μ Ψ̄U−1︸ ︷︷ ︸
=Ψ̄′

UγμU−1︸ ︷︷ ︸
γ′

μ

UΨ︸︷︷︸
Ψ′

. Physics is of

course completely independent of such
transformations, but we can use this to
simplify computations. The basis we
prefer to work with in this text is called
Weyl Basis. In other bases the two com-
ponents of a Dirac spinor are mixtures
of χL and ξR. Nevertheless, the projec-
tion operator defined as PL = 1−γ5

2 ,
always projects out the left-chiral
component, because PWeyl

L ΨWeyl =

ΨWeyl
L ⇒ P′

LΨ′ =
1−γ′

5
2 Ψ′︸︷︷︸

UΨWeyl

=

1−Uiγ0U−1Uγ1U−1Uγ2U−1Uγ3U−1

2 UΨWeyl =
U−Uiγ0γ1γ2γ3

2 ΨWeyl = U
(

1−γ5
2

)
ΨWeyl =

UΨWeyl
L = Ψ′

L �

PL =
1 − γ5

2
=

(
1 0
0 0

)
(7.102)

and we can define analogously

PR =
1 + γ5

2
=

(
0 0
0 1

)
. (7.103)

Now, in order to accommodate for the fact that only left-chiral
particles interact via the weak force, we must simply include PL into
all terms of the Lagrangian that describe the interaction of W±

μ and
Zμ with different fields. The corresponding terms were derived in
Sec. 7.2, and the final result was Eq. 7.58, which we recite here for
convenience:

L = iΨ̄γμ∂μΨ + Ψ̄γμσjW
μ
j Ψ − 1

4
(Wμν)i(Wμν)i. (7.104)
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The relevant term is Ψ̄γμσjW
μ
j Ψ and we simply add PL:

→ L = iΨ̄γμ∂μΨ + Ψ̄γμσjW
μ
j PLΨ − 1

4
(Wμν)i(Wμν)i. (7.105)

Here PL acts on a doublet and is therefore

PLΨ =

(
PL 0
0 PL

)(
ψ1

ψ2

)
=

(
(ψ1)L

(ψ2)L

)
. (7.106)

One PL is enough to project the left-chiral component out of both
doublets Ψ̄ and Ψ. To see this we need three identities:

• (PL)
2 = PL, which is obvious from the explicit matrix form and

because every projection operator must have this property45. Pro-45 Another defining condition of any
projection operator is PLPR = PRPL = 0,
which is here fulfilled as you can check
by using the explicit form of PL,PR and
γ5.

jecting twice must be the same as projecting one time.

• {γ5, γμ} = γ5γμ + γμγ5 = 0, which you can check by brute force
computation46.

46 Or using another identity {γμ, γν} =

γμγν + γνγμ = 1
2 ημν, where ημν is the

Minkowski metric and the definition of
γ5 = iγ0γ1γ2γ3.

• (PL)
† = PL, because γ5 is real, as can be seen from the explicit

matrix form: γ5 =

(
−1 0
0 1

)

The second identity simply tells us that γ5γμ = −γμγ5, i.e. that
we can switch the position of γ5 and any γμ matrix, as long as we
include a minus sign. This tells us

γμPL = γμ
1 − γ5

2
=

1 + γ5

2
γμ = PRγμ. (7.107)

We can now rewrite the relevant term of Eq. 7.105:

Ψ̄γμσjW
μ
j PLΨ = Ψ̄γμσjW

μ
j (PL)

2Ψ

= Ψ̄︸︷︷︸
Ψ†γ0

γμPL︸ ︷︷ ︸
PRγμ

σjW
μ
j PLΨ︸︷︷︸

ΨL

= Ψ† γ0PR︸ ︷︷ ︸
PLγ0

γμσjW
μ
j ΨL

=︸︷︷︸
Using P†

L=PL and (AB)†=((AB)T)�=(BT AT)�=B† A†

(PLΨ)†γ0γμσjW
μ
j ΨL

= (PLΨ︸︷︷︸
=ΨL

)†γ0γμσjW
μ
j ΨL

= Ψ̄LγμσjW
μ
j ΨL � (7.108)

Now we know how we can describe mathematically that only

left-chiral fields interact via the weak force, but why does this

mean that parity is violated? To understand this we need to parity
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transform this term, because if it isn’t invariant, the physical system
in question is different from its mirror image47. Here we need the 47 This means an experiment, whose

outcome depends on this term of
the Lagrangian, will find a different
outcome if everything in the experiment
is arranged mirrored.

parity operator for spinors48 Pspinor and vectors49 Pvector. The trans-

48 The parity operator for spinors
was derived in Sec. 3.7.9. Using the
γμ matrices, we can write the parity
operator derived there as P = γ0 =(

0 σ0
σ0 0

)
=

(
0 1
1 0

)

49 The parity operator for vectors is

simply Pvector =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

as already mentioned in Eq. 3.132.

formation yields

Ψ̄︸︷︷︸
=Ψ†γ0

γμσj(W
μ
j )PLΨ → (PspinorΨ)†γ0γμσj(PvectorWμ)jPL(PspinorΨ)

= (Ψ)†γ0γ0γμσj(PvectorWμ)jPLγ0Ψ

=︸︷︷︸
using {γ5, γ0} = 0 and PL = 1−γ5

2

(Ψ)†γ0γ0γμγ0σj(PvectorWμ)jPRΨ.

(7.109)

Then we can use γ0γ0γ0 = γ0 and γ0γiγ0 = −γi, as you can check
by looking at the explicit form of the matrices. Furthermore, we have
PvectorW0 = W0 and PvectorWi = −Wi, which follows from the explicit
form of Pvector. We conclude these two minus signs cancel each other
and the parity transformed term of the Lagrangian reads:

(PspinorΨ)†γ0γμσj(PvectorWμ)jPL(PspinorΨ) = Ψ̄γμσjW
μ
j PRΨ �= Ψ̄γμσjW

μ
j PLΨ

(7.110)
Therefore this term isn’t invariant and parity is violated.

Parity violation has another important implication. Recall that
we always write things below each other between two big brackets
if they can transform into each other50. For example, we use four- 50 This is explained in appendix A.

vectors, because their components can transform into each other
through rotations or boosts. In this section we learned that only left-
chiral particles interact via the weak force and the correct term in the
Lagrangian is Ψ̄γμσjW

μ
j PLΨ = Ψ̄LγμσjW

μ
j ΨL. In physical terms this

term means that the components of the left-chiral doublets, which
means the two spin 1

2 fields (ψ1)L, (ψ2)L, can transform into each
other through weak-interactions. Right-chiral fields do not interact
via the weak force and therefore (ψ1)R, (ψ2)R aren’t transformed into
each other. Therefore writing them below each other between two
big brackets makes no sense. In mathematical terms this means that
right-chiral fields form SU(2) singlets, i.e. are objects transforming
according to the 1 dimensional representation of SU(2), which do not
change at all, as explained in Sec. 3.6.3. So let’s summarize:

• Left-chiral fields are written as SU(2) doublets: ΨL =

(
(ψ1)L

(ψ2)L

)
,

because they interact via the weak force and therefore can trans-
form into each other. They transform under the two-dimensional
representation of SU(2):

ΨL → Ψ′
L = ei�a�σ2 ΨL (7.111)
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• Right-chiral fields are described by SU(2) singlets: (ψ1)R, (ψ2)R,
because they do not interact via the weak force and therefore can’t
transform into each other. Therefore they transform under the
one-dimensional representation of SU(2):

(ψ1)R → (ψ1)
′
R = e0(ψ1)R = (ψ1)R

(ψ2)R → (ψ2)
′
R = e0(ψ2)R = (ψ2)R (7.112)

Now we move on and try to understand how mass terms for spin
1
2 particles can be added in the Lagrangian without spoiling any
symmetry.

7.5 Lepton Mass Terms

At the beginning of Sec. 7.2, we discovered that we can’t include
arbitrary mass terms Ψ̄mΨ without spoiling the SU(2) symmetry.
Now we will see that parity violation makes this problem even big-
ger. After discussing the problem, we will see that again the Higgs
mechanism is a solution.

In the last section we talked a bit about the chirality of the cou-
pling term: Ψ̄γμσjW

μ
j PLΨ. What about the chirality of a mass term?

Take a look again at the invariants without derivatives for spinors,
which we derived in Eq. 6.7 and Eq. 6.8:

I1 := (χa)
†ξ ȧ = (χL)

†ξR and I2 := (ξa)Tχa = (ξR)
†χL (7.113)

We can write these invariants using Dirac spinors as5151 The Dirac spinors ψL and ψR are
defined using the chiral-projection
operators introduced in the last section:
ψL = PLψ and ψR = PRψ. And we have
as always ψ̄ = ψ†γ0.

ψ̄ψ = ψ̄LψR + ψ̄RψL

=
(

χ†
L 0

)(
0 σ0

σ0 0

)(
0

ξR

)
+

(
0 ξ†

R

)(
0 σ0

σ0 0

)(
χL

0

)

= χ†
LξR + ξ†

RχL � (7.114)

We can see that Lorentz invariant mass terms always combine left-
chiral with right-chiral fields. This is a problem, because left-chiral
and right-chiral fields transform differently under SU(2) transfor-
mations, as explained at the end of the last section. The left-chiral
fields are doublets, whereas the right-chiral fields are singlets. The
multiplication of a doublet and singlet is not SU(2) invariant. For
example

Ψ̄L︸︷︷︸
doublet

ψR︸︷︷︸
singlet

→ Ψ̄′
Lψ′

R = Ψ̄Le−ibi
σi
2 ψR �= Ψ̄LψR (7.115)
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From the experience with mass terms for spin 1 fields, we know
what to do: Instead of considering terms as above, we add SU(2)
invariant coupling terms with a spin 0 fields to the Lagrangian. Then,
by choosing the vacuum value for the spin 0 field we break the sym-
metry and generate mass terms.

A SU(2), U(1) and Lorentz invariant term, coupling a spin 0 dou-
blet and our spin 1

2 fields together, is given by

Ψ̄LΦψR. (7.116)

To see the invariance we transform this term with a SU(2) trans-
formation52 52 Remember ΦL → Φ′L = eibi(x)σi ΦL

and σ†
i = σi

Ψ̄LΦψR → Ψ̄′LΦ′ψR = Ψ̄Le−ibi(x)σi eibi(x)σi ΦψR = Ψ̄LΦψR �

and equally for a U(1) transformation:

Ψ̄LΦψR → Ψ̄′LΦψ′R = Ψ̄Le−ia(x)Φeia(x)ψR = Ψ̄LΦψR �

The spin 0 field does not transform at all under Lorentz transfor-
mations53 and therefore the term is Lorentz invariant, because we 53 By definition a spin 0 field transforms

according to the (0, 0) representation
of the Lorentz group. In this represen-
tation all Lorentz transformations are
trivially the identity transformation.
This was derived in Sec. 3.7.4.

have the same Lorentz invariant terms as in Eq. 7.114.

This kind of term is called Yukawa coupling and we add it, with
the equally allowed Hermitian conjugate to the Lagrangian, including
a coupling constant54 −λ2 54 The strange name −λ2 and why we

are only adding ψR
2 here will become

clear in a moment, because terms
including ψR

1 and −λ1 will be discussed
afterwards.

L = −λ2(Ψ̄LΦψR
2 + ψ̄R

2 Φ̄ΨL). (7.117)

This extra term does not only describe the interaction between the
fermions and the Higgs field, but also leads to finite mass terms for
the spin 1

2 fields after the SU(2) symmetry breaking. We put the
expansion around the vacuum value, we chose (Eq. 7.77)

Φ =

√
1
2

(
0

v + h

)

into the Lagrangian, which yields

L = − λ2√
2

((
Ψ̄L

1 , Ψ̄L
2

)(
0

v + h

)
ψR

2 + ψ̄R
2

(
0, v + h

)(
ΨL

1
ΨL

2

))

= −λ2(v + h)√
2

(
Ψ̄L

2 ψR
2 + ψ̄R

2 ΨL
2

)
.

Equation 7.114 tells us this is equivalent to

= −λ2(v + h)√
2

ψ̄2ψ2 (7.118)
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= −λ2v√
2
(ψ̄2ψ2)︸ ︷︷ ︸

Fermion mass term

− λ f h√
2
(ψ̄2ψ2)︸ ︷︷ ︸

Fermion-Higgs interaction

. (7.119)

We see that we get indeed through the Higgs mechanism the re-
quired mass terms. Again, we used symmetry constraints to add a
term to the Lagrangian, which yields after spontaneous symmetry
breaking mass terms for the spin 1

2 fields. Take note that we only
generated mass terms for the second field inside the doublet ψ2.
What about mass terms for the first field ψ1?

To get mass terms for the first field Ψ1 we need to consider cou-
pling terms to the charge-conjugated55 Higgs field Φ̃ = εΦ�, because55 Charge conjugation is explained in

Sec. 3.7.10.

Φ =

(
0

v+h√
2

)
→ Φ̃ = εΦ� =

(
0 1
−1 0

)(
0

v+h√
2

)
=

(
v+h√

2
0

)
. (7.120)

Following the same steps as above with the charge conjugated Higgs
field leads to mass terms for Ψ1:

L = −λ f (Ψ̄
LΦ̃ψR

1 + ψ̄R
1

˜̄ΦΨL).

= − λ1√
2

((
Ψ̄L

1 , Ψ̄L
2

)(
v+h√

2
0

)
ΨR

1 + Ψ̄R
1

(
v+h√

2
0

)(
ΨL

1
ΨL

2

))

= −λ1(v + h)√
2

(
Ψ̄L

1 ΨR
1 + Ψ̄R

1 ΨL
1

)
To understand the rather abstract doublets better, we rewrite them

more suggestively5656 A neutrino is always denoted by a ν.
In this step we simply give the two
fields in the doublet ψ1 and ψ2 their
conventional names: electron field e and
electron-neutrino field ve. Ψ =

(
νe

e

)
(7.121)

and equivalently for the other leptons μ, νμ and τ, ντ . This form of
the doublets is suggested by experiments, because an electron e is
always transformed by weak interactions into another electron e, with
possibly different momentum, or a electron-neutrino ve plus other
particles. In weak interactions e and νe (equivalently μ and νμ or τ

and ντ) always appear in pairs. This can be understood by looking
at the coupling term Ψ̄γμσjW

μ
j PLΨ. As discussed in the last section

this can be rewritten using the explicit matrix form of the Pauli ma-
trices57 σi, which then gives us terms coupling the components of the57 This gives us once more

σiW
μ
i =

(
Wμ

3 Wμ
1 − iWμ

2
Wμ

1 + iWμ
2 −Wμ

3

)
which we can rewrite using

W± = 1√
2
(W1 ∓ W2):

⇒ σiW
μ
i =

(
Wμ

3

√
2W+√

2W− −Wμ
3

)

doublets together:
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Ψ̄γμσjW
μ
j PLΨ =

(
ν̄e ē

)
γμ

(
Wμ

3

√
2W+√

2W− −Wμ
3

)
PL

(
νe

e

)

=︸︷︷︸
using Eq. 7.105

(
(ν̄e)L (ē)L

)
γμ

(
Wμ

3

√
2W+√

2W− −Wμ
3

)(
(νe)L

(e)L

)

= (ν̄e)LγμWμ
3 (νe)L + (ν̄e)Lγμ

√
2W+(e)L

+ (ē)Lγμ

√
2W−(νe)L − (ē)LγμWμ

3 (e)L. (7.122)

If we want to consider all lepton generations at once, i.e. e, μ and τ,
we need to write down three terms like this into the Lagrangian:

Ψ̄eγμσjW
μ
j PLΨe + Ψ̄μγμσjW

μ
j PLΨμ + Ψ̄τγμσjW

μ
j PLΨτ , (7.123)

which can be written more compact by introducing Ψl =

(
νl

l

)
,

where l = e, μ, τ:
Ψ̄lγμσjW

μ
j PLΨl

.

Using the notation l =

(
lL

lR

)
the mass terms read

−λlv√
2
(l̄l)︸ ︷︷ ︸

Fermion mass term

− λ f h√
2
(l̄l)︸ ︷︷ ︸

Fermion-Higgs interaction

and equivalently for the neutrinos.
This Lagrangian enables us to predict something about the Higgs

field h that can be tested in experiments. For a given lepton, the mass
is given by

ml =
λlv√

2
→ λl =

ml
√

2
v

(7.124)

and the coupling strength of this lepton to the Higgs is given by

cl =
λlh√

2
=︸︷︷︸

Eq. 7.124

ml
√

2h√
2v

=
mlh

v
. (7.125)

The last equation means that the coupling strength of the Higgs
to a lepton is proportional to the mass of the lepton. The heavier the
lepton the stronger the coupling. The same is true for all particles
and the derivation is completely analogous.

There are other spin 1
2 particles, called quarks, that interact via the

weak force. In addition, quarks interact via a third force, called the



160 physics from symmetry

strong force and this will be the topic of Sec. 7.8, but first we want to
talk about mass terms for quarks. Happily these can be incorporated
analogously to the lepton mass terms.

7.6 Quark Mass Terms

We learned in the last section that an SU(2) doublet contains the
particles that are transformed into each other via the weak force. For
quarks58 these are the up- and down quark:58 If you’ve never heard of quarks

before, have a look at Sec. 1.3.

q =

(
u
d

)
(7.126)

and equally for the strange and charm or top and bottoms quarks.

Again, we must incorporate the experimental fact that only left-
chiral particles interact via the weak force. Therefore, we have left-
chiral doublets and right-chiral singlets:

qL︸︷︷︸
doublet

=

(
uL

dL

)
→ eiai

σi
2 qL (7.127)

uR︸︷︷︸
singlet

→ uR

dR︸︷︷︸
singlet

→ dR. (7.128)

Again, right-chiral particles do not interact via the weak force and
therefore they aren’t transformed into anything and form a SU(2)
singlet (=one component object).

The problem is the same as for leptons: To get something Lorentz
invariant, we need to combine left-chiral with right-chiral spinors.
Such a combination is not SU(2) invariant and we use again the
Higgs mechanism. This means, instead of terms like

q̄LuR + q̄LdR + ūRqL + d̄RqL, (7.129)

which aren’t SU(2) invariant, we consider the coupling of the quarks
to a spin 0 field doublet Φ:

λuq̄LΦ̃uR + λdq̄LΦdR + λuūRΦ̃qL + λdd̄RΦqL, (7.130)

with coupling constants λu, λd and the charge conjugated Higgs
doublet59 which is needed in order to get mass terms for the up

59 This is defined in Eq. 7.120:

Φ̃ = εΦ� =︸︷︷︸
(

v+h√
2

0

)
.

quarks60
60 We defined the doublets as

(
u
d

)
.

Multiplication of this doublet with

Φ =

(
0

v+h√
2

)
always results in terms

proportional to d.
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Then, everything is analogous to the lepton case: We put the
expansion of the Higgs field around its minimum61 into the La- 61 Φ =

(
0

v+h√
2

)
and equivalently for the

charge-conjugated Higgs field.
grangian, which gives us mass terms plus quark-Higgs coupling
terms.

7.7 Isospin

Now it’s time we talk about the conserved quantity that follows from
SU(2) symmetry. The free Lagrangians are only globally invari-
ant and we need interaction terms to make them locally symmet-
ric. Recall that global symmetry is a special case of local symmetry.
Therefore we have global symmetry in every locally invariant La-
grangian and the corresponding conserved quantity is conserved for
both cases. The result will be that global SU(2) invariance gives us
through Noether’s theorem, a new conserved quantity called isospin.
This is similar to electric charge, which is the conserved quantity that
follows from global U(1) invariance.

Noether’s theorem for internal symmetry (Sec. 4.5.5, especially
Eq. 4.56) tells us that

∂0

∫
d3x

∂L

∂(∂0Ψ)
δΨ︸ ︷︷ ︸

=Q

= 0 (7.131)

The Lagrangian is invariant under transformations of the form

Ψ → eiai
σi
2 Ψ = (1 + iai

σi
2
+ . . .)Ψ (7.132)

Therefore our infinitesimal variation is δΨ = iai
σi
2 Ψ, with arbitrary

ai. This tells us we get one conserved quantity for each generator,
because the Lagrangian is invariant regardless of if two of the three
ai are zero and one isn’t. For example, a2 = a3 = 0 and a1 �= 0 or
a1 = a2 = 0 and a3 �= 0. Of course we get another conserved quantity
for a1 �= 0, a2 �= 0 and a3 �= 0, which is just the sum of the conserved
quantities we get from the individual generators. In other words: We
get three independently conserved quantities, one for each generator
of SU(2).

The globally invariant, free Lagrangian (Eq. 7.45) is

LD1+D2 = iΨ̄γμ∂μΨ.

The corresponding conserved quantities Qi, for example for the
electron-neutrino doublet, are62 62 See Eq. 7.131 and as always defined

without the arbitrary constants ai .
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Qi = iΨ̄γ0
σi
2

Ψ

=

(
ve

e

)†

γ0γ0︸︷︷︸
=1

σi
2

(
ve

e

)
. (7.133)

Recall that only σ3 is diagonal. This means we are only able to
assign a definite value to the two components of the doublet (ve, e)
for the conserved quantity i = 3. For the other generators, σ1 and σ2,
our two components ve and e aren’t eigenstates. We are of course free
to choose a different basis, where for example σ2 is diagonal. Then
we can simply redefine what we call ve and e and get the same result.
The thing to take away is that although we have three conserved
quantities, one for each generator, we can only use one at a time to
label our particles/states.

For i = 3 we have

Q3 =

(
ve

e

)†
σ3

2

(
ve

e

)

=
1
2

(
ve

e

)† (
1 0
0 −1

)(
ve

e

)

=
1
2

v†
e ve − 1

2
e†e (7.134)

This means we can assign Q3(ve) = 1
2 and Q3(e) = − 1

2 as new
particle labels. In contrast for i = 1, we have

Q1 =

(
ve

e

)†
σ1

2

(
ve

e

)

=
1
2

(
ve

e

)† (
0 1
1 0

)(
ve

e

)

=
1
2

v†
e e +

1
2

e†ve (7.135)

and we can’t assign any particle labels here, because the matrix σ1

isn’t diagonal.

7.7.1 Labelling States

Recall that in Sec. 3.5, we introduced the notion of Cartan generators,
which is the set of diagonal generators of a given group. In the last
section we learned that these generators become especially useful if
we want to give new labels to our particles inside a doublet63 object.63 In a later section we will learn that

the same can be done for triplets and
the conserved quantities following from
SU(3) invariance.
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A typical SU(2) doublet is of the form(
ve

e

)
. (7.136)

SU(2) has exactly one cartan generator J3 = 1
2 σ3, with eigen-

values + 1
2 and − 1

2 . A (left-chiral) neutrino

(
ve

0

)
is an eigenstate of

this generator, with eigenvalue + 1
2 and a (left-chiral) electron

(
0
e

)
an eigenstate of this generator, with eigenvalue − 1

2 . These are new
particle labels, which are called the isospin of the neutrino and the
electron.

Following the same line of thoughts we can assign an isospin
value to the right-chiral singlets. These transform according to the
one-dimensional representation of SU(2), and the generators are
in this representation simply zero64: Ji = 0. Therefore, in this one- 64 The right-chiral singlets do not trans-

form at all as explained in Sec. 3.7.4.dimensional representation, the singlets are eigenstates of the Cartan
generator J3 with eigenvalue zero. The right-chiral singlets, like eR

carry isospin zero. This coincides with the remarks above that right-
chiral fields do not interact via the weak force. Just as electrically
uncharged objects do not interact via electromagnetic interactions,
fields without isospin do not take part in weak interactions.

Finally, we can assign isospin values to the three gauge fields
Wμ

+, Wμ
−, Wμ

3 . The three gauge fields form a SU(2) triplet

Wμ =

⎛
⎜⎝Wμ

+

Wμ
−

Wμ
3

⎞
⎟⎠ , (7.137)

which transforms according to the three dimensional representation
of SU(2). In this representation the Cartan generator J3 has eigenval-
ues65 +1,−1, 0 and therefore we assign Q3(W

μ
+) = 1, Q3(W

μ
−) = −1, 65 This can be seen directly from the

explicit matrix form of J3 in Eq. 3.121:

J3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠.

Q3(W
μ
3 ) = 0. This is the isospin of the W+ and the W− bosons.

Take note that the triplet

⎛
⎜⎝Wμ

1
Wμ

2
Wμ

3

⎞
⎟⎠ simply belongs to a different

basis, where J3 isn’t diagonal. This can be seen as another reason for
our introduction of Wμ

±.
If this is unclear, take a look at how we introduced the three gauge

fields Wμ
i . They were included into the Lagrangian in combina-

tion with the generators σiW
μ
i . This can be seen as a basis expan-

sion of some objects Wμ in terms of the basis σi: Wμ = σiW
μ
i =

σ1Wμ
1 + σ2Wμ

2 + σ3Wμ
3 analogous to how we can write a vector in

terms of basis vectors: �v = v1�e1 + v2�e2 + v3�e3. The generators σi live
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in the Lie algebra66 of SU(2) and consequently our object Wμ lives66 The Lie algebra is a vector space!

there, too. Therefore, if we want to know how Wμ transforms, we
need to know the representation of SU(2) on this vector space, i.e. on
its own Lie algebra. In other words: We need to know how the group
elements of SU(2) act on their own Lie algebra elements, i.e. its gen-
erators. This may seem like a strange idea at first, but actually is a
quite natural idea. Recall how we defined a representation: A repre-
sentation is a map67 from the group to the space of linear operators67 To be precise: A homomorphism,

which is a map that satisfies some
special conditions.

over a vector space. So far we only looked at "external" vector spaces
like Minkowski space. The only68 intrinsic vector space that comes

68 A group itself is in general no vector
space. Although we can take a look at
how the group acts on itself, this is not
a representation, but a realization of the
group.

with a group is its Lie algebra! Therefore it isn’t that strange to ask
what a group representation on this vector space looks like. This very
important representation is called the adjoint representation.

Gauge fields (like W+, W−, W3) are said to live in the adjoint rep-
resentation of the corresponding group. For SU(2) the Lie algebra is
three dimensional, because we have three generators and therefore
the adjoint representation is three dimensional. Exactly how we are
able to write the components of a vector between two brackets69, we

69�v =

⎛
⎝v1

v2
v3

⎞
⎠

can write the component of Wμ between two brackets70, which is

70 Wμ =

⎛
⎝Wμ

1
Wμ

2
Wμ

3

⎞
⎠

what we call a triplet . The generators in the adjoint representation
are connected to the three dimensional generator we derived earlier
through a basis transformation.

In the following section we move on to the "next higher" internal
symmetry group SU(3). Demanding local SU(3) invariance of the
Lagrangian gives us the correct Lagrangian describing strong interac-
tion.

7.8 SU(3) Interactions

For three fermion fields we can find a locally SU(3) invariant La-
grangian in exactly the same way we did in the last chapter for two
fields and SU(2). This symmetry is not broken and the correspond-
ing spin 1 fields, called gluon fields, are massless. SU(3) is the group
of all unitary 3 × 3 matrices with unit determinant, i.e.

U†U = UU† = 1 det U = 1. (7.138)

As usual for Lie groups we can write this as an exponential func-
tion7171 As already noted in Sec. 2.4, Capital

Roman letters A, B, . . . are always
summed from 1 to 8.

U = eiTAθA . (7.139)

The defining equations 7.138 of the group require, as for72 SU(2), the

72 See 3.80 and the following text plus
equations, where the basis was given by
the 2 × 2 Pauli matrices.

generators to be Hermitian and traceless

T†
A = TA (7.140)
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tr(TA) = 0 (7.141)

A basis for those traceless, Hermitian generators is, at least in one

representation, given by eight73 3 × 3 matrices, called Gell-Mann 73 It can be shown that in general for
SU(N) there are N2 − 1 generators. The
number of generators is often called the
rank of a group.

matrices:

λ1 =

⎛
⎜⎝ 0 1 0

1 0 0
0 0 0

⎞
⎟⎠ λ2 =

⎛
⎜⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎟⎠ λ3 =

⎛
⎜⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎟⎠

(7.142a)

λ4 =

⎛
⎜⎝ 0 0 1

0 0 0
1 0 0

⎞
⎟⎠ λ5 =

⎛
⎜⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎟⎠ λ6 =

⎛
⎜⎝ 0 0 0

0 0 1
0 1 0

⎞
⎟⎠

(7.142b)

λ7 =

⎛
⎜⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎟⎠ λ8 = 1√

3

⎛
⎜⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎟⎠ . (7.142c)

The generators of the group are connected to these Gell-Mann ma-
trices, just as the Pauli matrices were connected to the generators74 74 Ji =

σi
2 , see Eq. 3.82 and the explana-

tions there.of the SU(2) group via TA = 1
2 λA. The Lie algebra for this group is

given by
[TA, TB] = i f ABCTC, (7.143)

where we adopted the standard convention that capital letters like
A, B, C can take on every value from 1 to 8. f ABC are called the struc-
ture constants of SU(3), which for SU(2) were given by the Levi-
Civita symbol εijk. They can be computed by brute-force computa-
tion, which yields75 75 This is not very enlightening, but we

list it here for completeness.f 123 = 1 (7.144)

f 147 = − f 156 = f 246 = f 257 = f 345 = − f 367 =
1
2

(7.145)

f 458 = f 678 =

√
3

2
, (7.146)

where all others can be computed from the fact that the structure
constants f ABC are antisymmetric under permutation of any two
indices. For example

f ABC = − f BAC = − f CBA. (7.147)

All other possibilities, which cannot be computed by permutation,
vanish.
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Analogously to what we did for SU(2) in Sec. 7.2, we introduce
triplets of spin 1

2 fields

Q =

⎛
⎜⎝q1

q2

q3

⎞
⎟⎠ (7.148)

and exactly as for SU(2) we get new labels for the objects inside this
triplet, which we will discuss in the next section.

To make the Lagrangian

L = iQ̄∂μγμQ − Q̄mQ (7.149)

locally SU(3) invariant, one again adds coupling terms between
the spin 1

2 fields and new spin 1 fields. The derivation is analogous
as for SU(2), but the computations are quite cumbersome, so we just
quote the final Lagrangian7676 Remember: the sum over capital

letters (A, B, C, ...) runs from 1 to 8

L = −1
4

FA
αβFαβ

A + Q̄(iDμγμ − m)Q, (7.150)

and the field strength tensor FA
αβ for the spin 1 gluon field GA

α is
defined as

FA
αβ = ∂αGA

β − ∂βGA
α − g f ABCGB

α GC
β (7.151)

where f ABC are the structure constants of SU(3) that already ap-
peared in the commutator of the generators. Furthermore, Dα is
defined as

Dα = ∂α + igTCGC
α (7.152)

where TC are the generators of SU(3) defined at the beginning of this
section. As you can check every term here is completely analogous
to the SU(2) case, except we now have different generators with
different commutation properties.

7.8.1 Color

From global SU(3) symmetry we get through Noether’s theorem new
conserved quantities, which is analogous to what we discussed for
SU(2) in Sec. 7.7. Following the same lines of thought as for SU(2)
tells us that we have 8 conserved quantities, one for each genera-
tor. Again, we can only use the conserved quantities that belong to
the diagonal generators as particle labels. SU(3) has two Cartan7777 Recall, Cartan generators = diagonal

generators. generators 1
2 λ3 and 1

2 λ8. Therefore, every particle that interacts via
the strong force carries two additional labels, corresponding to the
eigenvalues of the Cartan generators.

The eigenvalues78 of 1
2 λ3 = 1

2

⎛
⎜⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎟⎠ are + 1

2 ,− 1
2 , 0.

78 The eigenvectors are of course

⎛
⎝1

0
0

⎞
⎠,

⎛
⎝0

1
0

⎞
⎠ and

⎛
⎝0

0
1

⎞
⎠.
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For λ8 = 1
2
√

3

⎛
⎜⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎟⎠ the eigenvalues79 are 1

2
√

3
, 1

2
√

3
, −1√

3
79 Corresponding to the same eigenvec-

tors

⎛
⎝1

0
0

⎞
⎠,

⎛
⎝0

1
0

⎞
⎠ and

⎛
⎝0

0
1

⎞
⎠.

Therefore if we arrange the strong interacting fermions into
triplets (in the basis spanned by the eigenvectors of the Cartan gener-
ators), we can assign them the following labels, with some arbitrary
spinor ψ:

(+
1
2

,
1

2
√

3
) for

⎛
⎜⎝1

0
0

⎞
⎟⎠ ψ,

where one usually defines red:= ( 1
2 , 1

2
√

3
). This means something of

the form

⎛
⎜⎝Ψ

0
0

⎞
⎟⎠ is called red.

Analogous

(−1
2

,
1

2
√

3
) for

⎛
⎜⎝0

1
0

⎞
⎟⎠ ψ

with blue:= (−1
2 , 1

2
√

3
) and analogously green:= (0, −1√

3
). The color

idea comes from the fact that if we add the three colors, i.e.⎛
⎜⎝1

1
1

⎞
⎟⎠ ψ,

we get a state with charge zero (a colorless state), because

λ3

⎛
⎜⎝1

1
1

⎞
⎟⎠ = 0 and λ8

⎛
⎜⎝1

1
1

⎞
⎟⎠ = 0,

which is analogous to sunlight that contains all colors of light, but is
colorless, nonetheless.

Completely analogous to what we did for SU(2) we assign the
color-charge zero to all SU(3) singlets, which are then particles that
do not interact via the strong force. Formulated differently: They
are colorless. In addition, one can use the (8-dimensional80) adjoint 80 The adjoint representation of SU(3)

is 8 dimensional, because we have 8
generators.

representation of SU(3) to assign color to the gauge fields Gμ
A, i.e.

the gluons, completely analogous to how we assigned isospin to the
W-Bosons in Sec. 7.7.

7.8.2 Quark Description

Recall that spin 1
2 particles81, which interact via the strong force are 81 Which are created by spin 1

2 fields, as
we will learn in Chap. 6.
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called quarks. If we want to talk about quarks we have to consider
quite a lot of things:

• Quarks are SU(3) triplets, denoted by Q. Inside a triplet we have

the same quark, say an up-quark, in different colors: U =

⎛
⎜⎝ur

ub

ug

⎞
⎟⎠.

The triplets always appear in pairs Q̄Q in order to get something
SU(3) invariant, exactly as we always need doublet pairs in order
to get something SU(2) invariant. Instead of writing Q̄Q, we can
use an index notation: Q̄Q = q̄cqc, where the index c stands for
color c = r, g, b.

• In addition, quarks are SU(2) doublets, because they interact via
the weak force, too. Each object in this doublet82 (=each quark) is a82 Each quark doublet consists of two

different quarks, for example an up-
and a down-quark or a top- and a
bottom-quark.

triplet: q =

(
uc

dc

)
. This can become very confusing, very fast and

therefore the color index c is suppressed unless strong interactions
are considered.

• As if this weren’t enough, we need to remember that each quark
is described by a Dirac spinor, which is again a two component

object uc =

(
(χL

u)c

(ξR
u )c

)
. The upper components describes a left-chiral

and the lower component the same quark with right-chirality.

Having talked about this, let’s return to SU(3) interactions. Hap-
pily, there is no experimental need for mass terms for the gauge
bosons in the Lagrangian, because all experiments indicate that the
gauge bosons of SU(3), called gluons, are massless. Therefore SU(3)
is not broken.

Furthermore, the SU(3) symmetry poses no new problems regard-
ing mass terms for the fermions in the triplet, because a term of the
form

Q̄mQ (7.153)

is SU(3) invariant, as long as all particles in the triplet have equal
mass. This means m is proportional to the unit matrix83. The objects

83 m = m

⎛
⎝1 00

0 1 0
0 0 1

⎞
⎠, instead of

m = m

⎛
⎝m1 0 0

0 m2 0
0 0 m3

⎞
⎠

inside a triplet describe the same quark in different colors, which
indeed have equal mass. For example, for an up-quark the triplet is

U =

⎛
⎜⎝ur

ub

ug

⎞
⎟⎠ , (7.154)

where ur denotes a red, ub a blue and ug green up-quark, which all
have the same mass.
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The other spin 1
2 particles, like electrons or neutrinos, do not carry

color and therefore do not couple to gluons. The interactions fol-
lowing from local SU(3) invariance are called strong interactions,
because the coupling constant is much bigger than for electromag-
netic (U(1)) or weak (SU(2)) interactions.

7.9 The Interplay Between Fermions and Bosons

This section summarizes what we discovered in this chapter and
puts it in a more physical context. We will learn later that spin 1

2
fields create and destroy spin 1

2 particles. Analogously, spin 1 fields
create and destroy spin 1 particles. In this chapter we derived the
Lagrangians that describe how different fields and therefore particles
interact with each other.

As already mentioned in Sec. 1.3 we call spin 1
2 particles fermions

and spin 1 particles bosons. The standard interpretation is that
fermions make up matter and bosons mediate the forces between
matter. We can now understand how this comes about.

We started the chapter with Lagrangians describing free fields,
which we derived in Chap. 6. Then we discovered internal sym-
metries for the Lagrangian describing one, two or three free spin 1

2
fields. These internal symmetries are only global symmetries, which
is quite unconvincing because of special relativity. More natural
would be local symmetries.

We then discovered that we could make the Lagrangians locally
invariant by introducing additional coupling terms. These coupling
terms describe the interaction of our spin 1

2 fields with new spin 1
fields. For historic reasons the internal symmetries here are called
gauge symmetries and we therefore call these new spin 1 fields,
gauge fields. Through Noether’s theorem we get for each inter-
nal symmetry new conserved quantities. These are interpreted as
charges, analogous to electric charge that follows for U(1) symmetry.

• To get a locally U(1) invariant Lagrangian, we need one gauge
field Aμ. The final Lagrangian describes correctly electromagnetic
interactions. U(1) symmetry tells us that electric charge is con-
served.

• To get a locally SU(2) invariant Lagrangian, we need three gauge
fields Wμ

1 , Wμ
2 , Wμ

3 . The final Lagrangian describes correctly weak
interactions. SU(2) symmetry tells us that isospin is conserved.

• To get a locally SU(3) invariant Lagrangian, we need eight such



170 physics from symmetry

fields Gμ
1 , Gμ

2 , . . .. The final Lagrangian describes correctly strong
interactions. SU(3) symmetry tells us that color is conserved.

Different bosons (spin 1 particles) are responsible for a different
kind of force. The electromagnetic force is mediated by photons,
which is created by the U(1) gauge field Aμ. The weak force is me-
diated by W+, W− and Z bosons and the strong force by 8 different
gluons, which are created by the corresponding SU(2) and SU(3)
gauge fields.

In addition, we discovered that SU(2) symmetry forbids mass
terms in the Lagrangian. From experiments we know this is incorrect.
The solution that enables us to include mass terms without spoiling
any symmetry is the Higgs mechanism. It works by including addi-
tional terms, describing coupling of our spin 1 and spin 1

2 fields to a
new spin 0 field, called the Higgs field. By breaking SU(2) symme-
try spontaneously and expanding the Higgs field around a new, no
longer symmetric minimum, we get the required mass terms in the
Lagrangian.
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8

Quantum Mechanics

Summary

In this chapter we will talk about quantum mechanics. The foun-
dation for everything here are the identifications we discussed in
Chap. 5. As a first result, we derive the relativistic energy-momentum

relation.

After discussing how the quantum formalism works, we take the
non-relativistic limit of the Klein-Gordon equation, because this is the
equation of motion for the simplest type of particles: Scalars. This
results in the famous Schrödinger equation. The solution of this
equation is interpreted as a probability amplitude and two simple
examples are analysed using this wave-mechanic approach.

Afterwards, the Dirac notation is introduced, which is very use-
ful for our understanding of the structure of quantum mechanics.
The initial state of a system is denoted by an abstract state vector |i〉,
called ket. The probability amplitude for measuring this initial state
in a specific final state can then be computed formally by multipli-
cation with a bra, denoted 〈 f |. The combination of a bra with a ket
results in a complex number that is interpreted as probability ampli-
tude A for the process i → f . The probability for this process is then
|A|2. Then we talk about projection operators. We will see how they
can be used, together with the completeness relation, to expand an
arbitrary state in the eigenstate basis of an arbitrary operator. The
previously used wave-mechanics can then be seen as a special case,
where we expand the states in the location basis. In the Dirac nota-
tion the Schrödinger equation is used to compute the time-evolution
of states. To make the connection explicit, we take a look at one of
the examples, we already solved using wave-mechanics, in the Dirac
notation.

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_8
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8.1 Particle Theory Identifications

The equations1 we derived so far can be used in particle- and field-1 The Klein-Gordon, Dirac, Proka and
Maxwell equations theories. In this chapter we want to investigate how they can be used

in a particle-theory. Our dynamic variables are then the location, the
energy and the momentum of the particle or particles in question.
As explained in Chap. 5, we identify these with the generators of the
corresponding symmetry22 See Eq. 3.240, Eq. 3.244 and Chap. 5

• momentum p̂i = −i∂i

• location x̂i = xi

• energy Ê = i∂0

• angular momentum L̂i = i 1
2 εijk(xj∂k − xk∂j)

Before we discuss how these operators are used in quantum me-
chanics, we use them to derive one of the most important equations
of modern physics.

8.2 Relativistic Energy-Momentum Relation

In Sec. 6.2 we derived the equation of motion for a free spin 0 field,
the Klein-Gordon equation:

(∂μ∂μ + m2)Φ = 0.

With the identifications reiterated above this equation reads3

3 Using pμ =

⎛
⎜⎜⎝

p0
p1
p2
p3

⎞
⎟⎟⎠ =

(
p0
�p

)
=

(
E
�p

)
(∂μ∂μ + m2)Φ = (∂0∂0 − ∂i∂i + m2)Φ

=

((
1
i

E
)(

1
i

E
)
−

(
−1

i
pi

)(
−1

i
pi

)
+ m2

)
Φ

= (−E2 + �p2 + m2)Φ = 0 (8.1)

→ E2 = �p2 + m2 or using four-vectors pμ pμ = m2 (8.2)

which is the famous energy-momentum relation of special-relativity.
For a particle at rest, i.e. �p = 0 this gives us Einstein’s famous equa-
tion

E2 = m2 → E = mc2

where we restored c2 for clarity. We can now understand why we
gave the scalar value of the first Casimir operator of the Poincare
group pμ pμ in Eq. 3.258 the suggestive name m2. The combination
pμ pμ is indeed the squared mass of the particle in question, which
can be measured in experiments, for example, by measuring the
energy and momentum of the particle: m =

√
E2 − �p2. For the same

reason, we understand now why the constant in the Lagrangian we
derived in Sec. 6.2 is conventionally called m2.
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8.3 The Quantum Formalism

Now that our physical quantities are given by operators, we need
something they can act on. First take note that we have for each op-
erator a set of eigenfunctions, which is completely analogous to the
eigenvectors of matrices. Matrices are finite-dimensional and there-
fore we get finite dimensional eigenvectors. Here our operators act
on an infinite-dimensional vector space and we therefore have eigen-
functions. For example, the eigenfunction equation for the momen-
tum operator we must solve is

−i∂i︸︷︷︸
operator

Ψ = pi︸︷︷︸
eigenvalue

eigenfunction︷︸︸︷
Ψ , (8.3)

with some number pi. A solution is

C︸︷︷︸
=const

eipixi because

→ −i∂iCeipixi = piCeipixi � (8.4)

but take note that this a solution for arbitrary pi. Therefore we have
found an infinite number of eigenfunctions for the momentum opera-
tor p̂i = −i∂i. Equivalently, we can search for energy eigenfunctions

i∂0Φ = EΦ (8.5)

or angular momentum eigenfunctions4. Analogous to eigenvectors 4 The discussion for angular momentum
eigenfunctions is a bit more compli-
cated, which can be seen, because the
operator is more complicated than the
others. We can’t find a set of eigenfunc-
tions for all three components at the
same time, because [L̂i , L̂j] �= 0. This
will be discussed in a moment. The
final result of a lengthy discussion is
that the corresponding eigenfunctions
of the third component of the angular
momentum operator L̂3 (and of the
squared angular momentum operator
L̂2, which commutes with all com-
ponents [L̂2, L̂j] = 0) are the famous
spherical harmonics. These form an
orthonormal basis.

for matrices, these eigenfunctions are bases5. This means we can

5 Recall that for matrices the eigenvec-
tors are a basis for the corresponding
vector space.

expand an arbitrary function Ψ in terms of eigenfunctions. For ex-
ample, in terms of momentum eigenfunctions6 (for brevity in one

6 Take note that this is exactly the
Fourier transform, which is introduced
in appendix D.1 and the factor 1√

2π
is a

matter of convention.

dimension)

Ψ =
1√
2π

∫ ∞

−∞
dpΨpe−ipx, (8.6)

where Ψp are the coefficients in this expansion analogous to v1, v2, v3

in �v = v1�e1 + v2�e2 + v3�e3.
For some systems we have boundary conditions such that we have

a discrete instead of a continuous basis. Then we can expand an
arbitrary state, for example, in terms of energy eigenfunctions ΦEn :

Ψ = ∑
n

cnΦEn . (8.7)

Take note that, in general, a set of eigenfunctions for one operator is
not a set of eigenfunctions for another operator. Only for operators
that commute [A, B] = AB − BA = 0, we can find a simultaneous
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set of eigenfunctions for both operators. To see this, assume we have
[C, D] �= 0 → CD �= DC. Then for some eigenfunction Ψ of C, we
have CΨ = cΨ, where c is the corresponding eigenvalue. If Ψ could
be at the same time an eigenfunction of D: DΨ = dΨ, we have:

CDΨ = CdΨ =︸︷︷︸
because d is just a number

dCΨ = dcΨ

DCΨ = DcΨ = cDΨ = cdΨ =︸︷︷︸
because numbers commute

dcΨ

→ DC = CD which is contradictory to [C, D] �= 0 (8.8)

In general our operators act on something we call7 Ψ, which de-7 The usage of Ψ is conventional in
quantum mechanics and we use it here,
although we used it so far exclusively
for spinors, to describe spin 0 particles,
too.

notes the state of the physical system in question. We get this Ψ, by
solving the corresponding equation of motion.

In general, such a solution will have more than one term if we
expand it in some basis. For example, consider a state that can be
written in terms of two energy eigenstates8 Ψ = c1ΦE1 + c2ΦE2 .8 This means all other coefficients in the

expansion Ψ = ∑n cnΦEn are zero. Acting with the energy operator on this state yields

ÊΨ = Ê(c1ΦE1 + c2ΦE2) = c1E1ΦE1 + c2E2ΦE2 �= E(c1ΦE1 + c2ΦE2).
(8.9)

A superposition of states with different energy is therefore, in gen-
eral, no eigenstate of the energy operator, because for an eigenstate
we have by definition ÊΨ = EΨ for some number E. But what is
then the energy of the system described by Ψ? What does it mean
that a state is a superposition of two energy eigenstates? How can we
interpret all this in physical terms?

A first hint towards an interpretation is the U(1) symmetry of
our Lagrangians, which shows us that the solution of an equation of
motion Ψ cannot be directly physically relevant9 .9 If we assume that Ψ describes our

particle directly in some way, what
would the U(1) transformed solution
Ψ′ = eiαΨ, which is equally allowed,
describe?

Secondly, observe that a solution to any equation of motion we
derived so far is a function of10 �x and t, i.e. Ψ = Ψ(�x, t).

10 This will be made explicit in the next
sections.

The standard interpretation is that the absolute value squared
|Ψ(�x, t)|2 of the wave function Ψ(�x, t) gives the probability density
of its location. Observe that the U(1) symmetry has no influence on
this quantity |Ψ|2 = Ψ†Ψ → (Ψ′)†(Ψ)′ = Ψ†e−iαeiαΨ = Ψ†Ψ. In
other words: Ψ(x, t) is the probability amplitude that a measurement
of the location gives a value in the interval [x, x + dx]. Consequently
we have, if we integrate over all space

∫
dxΨ�(x, t)Ψ(x, t) !

= 1, (8.10)

which is called the normalization prescription, because the probabil-
ity for finding the particle anywhere in space must be 100% = 1.
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If we want to make predictions about any other physical quantity
we must expand the wave-function in terms of the corresponding
basis. For example in terms of energy eigenfunctions

Ψ = c1ΦE1 + c2ΦE2 + . . .. Then, the standard interpretation of
quantum mechanics is: The probability for measuring a given energy
value E1 for the system described by Ψ is given by the absolute value
squared of the overlap between Ψ and ΦE1

P(E1) =
∣∣∣ ∫ dxΦ�

E1
(x, t)Ψ(x, t)

∣∣∣2

In the example above this means

P(E1) =
∣∣∣ ∫ dxΦ�

E1
(x, t)Ψ(x, t)

∣∣∣2
=

∣∣∣ ∫ dxΦ�
E1
(x, t)

(
c1ΦE1 + c2ΦE2

) ∣∣∣2

=
∣∣∣c1

∫
dxΦ�

E1
(x, t)ΦE1︸ ︷︷ ︸

=1 as explained above

+ c2

∫
dxΦ�

E1
(x, t)ΦE2︸ ︷︷ ︸

=0 because eigenstates are orthogonal

∣∣∣2

= |c1|2 (8.11)

Analogously, if we can expand some other Ψ(�x, t) in terms of mo-
mentum eigenfunctions

Ψ(�x, t) =
1√
2π

∫ ∞

−∞
dpΨ̃(�p, t)e−i�p�x,

we have Ψ̃(�p, t) as the probability amplitude for finding the system
with momentum in the interval [p, p + dp].

This interpretation can be used to make probabilistic predictions
about the system, for example using the statistical expectation value,
which is the topic of the next section. Afterwards we will derive the
equation of motion for non-relativistic quantum mechanics and look
at two examples.

8.3.1 Expectation Value

In statistics the expectation value is defined in analogy to the weighted
average. For example, if tossing a dice ten times results in 2, 4, 1, 3, 3,
6, 3, 1, 4, 5, the average value is

< x >= (2 + 4 + 1 + 3 + 3 + 6 + 3 + 1 + 4 + 5) · 1
10

= 3, 2.

An alternative way of computing this is collecting equal results and
weighing them by their empirical probability:

< x >=
2
10

· 1 +
1

10
· 2 +

3
10

· 3 +
2

10
· 4 +

1
10

· 5 +
1

10
· 6 = 3, 2.
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We can write this in general as

< x >= ∑
i

ρixi (8.12)

where ρi denotes the probability. Equally for a continuous distribu-
tion we have

< x >=
∫

dxρ(x)x (8.13)

In quantum mechanics the expectation value for a physical quan-
tity Ô is defined analogously

< Ô >=
∫

d3xΨ�ÔΨ. (8.14)

In general, we must expand Ψ in terms of eigenfunctions of Ô, for
example momentum eigenfunctions. Then, acting with the operator
Ô on these states yields the corresponding eigenvalues and we get a
weighted sum.

For example, we have the expectation value for the location of
some particle

< x̂ >=
∫

d3xΨ� x̂Ψ =
∫

d3xΨ�xΨ =
∫

d3xx Ψ�Ψ︸︷︷︸
probability density of its location

. (8.15)

We take now, for computational simplicity, the non-relativistic
limit of the Klein-Gordon equation.

8.4 The Schrödinger Equation

The Klein-Gordon equation is solved by plane waves

Φ = e±ipμxμ ≡ e±ip·x

where pμ = (E,�p)T is the conserved four-momentum of the particle.
We check

0 = (∂μ∂μ + m2)Φ

= (∂μ∂μ + m2)e±ipμxμ

= (i2 pμ pμ + m2)e±ipμxμ
= 0

= (−m2 + m2)e±ipμxμ
= 0 � (8.16)

We can write one of the solutions a little differently

Φ = e−ipμxμ
= Φ = ei(−Et+�x·�p)

and then we see that the dependence is given by e−iEt, i.e. Φ ∝ e−iEt.
From Eq. 8.2 we know the energy is

E =
√
�p2 + m2 =

√
m2(

�p2

m2 + 1) = m

√
�p2

m2 + 1.
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In the non-relativistic limit |�p| � m, which means our object moves
much slower than the speed of light and therefore its momentum is
much smaller than its mass, we can approximate the energy using the
Taylor-series as

E = m(1 +
1
2
�p2

m2 + . . .)

→ E ≈ m︸︷︷︸
rest-mass

+
�p2

2m︸︷︷︸
kinetic energy

.

We can now write

Φ = ei(−Et+�x·�p) ≈ e−imt ei�p·�x−i(�p2/2m)t︸ ︷︷ ︸
≡φ(�x,t)

= e−imtφ(�x, t). (8.17)

From |�p| � m it follows that the rest-mass is much bigger than
the kinetic energy and therefore the remaining time dependence in
φ(�x, t) oscillates more slowly than e−imt. If we put this ansatz into the
Klein-Gordon equation we get

(∂μ∂μ + m2)e−imtφ(�x, t) = (∂0∂0 + ∂i∂
i + m2)e−imtφ(�x, t) = 0.

Then we use ∂te−imt(. . .) = e−imt(−im + ∂t)(. . .), which is just the
product rule, twice. This yields

e−imt((−im + ∂t)
2 + ∂i∂

i + m2)φ(�x, t) = 0,

which we can divide by e−imt, because this never becomes zero.
Therefore

→ ((−im + ∂t)
2 +∇2 + m2)φ(�x, t) = 0

→ (−m2 − 2im∂t + (∂t)
2 +∇2 + m2)φ(�x, t) = 0

Comparing now the third term

(∂t)
2φ(�x, t) = (∂t)

2 exp
[
i�p ·�x − i(�p2/2m)t

]
= (�p2/2m)2 exp

[
i�p ·�x − i(�p2/2m)t

]
∝

p4

m2 (8.18)

with the second term

im∂tφ(�x, t) = im∂t exp
[
i�p ·�x − i(�p2/2m)t

]
= m(�p2/2m) exp

[
i�p ·�x − i(�p2/2m)t

]
∝ p2 (8.19)

shows us that, because of |�p| � m, we can neglect the third term in
this limit, thus

(−2im∂t +∇2)φ(�x, t) = 0

→︸︷︷︸
dividing by (-2m)

(i∂t − 1
2m

∇2)φ(�x, t) = 0
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→ (i∂t − ∇2

2m
)φ(�x, t) = 0, (8.20)

which is the famous Schrödinger equation. If we now make the
identifications we reiterated at the beginning of this chapter, the
equation reads

→ (E +
�p2

2m︸︷︷︸
=kinetic energy

)φ(�x, t) = 0

→ E =
�p2

2m
(8.21)

which is the usual non-relativistic energy-momentum relation.
From this point-of-view, it is easy to see how we can include an exter-
nal potential, because movement in an external potential simply adds
a term describing the potential energy to the energy equation:

→ E =
�p2

2m
+ V

A famous example is the potential of a harmonic oscillator
V = −kx2. It is conventional to rewrite the Schrödinger equation,

using the Hamiltonian operator Ĥ, which collects all contributing
energy operators, for example, the operator for the kinetic energy ∇2

2m
and the operator for the potential energy V̂. Then we have

i∂tφ(�x, t) =
∇2

2m︸︷︷︸
≡Ĥ

φ(�x, t) → i∂tφ(�x, t) = Ĥφ(�x, t). (8.22)

Following a similar procedure, it is possible to derive the non-
relativistic limit of the Dirac equation, which is known as Pauli equa-
tion.

8.4.1 Schrödinger Equation with External Field

In addition, we can follow the same route and derive the non-relativistic
limit of the interacting Klein-Gordon equation (Eq. 7.43), i.e. the
equation that describes the interaction between a massive spin 0 field
and a massless spin 1 field (the photon field). The resulting equation
is (

i∂t − 1
2m

(
∇− ia�A

)2
+ qΦ

)
φ(�x, t) = 0 (8.23)

8.5 From Wave Equations to Particle Motion

Now, let’s look at two examples of how the standard interpretation of
quantum mechanics works.
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8.5.1 Example: Free Particle

A solution for the free (without external potential) Schrödinger equa-
tion (Eq. 8.20) is given by

Ψ = e−i(Et−�p�x) (8.24)

because

i∂te−i(Et−�p�x) = −∇2

2m
e−i(Et−�p�x)

→ Ee−i(Et−�p�x) = �p2

2m
e−i(Et−�p�x) (8.25)

where E is just the numerical value for the total energy of the free

particle, which was derived in Eq. 8.21 as E =
�p2

2m . A more general
solution can be composed by linear combination

Ψ = Ae−i(Et−�p�x) + Be−i(E′t+�p′�x) + . . . .

Fig. 8.1: Free wave-packet with Gaus-
sian envelope. Figure by Inductiveload
(Wikimedia Commons) released under
a public domain licence. URL: http:
//commons.wikimedia.org/wiki/File:

Travelling_Particle_Wavepacket.svg ,
Accessed: 4.5.2014

We interpret the wave-function as a probability amplitude and
therefore the wave-function, describing a particle, must be normal-
ized, because the total probability for finding the particle must be
100% = 1. This is not possible for the wave-function above, spreading
out over all of space. To describe an individual free particle we have
to use a suited linear combination, called a wave-packet:

ΨWP(x, t) =
∫

dpA(p)ei(�p�x−Et), (8.26)

where the complex numbers A(p) have to be chosen in a way that
makes the wave packet normalizable. One possibility is a Gaussian
wave-packet, where A(p) is a Gauss distribution.

ΨGWP(x, t) =
∫

dpA(p)ei(�p�x−Et) =
∫

dpψ0ei(�p−�̃p)2/4σ2
ei(�p�x−Et)

An example of such a Gaussian wave-packet is plotted in Fig. 8.1.
For many computations clever tricks can be used in order to avoid
working with complicated wave packets, allowing us to work with
simple wave functions instead.

8.5.2 Example: Particle in a Box

Fig. 8.2: Infinite potential well. Fig-
ure by Benjamin D. Esham (Wiki-
media Commons) released under a
public domain licence. URL: http:
//commons.wikimedia.org/wiki/File:

Infinite_potential_well.svg , Ac-
cessed: 4.5.2014

Now we look at one of the standard examples of quantum mechan-
ics: A particle confined in a box, here 1-dimensional, with infinitely
high potential walls. Inside the box the potential is zero, outside it’s
infinite (see Fig. 8.2).

http://commons.wikimedia.org/wiki/File:Travelling_Particle_Wavepacket.svg
http://commons.wikimedia.org/wiki/File:Travelling_Particle_Wavepacket.svg
http://commons.wikimedia.org/wiki/File:Travelling_Particle_Wavepacket.svg
http://commons.wikimedia.org/wiki/File:Infinite_potential_well.svg
http://commons.wikimedia.org/wiki/File:Infinite_potential_well.svg
http://commons.wikimedia.org/wiki/File:Infinite_potential_well.svg
http://commons.wikimedia.org/wiki/File:Travelling_Particle_Wavepacket.svg
http://commons.wikimedia.org/wiki/File:Travelling_Particle_Wavepacket.svg
http://commons.wikimedia.org/wiki/File:Travelling_Particle_Wavepacket.svg
http://commons.wikimedia.org/wiki/File:Infinite_potential_well.svg
http://commons.wikimedia.org/wiki/File:Infinite_potential_well.svg
http://commons.wikimedia.org/wiki/File:Infinite_potential_well.svg
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The potential is defined piece-wise

V =

{
0, 0 < x < L
∞, otherwise

(8.27)

and therefore, we have to solve the one-dimensional Schrödinger
equation piece-wise.

i∂tΨ(�x, t) = − ∂2
x

2m
Ψ(x, t) + V(x)Ψ(x, t)

• Inside the box, the solution is equal to the free particle solution,
because V = 0 for 0 < x < L

• Outside, because V = ∞, the only possible, physical solution is
Ψ(x, t) = 0.

We can rewrite the general free particle solution1111 Using sin(x) = 1
2i

(
eix − e−ix) and

cos(x) = 1
2

(
eix + e−ix), which follows

directly from the series expansion of
cos(x), sin(x) and eix as derived in
appendix B.4.1.

Ψ(x, t) = Ae−i(Et−�p·�x) + Be−i(Et+�p·�x)

=
(
C sin(�p ·�x) + D cos(�p ·�x))e−iEt,

which we can rewrite again using the non-relativistic energy-momentum
relation, which was derived in Eq. 8.21

E =
�p2

2m
→ �p =

√
2mE

Ψ(x, t) =
(
C sin(

√
2mEx) + D cos(

√
2mEx)

)
e−iEt (8.28)

Next we use that the wave-function must be a continuous func-
tion12. Therefore, we have the boundary conditions Ψ(0) = Ψ(L) !

= 0.12 If there are any jumps in the wave-
function, the momentum of the particle
p̂xΨ = −i∂xΨ is infinite, because the
derivative at the jumping point would
be infinite.

We see that, because cos(0) = 1 we have D !
= 0. Furthermore, we see

that these conditions impose

√
2mE !

=
nπ

L
, (8.29)

with arbitrary integer n, because for1313 Take note that we put an index n to
our wave-function, because we have a
different solution for each n.

Φn(x, t) = C sin(
nπ

L
x)e−iEnt (8.30)

both boundary conditions are satisfied

→ Φn(L, t) = C sin(
nπ

L
L)e−iEt = C sin(nπ)e−iEt = 0 �

→ Φn(0, t) = C sin(
nπ

L
0)e−iEt = C sin(0)e−iEt = 0 �

The normalization constant C, can be found to be C =
√

2
L , because

the probability for finding the particle anywhere inside the box must
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be 100% = 1 and the probability outside is zero, because there we
have Ψ = 0. Therefore

P =
∫ L

0
dxΦ�

n(x, t)Φn(x, t) !
= 1

P =
∫ L

0
dxC2 sin(

nπ

L
x)e+iEt sin(

nπ

L
x)e−iEt

= C2
∫ L

0
dx sin2(

nπ

L
x) = C2

[
x
2
− sin( 2nπ

L x)
4 nπ

L

]L

0

= C2

(
L
2
− sin( 2nπ

L L)
4 nπ

L

)
= C2 L

2
!
= 1

→ C2 !
=

2
L

�

We can now solve Eq. 8.29 for the energy E

En
!
=

n2π2

L22m
. (8.31)

The possible energies are quantized, which means that the cor-
responding quantity can only be integer multiplies of some constant,
here π2

L22m . Hence the name quantum mechanics.

Take note that we have a solution for each n and linear combina-
tions of the form

Φ(x, t) = AΦ1(x, t) + BΦ2(x, t) + ...

are solutions, too. These solutions have to be normalised again be-
cause of the probabilistic interpretation14. 14 A probability of more than 1 = 100%

doesn’t make sense

Next we can ask15, what is the probability for measuring the parti-
15 Instead of what’s the probability to
find a particle at place x.cle having Energy E = E2 = 22π2

L22m . Say our particle is in the normal-
ized state given by

Ψ(x, t) =

√
3
5

Φ2(x, t) +

√
2
5

Φ3(x, t).

The answer in the conventional interpretation of quantum mechanics
is: It is the absolute value squared of the overlap between Ψ and Φ2

P(E =
22π2

L22m
) =

∣∣∣ ∫ dxΦ�
2(x, t)Ψ(x, t)

∣∣∣2

where the overlap can be seen as a scalar product16 of Φ2 and Ψ: 16 In fact, this is the scalar product of
the Hilbert space in which our state
vectors Ψ, Φn live.

(Φ2, Ψ) =
∫

dxΦ�
2Ψ = c︸︷︷︸

complex number

.
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The computation is easy, because the solutions we found are orthogo-
nal, i.e.

∫
dxΦ�

n(x, t)Φn′(x, t) = δnn′

For example17,17 You can check this easily using
integration by parts or something like
Wolframalpha.com

∫ L

0
dxΦ�

2Φ3(x, t) =
∫ L

0
dxC sin(

2π

L
x)e+iEtC sin(

3π

L
x)e−iEt

= C2
∫ L

0
dx sin(

2π

L
x) sin(

3π

L
x) = 0.

Therefore, we get the probability for finding the energy E = 22π2

L22m

P(E =
22π2

L22m
) =

∣∣∣ ∫ dxΦ�
2(x, t)Ψ(x, t)

∣∣∣2

=
∣∣∣ ∫ dxΦ�

2(x, t)

(√
3
5

Φ2(x, t) +

√
2
5

Φ3(x, t)

) ∣∣∣2

=
∣∣∣ ∫ dx

⎛
⎜⎝

√
3
5

Φ�
2(x, t)Φ2(x, t)︸ ︷︷ ︸
=1 if integrated

+

√
2
5

Φ�
2(x, t)Φ3(x, t)︸ ︷︷ ︸
=0 if integrated

⎞
⎟⎠ ∣∣∣2

=

(√
3
5

)2

(8.32)

Take note that we are able to call the functions we just found in
Eq. 8.30 eigenstates of the energy operator i∂t or equivalently of the

Hamiltonian18 Ĥ ≡ − ∂2
x

2m , because18 This follows directly from the
Schrödinger equation

i∂tΦ = − ∂2
x

2m Φ ≡ ĤΦ ĤΦn = EnΦn. (8.33)

If we act with the energy operator on an eigenstate, we get the same
state multiplied with a constant, which we call energy of the state. In
contrast, an arbitrary state is changed when the energy operator or
the Hamiltonian operator Ĥ act on it. For example, if we take a look
at the linear combination

Ψ =

√
3
5

Φ2 +

√
2
5

Φ3

we see that

ĤΨ = Ĥ

(√
3
5

Φ2 +

√
2
5

Φ3

)
=︸︷︷︸

Eq. 8.33

√
3
5

E2Φ1 +

√
2
5

E3Φ3

which cannot be written as multiple of Ψ because E2 �= E3. There-
fore, Ψ is not an eigenstate of the energy operator. Nevertheless,
every wave function can be expressed in terms of the eigenstates Φn,
because they form a complete basis set.
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Next we want to introduce a useful notation invented by Dirac,
which is of great benefit in understanding the structure of quantum
mechanics.

8.5.3 Dirac Notation

In the Dirac notation the state of a physical system is denoted ab-
stractly by

|Ψ〉 , (8.34)

which is called a ket19. For example, if we prepare a particle in a box 19 The pun will become clear in a
second.in an energy eigenstate we have

Ĥ |Φn〉 = En |Φn〉

To each ket we can define a bra, denoted by 〈Ψ| which is given by

〈Ψ|† = |Ψ〉 , (8.35)

where the † (called dagger) symbol denotes the Hermitian conjugate,
i.e. transposing plus complex conjugation. A bra is an object that acts
on a ket. We can define an inner product

(|Φ〉 , |Ψ〉) ≡ 〈Φ| |Ψ〉

If a ket is multiplied with a bra from the left-hand side, the result is a
complex number

〈Φ| |Ψ〉 = c (8.36)

This complex number is the probability amplitude for a physical
system in the state |Ψ〉 to be measured in the state |Φ〉. Consequently,
the probability is given by | 〈Φ| |Ψ〉 |2. For example, the probability
amplitude for finding a particle in the state |Ψ〉 in the interval

[x, x + dx] is given by

〈x| |Ψ〉 ≡ Ψ(x).

This is the wave function we used in the last chapters. Furthermore,
we could ask: What’s the probability amplitude for finding the same
particle with momentum in the interval [p, p + dp]? The answer in
the Dirac notation is

〈p| |Ψ〉 ≡ Ψ(p).

Recall that, because we are using a probabilistic interpretation, our
states must fulfil a normalization condition20. For example, we have 20 The probability for finding the par-

ticle anywhere must be 100% = 1 or
equally the probability for finding the
particle with any momentum must be
100% = 1. In other words: The sum of
probabilities for all possible outcomes
must add up to 1.

∫
dx|Ψ(x, t)|2 =

∫
dxΨ(x, t)†Ψ(x, t) !

= 1 (8.37)
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and equally ∫
dp|Φ(p, t)|2 =

∫
dpΦ(p, t)†Φ(p, t) !

= 1 (8.38)

or written in our new notation∫
dx| 〈x| |Ψ〉 |2 =

∫
dx(〈x| |Ψ〉)† 〈x| |Ψ〉 =

∫
dx 〈Ψ| |x〉 〈x| |Ψ〉 !

= 1

(8.39)
and∫

dp| 〈p| |Φ〉 |2 =
∫

dp(〈p| |Φ〉)† 〈p| |Φ〉 =
∫

dp 〈Φ| |p〉 〈p| |Φ〉 !
= 1

(8.40)
where we can see a new kind of operator: |p〉 〈p| and |x〉 〈x|, which
are called projection operators21. They are operators because they21 Exactly like the projection operators

for left-chiral and right-chiral spinors
we introduced earlier, these projection
operators fulfil the defining condition
P2 = P.

transform a ket into another ket. For example,

|x〉 〈x| |Ψ〉︸ ︷︷ ︸
=some complex number we name Ψ(x)

= |x〉Ψ(x),

which is again a ket, because the product of a complex number with
a ket is again a ket. In general, an operator is any object that acts on
a ket to generate another ket. We can now, by looking at Eq. 8.39,
introduce another operator

∫
dx 〈Ψ| |x〉 〈x| |Ψ〉 = 〈Ψ|

(∫
dx |x〉 〈x|

)
︸ ︷︷ ︸

≡ Î

|Ψ〉 = 〈Ψ| Î |Ψ〉 !
= 1. (8.41)

From this we can conclude

Î |Ψ〉 !
= |Ψ〉 (8.42)

for an arbitrary ket |Ψ〉, because 〈Ψ| |Ψ〉 = 1. This follows, because
the probability for a system prepared in state |Ψ〉 to be found in |Ψ〉
must be of course 100% = 1. For example, if we prepare a particle
to be at some point x0, the probability for finding it at point x0 is 1.
Therefore, 〈x0| |x0〉 = 1. Because of this, Î is called the unit operator
and plays the same role as the number 1 in the multiplication of
numbers. The results ∫

dx |x〉 〈x| = Î (8.43)

or for a discrete basis

∑
i
|i〉 〈i| = Î (8.44)

are called completeness relations. In general, we say the component
of a ket |a〉 in the basis |i〉 is

|i〉† |a〉 ≡ 〈i| |a〉 ≡ ai,
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which is a complex number. Using the completeness relation, i.e.
∑i |i〉 〈i| = Î, we can write

|a〉 = ∑
i
|i〉 〈i| |a〉 = ∑

i
|i〉 ai.

This can be seen as the series expansion22 of the ket |a〉 in terms of 22 Analogous to how we can write
a vector in terms of a given basis:
�v = v1�e1 + v2�e2 + v3�e3, as explained in
appendix A.1.

the basis |i〉. Consequently, the complex numbers ai can be seen as
the expansion coefficients. Equally for a continuous complete basis,
we have

|Ψ〉 =
∫

dx |x〉 〈x| |Ψ〉︸ ︷︷ ︸
≡Ψ(x) complex number

=
∫

dx |x〉Ψ(x).

The expectation value we introduced in Sec. 8.3.1 is in the Dirac
notation given by

< Ô >= 〈Ψ| Ô |Ψ〉
Let’s return to the example of the particle in a box, which we can
now solve using the Dirac notation.

8.5.4 Example: Particle in a Box, Again

The question we asked was: What is the probability for finding the
particle having energy E = E2 = n2π2

2mL2 . This question can be answered
in the Dirac notation in a very natural way. The probability is given
by

P(E2) = 〈E =
n2π2

2mL2 | |Ψ〉 = 〈E =
n2π2

2mL2 |
(∫

dx |x〉 〈x|
)

︸ ︷︷ ︸
= Î

|Ψ〉

=
∫

dx 〈E =
n2π2

2mL2 | |x〉 〈x| |Ψ〉 =
∫

dxΦ�
2(x)Ψ(x)

which is exactly the result we derived using the standard wave me-
chanics in Sec. 8.5.2. All of this becomes much clearer as soon as you
learn more about quantum mechanics and solve some problems on
your own, using both notations.

8.5.5 Spin

Now it’s time to return to the operator we derived in Sec. 5.1.1 for
a new kind of angular momentum, we called spin. So far we have
two loose ends. On the one hand, we have used spin as a label for
the representations of the Lorentz group. For example, if we want to
describe an elementary particle with spin 1

2 , we have to use an object
transforming according to the spin 1

2 representation. On the other
hand, we derived from rotational symmetry one part of the con-
served quantity that we called spin, too23. The operator we derived 23 See 4.5.4
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in Sec. 5.1.1 gives us, when acting on a state, the spin of the particle.
For the scalar representation, this operator is given by Ŝ = 0, which
of course always yields 0 when acting on a state Ψ.

For the ( 1
2 , 0) representation we have to use the two-dimensional

representation of the rotation generator, which was derived in Sec. 3.7.5

Ŝi =
σi
2

(8.45)

and where σi denotes the Pauli matrices. If we want to know the spin
of a particle described by Ψ, we have to act with the spin-operator on
Ψ. For example, for Ŝ3 this will give us the spin of the corresponding
particle in the 3-, or more familiar called z-direction. Analogously for
Ŝ2 in the y- and Ŝ1 in the x-direction.

The explicit form of the operator Ŝ3 is

Fig. 8.3: Illustration of the Stern-
Gerlach experiment. The original exper-
iment was performed with silver atoms,
whose spin behaviour is dominated
by the one electron in the outermost
atomic orbital. The experimental re-
sult is the same as with electrons. A
beam of particles is affected by an in-
homogeneous magnetic field. For a
classical type of angular momentum
the deflection of the particles through
the magnetic field should be a con-
tinuous distribution. Measured are
just two deflection types, i.e. the beam
splits in two parts, one corresponding
to spin 1

2 and one to − 1
2 . Figure by

Theresa Knott (Wikimedia Commons)
distributed under a CC BY-SA 3.0 li-
cense: http://creativecommons.org/
licenses/by-sa/3.0/deed.en. URL:
http://commons.wikimedia.org/wiki/

File:Stern-Gerlach_experiment.PNG ,
Accessed: 24.5.2014.

Ŝ3 =
σ3

2
=

(
1
2 0
0 − 1

2

)
(8.46)

The corresponding eigenstates are

v 1
2
=

(
1
0

)
v− 1

2
=

(
0
1

)
(8.47)

with eigenvalues 1
2 and − 1

2 , respectively. This means a particle de-
scribed by a spinor24 has spin 1

2 , which can be aligned or anti-aligned

24 Recall that a spinor is an object
transforming according to the ( 1

2 , 0), the
(0, 1

2 ) or ( 1
2 , 0)⊕ (0, 1

2 ) representation

to some arbitrary measurement axis. This is why we call this repre-
sentation spin 1

2 representation. In the quantum framework this is
interpreted that a measurement of spin can only result in 1

2 and − 1
2 .

In Sec. 4.5.4 we learned that spin is something similar to orbital angu-
lar momentum, because both notions arise from rotational invariance.
Here we can see that this kind of angular momentum gives quite
surprising results, when measured. The most famous experiment
proving this curious fact of nature is the Stern-Gerlach experiment
(see Fig. 8.3).

The same is true for a measurement of spin in any direction. A
measurement of the spin in the x-,y- or z-direction can only result in
1
2 and − 1

2 .

Let’s look at one concrete example of how a spin-measurement
works in the quantum formalism. As mentioned above, the explicit
form of the spin operator (Eq. 5.4), say for a measurement along the
z-axis, is

Ŝz =
1
2

σ3 =

(
1
2 0
0 − 1

2

)
. (8.48)

http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Stern-Gerlach_experiment.PNG
http://commons.wikimedia.org/wiki/File:Stern-Gerlach_experiment.PNG
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Stern-Gerlach_experiment.PNG
http://commons.wikimedia.org/wiki/File:Stern-Gerlach_experiment.PNG
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The eigenstates are | 1
2 〉z =̂

(
1
0

)
and |− 1

2 〉z =̂

(
0
1

)
, where the sub-

script z denotes that we are dealing with eigenstates of Ŝz. A gen-
eral spinor is not a spin-eigenstate, but a superposition |X〉 =

a | 1
2 〉z + b |− 1

2 〉z. The coefficients depend on how we prepare a given
particle. If we did a measurement of the spin along the z-axis and
filtered out all particles with spin − 1

2 , the coefficient b would be zero
and a would be 1. If we did no such filtering, the coefficients are
a = b = 1√

2
, which means probability25 1

2 for each possibility. Things 25 The coefficients are directly related
to the probability amplitude which
we need to square in order to get the
probability. This will be shown in a
moment.

get really interesting if we make a measurement along the z-axis and
afterwards a measurement, for example, along the x-axis. Even if
we did filter out all − 1

2 components along the z-axis, there will be
particles with spin − 1

2 along the x-axis.
Acting with the spin operator Ŝz on v means measuring spin along

the z-axis. For a general state |x〉 both outcomes + 1
2 and − 1

2 are
possible and the probability is directly related to the factors a and b.
If we want to know the probability for measuring − 1

2 , the quantum
formalism tells us that the corresponding probability amplitude is

z 〈−1
2
| |X〉 = a z 〈−1

2
| |1

2
〉

z︸ ︷︷ ︸
=0

+b z 〈1
2
| |−1

2
〉

z︸ ︷︷ ︸
=1

= b (8.49)

Therefore, the probability for measuring spin − 1
2 along the z-axis is

Pz=− 1
2
= |b|2. If we want to measure the spin along another axis, say

the x-axis, we need to expand our two states in terms of the eigen-
states of Ŝx, which reads in explicit matrix form (Eq. 5.4)

Sx =

(
0 1

2
1
2 0

)
(8.50)

and the corresponding normalized eigenstates are | 1
2 〉x =̂

1√
2

(
1
1

)
and

|− 1
2 〉x =̂

1√
2

(
1
−1

)
. If we want to know the probability for measuring

spin − 1
2 along the x-axis, we need to rewrite | 1

2 〉z and |− 1
2 〉z in terms

of | 1
2 〉x and |− 1

2 〉x:

|1
2
〉

z︸︷︷︸⎛
⎝1

0

⎞
⎠
=

1√
2

(
|1
2
〉

x︸︷︷︸
1√
2

⎛
⎝1

1

⎞
⎠
+ |−1

2
〉

x︸ ︷︷ ︸
1√
2

⎛
⎝ 1
−1

⎞
⎠

)
(8.51)
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|−1
2
〉

z︸ ︷︷ ︸⎛
⎝0

1

⎞
⎠

=
1√
2

(
|1
2
〉

x︸︷︷︸
1√
2

⎛
⎝1

1

⎞
⎠
− |−1

2
〉

x︸ ︷︷ ︸
1√
2

⎛
⎝ 1
−1

⎞
⎠

)
(8.52)

And therefore

|X〉 = a |1
2
〉

z
+ b |−1

2
〉

z
= a

1√
2

(
|1
2
〉

x
+ |−1

2
〉

x

)
+ b

1√
2

(
|1
2
〉

x
−|−1

2
〉

x

)
.

(8.53)
The probability amplitude for measuring − 1

2 along the x-axis is then

x 〈−1
2
| |X〉 =x 〈−1

2
|
(

a
1√
2

(
|1
2
〉

x
+ |−1

2
〉

x

)
+ b

1√
2

(
|1
2
〉

x
− |−1

2
〉

x

))

=
a√
2
− b√

2
(8.54)

and the probability is Px=− 1
2
= | a√

2
− b√

2
|2.

Now, let’s come back to the example outlined at the beginning of
this computation. If we filter out all particles with spin − 1

2 along the
z-axis the state |X〉 is

|X〉after z-axis filtering = |1
2
〉

z
(8.55)

This means a = 1 and b = 0 and we get a non-zero probability for
measuring spin − 1

2 along the x-axis Px=− 1
2
= | 1√

2
− 0√

2
|2 = 1

2 . If we

now filter out all particles with spin − 1
2 along the x-axis and repeat

our measurement of spin along the z-axis we notice something quite
remarkable. After filtering the particles with spin − 1

2 along the x-axis
we have the state

|X〉after x-axis filtering = |1
2
〉

x
. (8.56)

If we want to know the probability for measuring spin − 1
2 along the

z-axis, we need to write | 1
2 〉x in terms of | 1

2 〉z and |− 1
2 〉z:

|X〉after x-axis filtering = |1
2
〉

x︸︷︷︸
1√
2

⎛
⎝1

1

⎞
⎠
=

1√
2

(
|1
2
〉

z︸︷︷︸⎛
⎝1

0

⎞
⎠
+ |−1

2
〉

z︸ ︷︷ ︸⎛
⎝0

1

⎞
⎠

)
(8.57)

and we get the probability Pz=− 1
2
= | 〈− 1

2 |z |X〉 |2 = 1
2 . To summarize,

this means:
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• We start with a measurement of spin along the z-axis and filter out
all particles with − 1

2 . This leaves us with a state

|X〉after z-axis filtering = |1
2
〉

z
(8.58)

• If we now measure again the spin along the z-axis we get a very
unsurprising result: The probability for measuring spin − 1

2 is zero
and for spin + 1

2 the probability is 100%.

〈1
2
|
z
|X〉after z-axis filtering = 1 (8.59)

〈−1
2
|
z
|X〉after z-axis filtering = 0 (8.60)

• If we now measure the spin along the x-axis, for our z-filtered par-
ticle stream we get, a probability of 1

2 = 50% for a measurement
of + 1

2 . Equivalently, we have a probability of 1
2 = 50% for a mea-

surement of − 1
2 . If we then filter out all components with spin − 1

2
along the x-axis we are in the state |X〉after x-axis filtering = | 1

2 〉x.

• Now measuring the spin along the z-axis again, gives us the
surprising result that the probability for measuring spin − 1

2 is
1
2 = 50%. The measurement along the x-axis did change the state
and therefore we are again getting components with spin − 1

2
along the z-axis, even though we did filter these out in the first
step!

A brilliant discussion of these matters, involving real measuring
devices, can be found in the Feynman Lectures26 Vol. 3. 26 Richard P. Feynman, Robert B.

Leighton, and Matthew Sands. The
Feynman Lectures on Physics, Volume 3.
Addison Wesley, 1st edition, 1 1971.
ISBN 9780201021189

8.6 Heisenberg’s Uncertainty Principle

Now it’s time to talk about one of the most curious features of quan-
tum mechanics. We learned in the last section that a measurement
of spin in the x-direction makes everything we knew previously
about spin along the z-direction useless. This kind of thing hap-
pens for many observables in quantum mechanics. We can trace this
behaviour back to the fact that27 ŜxŜz �= ŜzŜx. This means that a 27 Recall that we identify the spin

operators with the corresponding
finite-dimensional representations for
the rotation generators. These fulfil
the commutator relation [Ji , Jj] =
Ji Jj − Jj Ji = iεijk Jk �= 0 → Ji Jj �= Jj Ji . For
example, if we describe spin 1

2 particles,
we must use the two-dimensional
representation Ji =

σi
2 .

measurement of spin along the z-axis followed by a measurement of
spin along the x-axis is different from a measurement of spin along
the x-axis followed by a measurement of spin along the z-axis. After
measuring the spin along the z-axis the system is in an eigenstate of
Ŝz and after a measurement of spin along the x-axis, in an eigenstate
of Ŝx. The eigenstates for Ŝz and Ŝx are all different and therefore this
is no surprise.
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We can look at this from a different perspective: We aren’t able

to know the spin of a system along the z-axis and the x-axis at the

same time! Each time we measure spin along the z-axis the spin
along the x-axis becomes undetermined and vice-versa. The same
is true for spin along the z-axis/x-axis and spin along the y-axis.
Spin may be something really strange, but we can observe the same
behaviour for measurements of position and momentum. Take a look
again at Eq. 5.3, which we recite here for convenience:

[ p̂i, x̂j] = p̂i x̂j − x̂j p̂i = iδij. (8.61)

Following the line of thought as above tells us that a measurement
of momentum in the x-direction changes what we can expect for
a measurement of position on the x-axis. Take note that only for
measurements along the same axis is the commutator non-zero28.28 The Kronecker delta δij is zero for

i �= j and one for i = j as defined in
appendix B.5.5.

A measurement of momentum in the y-direction has no influence
on what we can expect for the position on the x-axis. In other words
this means that we can’t know momentum and position in the same
direction at the same time with arbitrary precision.

Everytime we measure momentum the position becomes uncertain
and vice versa. This is known as Heisenberg’s uncertainty principle.
Analogous observations can be made for angular momentum along
different axes, because the commutator for the corresponding oper-
ator is non-zero, too. In general, we can check for any two physical
quantities if they commute with each other. If they don’t, we know
that they can’t be measured at the same time with arbitrary precision.

Maybe this shouldn’t surprise us. Quantum mechanics uses the
generators of the corresponding symmetry as measurement opera-
tors. For instance, this has the consequence that a measurement of
momentum is equivalent to the action of the translation generator29.29 Recall: Invariance under translations

leads us to conservation of momentum. The translation generator moves our system a little bit and there-
fore the location is changed. What is more surprising is that nature
actually works this way. Over the years there have been many experi-
mental tests of the Heisenberg’s uncertainty principle and all proved
it to be correct.

8.7 Comments on Interpretations

The interpretation and notations described in this chapter are the
standard ones. Nevertheless, there are other formalisms equally
powerful. For example, the Feynman path integral formalism30 is,30 To learn more about this see for

example, Richard P. Feynman and
Albert R. Hibbs. Quantum Mechanics and
Path Integrals: Emended Edition. Dover
Publications, emended editon edition, 7
2010. ISBN 9780486477220

in terms of results, completely equivalent to the wave mechanics,
we described in this chapter. But computations in this formalism
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are completely different. If we want to compute the probability for
a particle to get from point a to point b, we have to sum over all
possible paths that a particle can go between a and b. As absurd as it
sounds, this approach leads to the same result, which can be proved
formally as well. Freeman Dyson once told the story31 31 Harry Woolf, editor. Some Strangeness

in the Proportion. Addison-Wesley, 1st
edition, 2 1981. ISBN 9780201099249Dick Feynman told me about his "sum over histories" version of quan-

tum mechanics. "The electron does anything it likes," he said. "It just
goes in any direction at any speed, forward or backward in time, how-
ever it likes, and then you add up the amplitudes and it gives you the
wavefunction." I said to him, "You’re crazy." But he isn’t.

Another interpretation for the basic equations of quantum me-
chanics, further away from the mainstream, is Bohmian Mechanics.
The starting point is putting the ansatz: ReSt into the Schrödinger
equation. Separating the imaginary and real part results in two
equations, one of which can be seen as completely analogous to the
Hamilton-Jacobi equation of classical mechanics plus an additional
term. This additional term can be interpreted as an extra potential,
which is responsible for the strange quantum effects. Further com-
putations are completely analogous to classical mechanics. A new
force is computed from the extra potential using the gradient, which
is then put into Newton’s classical equation: F = ma. Therefore, in
Bohmian mechanics one still has classical particle trajectories. The
results from this approach are, as far as I know, equal to those com-
puted by standard non-relativistic quantum mechanics. Nevertheless,
this approach has fallen into disfavour because the extra potential
undergoes non-local changes.

Further Reading Tips

• Richard P. Feynman - The Feynman Lectures on Physics, Vol. 332 32 Richard P. Feynman, Robert B.
Leighton, and Matthew Sands. The
Feynman Lectures on Physics, Volume 3.
Addison Wesley, 1st edition, 1 1971.
ISBN 9780201021189

is a great book to start learning about quantum mechanics. Most
concepts of quantum mechanics are explained here more lucidly
than anywhere else.

• David J. Griffiths - Introduction to Quantum Mechanics33 is a 33 David J. Griffiths. Introduction to
Quantum Mechanics. Pearson Pren-
tice Hall, 2nd edition, 4 2004. ISBN
9780131118928

very readable and enlightening book.

• J. J. Sakurai - Modern Quantum Mechanics34 is a brilliant book,

34 J. J. Sakurai. Modern Quantum Mechan-
ics. Addison Wesley, 1st edition, 9 1993.
ISBN 9780201539295

which often offers a unique perspective on the concepts of quan-
tum mechanics.

• Paul A. M. Dirac - Lectures on Quantum Mechanics35 is an old
35 Paul A. M. Dirac and Physics. Lec-
tures on Quantum Mechanics. Dover
Publications, 1st edition, 3 2001. ISBN
9780486417134

book by one of the fathers of quantum mechanics. Highly recom-
mended, because reading about ideas by the person who discov-
ered them is always very enlightening.
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• You can find a detailed discussion of the interpretation of the
components of a Dirac spinor in appendix 8.8.

8.8 Appendix: Interpretation of the Dirac Spinor

Components

In this and the corresponding appendices, u and v denote two-component
objects inside a Dirac spinor and u and v four-component objects. For exam-
ple u1 and u2 describe two different four-component objects. For a general
four-component object u, we denote the two two-component objects by u1

and u2, i.e. u =

(
u1

u2

)
.

Up to this point we have been relatively vague about the two Weyl
spinors inside a Dirac spinor. What do they stand for? How can they
be interpreted? In addition, each such Weyl spinor inside a Dirac
spinor consists of two components. How to interpret these? Now, we
are finally in the position to give answers to these questions.

In short:

• The two Weyl spinors χL, ξR inside a Dirac spinor ψ =

(
χL

ξR

)
describe "different particles". Nevertheless, it’s conventional to
call them the same particle, for example an electron, with different
chirality:

– χL describes a left-chiral electron,

– ξR describes a right-chiral electron,

but the crucial point is that these are really distinct particles/fields36,36 They are labelled by different quan-
tum numbers and therefore behave
differently in experiments!

because they aren’t related by a parity transformation or charge
conjugation. This is why we use different symbols. There is, of
course, some sort of connection between them, which is why we
write them in one object. This will be discussed in detail in a mo-
ment.

• The two components of each Weyl spinor describe different spin
configurations37 of the corresponding particle.37 This was discussed in Sec. 8.5.5.

Recall that spin can be measured
like angular momentum, but for a
spin 1

2 particle the result of such a
measurement can only be + 1

2 or − 1
2 ,

no matter what axis we choose. These
two measurement results are commonly
called spin up and spin down.

– A Weyl spinor proportional to

(
1
0

)
describes a particle with

spin up

– A Weyl spinor proportional to

(
0
1

)
describes a particle with

spin down
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– Any other Weyl spinor is simply a mixture of spin up and spin
down.

Let’s see how this comes about in detail:

The important thing we learn from weak interactions and parity
violation is that left-chiral and right-chiral particles are really differ-
ent particles. Left-chiral particles carry weak charge (isospin) and
therefore interact via the weak force. Right chiral particles do not,
which was explained in Sec. 7.7.1.

We have for every particle in nature a corresponding antiparticle
and in general, we get the antiparticle description through charge
conjugation. Charge conjugation flips all particle labels, which in-
cludes isospin. Let’s see what particles we can expect that are related
to, say electrons. We have

• A left-chiral electron χL, with isospin − 1
2 and electric charge −e,

which is part of a doublet.

• A right-chiral anti-left-chiral-electron (χL)
c = χR with isospin 1

2 ,
electric charge +e, which is part of a doublet, too. This property
does not simply vanish through charge conjugation. This may be
confusing at the moment, but so far we have only talked about the
coupling of the weak force to particles. It turns out that the weak
force couples to right-chiral antiparticles as well.

• A right-chiral electron ξR with isospin 0 and electric charge −e

• A left-chiral anti-right-chiral-electron (ξR)
c = ξL with isospin 0 and

electric charge +e

Therefore, when talking about electrons, we have in fact four differ-
ent "things" we need to consider. These are all really different par-
ticles and we need to give them different names! Usually one talks
about just two particles related to an electron: The electron and the
positron and we will see how this comes about in a moment.

We restrict the following discussion to the rest frame of the particles
in question. In other frames the discussion works analogous but is more
cumbersome.

The objects inside a Dirac spinor and its charge conjugate are
directly related to these four particles. The physical electron and the
physical positron are commonly identified as the solutions of the
Dirac equation. The Dirac equation is an equation of motion, i.e. an
equation that determines the dynamics of the particles in question.
The explicit solutions are Dirac spinors that evolve in time. We need
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such Dirac spinors with a definite time-evolution in order to describe
how our particles evolve in time. As we will see this requires that we
always use two of the particles listed above at once.

An explicit derivation of the solutions of the Dirac equation can
be found in the appendix Sec. 8.9. Here we just use the results. There
are four independent solutions of the Dirac equation and two are of
the form

ψi =

(
ui

ui

)
(8.62)

with for example38 u1 =

(
1
0

)
e−imt and u2 =

(
0
1

)
e−imt and two38 This is a basis choice. The only

requirement is that they are linearly
independent. solutions are of the form

ψ̃i =

(
−vi

vi

)
, (8.63)

with for example v1 =

(
1
0

)
e+imt and v2 =

(
0
1

)
e+imt

The Dirac equation tells us that the spin configuration of the two
particles described by the upper and lower Weyl spinors inside a
Dirac spinor, are directly related. In addition, their time depen-
dence must be the same. These solutions describe what is commonly
known as a physical electron and a physical positron, with different
spin configurations39.39 Take note that the connection between

these objects is charge conjugation. This
can be seen by using the explicit form
of the charge conjugation operator:
ψc

1 = iγ2ψ�
1 . Therefore: (ψ1)

c = ψ̃2 and
(ψ2)

c = ψ̃1.

• ψ1 is an electron with spin up

• ψ2 is an electron with spin down

• ψ̃1 is a positron with spin up

• ψ̃2 is a positron with spin down

We can see nicely that a physical electron has a left-chiral (the up-
per two components) and a right-chiral part (the lower two compo-
nents). For a physical electron the spin configuration of the left-chiral
and the right-chiral part and the time-dependence must be the same
for both parts. As discussed above, this left-chiral and right-chiral
parts are really different, because they have different weak charge!
Nevertheless, in order to describe a dynamical, physical electron we
always need both parts.

Take note that these solutions do not mean that the object we use
to describe a physical electron consists of exactly the same upper and
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lower two-component objects. Only their spin configuration and their
time dependence must be equivalent. The upper object is still part
of a doublet, whereas the lower object isn’t. The upper object trans-
forms under SU(2) transformations and the lower doesn’t. Using the
notation from above we have

physical electron =

(
χL

ξR

)
∝

(
u
u

)
. (8.64)

This does not mean that χL = ξR. The Weyl spinor χL is part of a
doublet and describes a particle with isospin, whereas the particle
described by ξR has isospin zero. In addition, we already know that
the upper and lower Weyl spinor inside a Dirac spinor transform dif-
ferently under Lorentz boosts. Therefore it is important that we use
different symbols. In other words: The object describing a left-chiral
electron χL carries an additional SU(2) index, because χL transforms
as part of a doublet under SU(2) transformations. ξR has no such
index and transforms as a singlet under SU(2) transformations.

Equivalently we have

physical positron =

(
−ξL

χR

)
∝

(
−v
v

)
(8.65)

which we can see through charge conjugation40 40 See Sec. 7.1.5 and use the ex-
plicit form of the matrix as defined

in Eq. 6.13: γ2 =

(
0 σ̄2
σ2 0

)
=(

0 −σ2
σ2 0

)
.(physical electron)c = iγ2

(
χL

ξR

)�

=

(
−ξL

χR

)
∝ iγ2

(
u
u

)�

=

(
−uc

uc

)

= physical positron (8.66)

The message to take away is that the physical electron we observe
in nature most of the time is a mixture of two different particles: The
left-chiral electron that carries isospin and the right-chiral electron
with isospin zero! Equivalently the physical positron is a mixture of
an anti-left-chiral electron, which carries isospin and an anti-right-
chiral electron with isospin zero.

The solutions of the Dirac equation tell us how our particles evolve
in time. Let’s say we start with an electron with spin up that was
created in a weak interaction and is therefore purely left-chiral. How
does this particle evolve in time? A purely left-chiral electron with
spin up

e↑L =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ (8.67)
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is not a solution of the Dirac equation and therefore, in order to de-
termine its time evolution, we must rewrite this in terms of solutions
of the Dirac equation.

e↑L =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ =

1
2

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝
−1
0
1
0

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ = Ψ1(t = 0)− Ψ̃1(t = 0) (8.68)

We know how Ψ1 and Ψ̃1 evolve in time

Ψ1(t)− Ψ̃1(t) =→ 1
2

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎟⎠ e−imt −

⎛
⎜⎜⎜⎝
−1
0
1
0

⎞
⎟⎟⎟⎠ eimt

⎞
⎟⎟⎟⎠ (8.69)

For t = 0 this reduces to the left-chiral state as it should be, but as
time evolves, say t = π

2m we have

→ 1
2

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎟⎠ e−i π

2︸︷︷︸
=-i

−

⎛
⎜⎜⎜⎝
−1
0
1
0

⎞
⎟⎟⎟⎠ ei π

2︸︷︷︸
=i

⎞
⎟⎟⎟⎠ =

i
2

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
−1
0
−1
0

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝
−1
0
1
0

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ = −i

⎛
⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎠ = −ie↑R (8.70)

which describes a right-chiral electron with spin up! The lesson here
is that as time evolves, a left-chiral particle changes into a right-chiral
particle and vice versa. To describe the time-evolution of a particle
like an electron we need eL and eR, which is why we wrote them
together in one object: the Dirac spinor. The same is true for the
positron.

Recall that the two different particles eL and eR, carry different
weak charge, i.e. isospin. Nevertheless as time evolves these two
particles can transform into each other. Most of the time it will be a
mixture of both and not a definite eigenstate. Isospin and chirality
are therefore not conserved as time evolves, only in interactions.

We can now see that the notation with Dirac spinors is necessary,
because we have a close, dynamical connection between each two
particles of the four particles listed at the beginning of this section.
Chirality and therefore isospin are not conserved during propagation.
A propagating electron can sometimes be found as left-chiral and
sometimes as right-chiral.



quantum mechanics 199

8.9 Appendix: Solving the Dirac Equation

As explained at the beginning of the last section, we use here the symbols
u and v for the two-component objects inside a Dirac spinor, and u and v
for four-component objects. This means, for example u1 and u2 describe
two different four-component objects. If we don’t want to be specific and
want to consider both four-component objects at the same time we simply
write u. Then u1 and u2 are the two two-component objects inside such a

four-component object u =

(
u1

u2

)

In this appendix we will solve the Dirac equation in the rest frame
in the chiral basis. The solution for an arbitrary frame can be com-
puted by acting with a boost transformation on the solution derived
in this section. In addition to the discussion in the last section, we
will use these solutions in Chap. 6, when we talk about quantum
field theory. The Dirac equation is

(i∂μγμ − m)ψ = 0. (8.71)

Anticipating plane wave solutions, we make the ansatz
Ψ = ue−ipx, with some four-component object u, because the ma-

trices γμ in the equation are 4 × 4. In the rest frame, which means
momentum zero �p = 0, the exponent reduces to −ipx = −i(p0x0 −
�p�x) = −ip0x0. Now using the relativistic energy-momentum relation
E =

√
�p + m2, which we derived at the beginning of this chap-

ter, and using that p0 = E and x0 = t, we have −ipx = −iEt =

−i
√

�p︸︷︷︸
=0

+m2t = −imt. Putting this ansatz into the Dirac equation

yields

(i∂μγμ − m)ue−imt = 0

→ (i(∂0γ0 − ∂iγi)− m)ue−imt = 0

→ i((−im)γ0 − m)ue−imt = 0

→ (mγ0 − m)u = 0

→︸︷︷︸
dividing by m

((
0 1
1 0

)
−

(
1 0
0 1

))
c = 0

→
(
−1 1
1 −1

)(
u1

u2

)
= 0

→
(
−u1 + u2

u1 − u2

)
= 0 (8.72)

The 1 inside the remaining matrix here is the 2 × 2 unit matrix and
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therefore u1 and u2 are two-component objects. We see that our
ansatz solves the equation, if u1 = u2. Therefore, we have found
two linearly independent solutions of the Dirac equation

Ψ1 =

⎛
⎜⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎟⎠ e−imt Ψ2 =

⎛
⎜⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎟⎠ e−imt (8.73)

We can find two other solutions by making the ansatz Ψ̃ = veipx,
which analogously reduces in the rest frame to Ψ̃ = veimt. This
ansatz yields

(i∂μγμ − m)veimt = 0

→ (−mγ0 − m)v = 0

→
(
−1 −1
−1 −1

)(
v1

v2

)
= 0

→
(
−v1 − v2

−v1 − v2

)
= 0. (8.74)

We therefore conclude that we have a solution with time depen-
dence eimt, if the upper and lower two-component objects in the
Dirac spinor are related by −v1 = v2. Two linearly independent
solutions following from this ansatz are

Ψ̃1 =

⎛
⎜⎜⎜⎝

1
0
−1
0

⎞
⎟⎟⎟⎠ eimt Ψ̃2 =

⎛
⎜⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎟⎠ eimt. (8.75)

8.10 Appendix: Dirac Spinors in Different

Bases

In the Lagrangian the Dirac spinors ψ appear always in combination
with the matrices γμ. This can be used to simplify computations, by
switching to a different basis. This works, because we can add terms
of the form 1 = N−1N, with some arbitrary invertible matrix N,
between ψ and γμ and then redefine both. For example

∂μψ̄γμψ = ∂μψ̄ N−1N︸ ︷︷ ︸
=1

γμ N−1N︸ ︷︷ ︸
=1

ψ = ∂μ ψ̄N−1︸ ︷︷ ︸
≡ψ̄′

NγμN−1︸ ︷︷ ︸
≡γ′

μ

Nψ︸︷︷︸
≡ψ′

= ∂μψ̄′γ′
μψ′.

(8.76)
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The basis we worked with in this text so far is called the chiral/ Weyl

basis. Conventionally the Dirac equation is solved in another basis,
called mass/Dirac basis. In the chiral/Weyl basis we worked with so
far, the Dirac Lagrangian

LD = iχ†
Lσμ∂μχL + iξ†

Rσ̄μ∂μξR − mχ†
LξR − mξ†

RχL (8.77)

has non-diagonal mass terms, i.e. mass terms that mix different
states. We can use the freedom to choose a basis to pick a basis
where the mass terms are diagonal, which is then called mass ba-
sis.

This means we want a mass term ψ†mψ, with m =

(
m1 0
0 m2

)
,

which gives us mass terms of the form

ψ̄′M′ψ′ = ψ†γ′
0M′ψ′ =

(
u′

v′

)† (
m1 0
0 m2

)(
u′

v′

)
= (u′)†m1u′+(v′)†m2v′,

(8.78)
whereas at the moment we are dealing with

ψ̄Mψ = ψ†γ0Mψ =

(
χL

ξR

)† (
0 m
m 0

)(
χL

ξR

)
= mχ†

LξR + mξ†
RχL.

(8.79)
The latter basis, which we worked with so far, makes it easy to inter-
pret things in terms of chirality, whereas it’s easier for Dirac spinors
in the mass basis to make the connection to physical propagating
particles.

To find the connection between the second and the first form we

need to diagonalize the matrix M =

(
0 m
m 0

)
= m

(
0 1
1 0

)
. The

matrix is diagonalized through the matrix N = 1√
2

(
−1 1
1 1

)
, which

means

N−1

(
−m 0

0 m

)
︸ ︷︷ ︸

≡M′

N = M (8.80)

→ m
1√
2

(
−1 1
1 1

)−1 (
−1 0
0 1

)
1√
2

(
−1 1
1 1

)
= m

(
0 1
1 0

)
(8.81)

and therefore we redefine the Dirac spinors accordingly
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ψ̄Mψ = ψ̄ NN−1︸ ︷︷ ︸
=1

M NN−1︸ ︷︷ ︸
=1

ψ

= ψ̄N︸︷︷︸
≡ψ̄′

N−1MN︸ ︷︷ ︸
≡M′

N−1ψ︸ ︷︷ ︸
≡ψ′

= ψ̄′M′ψ′. (8.82)

It is instructive to have a look at the chiral projection operators
PL = 1−γ5

2 in this basis. We need to find the corresponding γ5 matrix,
which is

γ̃5 = N−1γ5N =
1√
2

(
1 1
1 −1

)(
1 0
0 −1

)
1√
2

(
1 1
1 −1

)

=
1
2

(
1 1
1 −1

)(
1 1
−1 1

)

=

(
0 1
1 0

)
. (8.83)

The corresponding eigenvectors are 1√
2

(
1
−1

)
and 1√

2

(
1
1

)
. This

means a chiral eigenstate is now described by a Dirac spinor with
upper and lower components. For example, a left-chiral state is in

this basis of the form 1√
2

(
1
−1

)
. In contrast, in the chiral basis γ5

was diagonal and a left-chiral eigenstate was given by a Dirac spinor

with upper components only ψL =

(
χL

0

)
, and a right-chiral Dirac

spinor with lower components only ψR =

(
0

ξR

)
.

The chiral projection operator is in this basis

PL =
1 − γ5

2
=

1
2

(
1 −1
−1 1

)
. (8.84)

8.10.1 Solutions of the Dirac Equation in the Mass Basis

We can solve the Dirac equation in the mass basis

(
iγμ∂μ − m

)
Ψ = 0 (8.85)

by making the ansatz ψ = ue−ipx, which yields

(
γμ pμ − m

)
ue−ipx = 0
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→ (
(γμ pμ − m

)
u = 0

Equivalently we can make the ansatz ψ = veipx, which yields(− γμ pμ − m
)
veipx = 0

→ (− γμ pμ − m
)
v = 0.

Analogously to our solution in the chiral basis, we work in the rest
frame, i.e. �p = 0. We are allowed to make such a choice, because
physics is the same in all frames of reference and therefore we can
pick one that fits our needs best. In this frame of reference we have,
because pi = 0

→ (
γ0 p0 − m

)
u = 0

→ (− γ0 p0 − m
)
v = 0.

In addition, p0 = E and we can use the relativistic energy-momentum
relation, which we derived at the beginning of this chapter (Eq. 8.2).
In the rest frame we have E =

√
(pi)2 + m2 = m. We now use the

explicit form of γ0 in the mass/Dirac basis, which can be computed
using the matrix N from above and γ′

0 = N−1γ0N. Remember that
we have an implicit unit matrix behind m and therefore

→
((

1 0
0 −1

)
m − m

(
1 0
0 1

))
u = 0

→
(
−

(
1 0
0 −1

)
m − m

(
1 0
0 1

))
v = 0.

→
(

0 0
0 −2

)
u = 0

→
(
−2 0
0 0

)
v = 0.

Recalling that each Dirac spinor consists of two two-component ob-
jects, we conclude that the lower two-component object of u and the
upper two-component object of v must be zero:

→
(

0 0
0 −2

)(
u1

u2

)
=

(
0

−2u2

)
= 0 → u2 = 0

→
(
−2 0
0 0

)(
v1

v2

)
=

(
−2v1

0

)
= 0 → v1 = 0.
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We can see that in this basis the physical propagating particles
(=solutions of the Dirac equation) are described by spinors with
upper components only or equivalently for antiparticles with lower
components only. We therefore have again four linearly independent
solutions

Ψ′
1 =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ e−imt Ψ′

2 =

⎛
⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎠ e−imt (8.86)

and

Ψ̃′
1 =

⎛
⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎠ eimt Ψ̃′

2 =

⎛
⎜⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎟⎠ eimt. (8.87)

A general solution in this frame, in this basis, is a linear combina-
tion

ψ = ue−ipx + veipx =

(
u1

0

)
e−ipx +

(
0
v1

)
eipx (8.88)

and we get the solution in an arbitrary frame by transforming this
solution with a Lorentz boost. In addition, the most general solution
is a superposition of all possible momenta and spin configurations4141 Recall that the two components of

a Weyl spinor represent different spin
states.

Ψ = ∑
r

√
m

(2π)3

∫ d3 p√
Ep

(
cr(p)ur(p)e−ipx + d†

r (p)vr(p)e+ipx
)

(8.89)
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Quantum Field Theory

Summary

In this chapter the framework of quantum field theory is introduced.
Starting with the equation derived in Chap. 5

[Φ(x), π(y)] = iδ(x − y),

we are able to see that the fields itself are operators. The solutions
to the equations of motion for spin 0, 1

2 and 1 are written in terms
of their Fourier expansions1. Using the commutation relation, cited 1 The idea behind the Fourier transform

is explained in appendix D.1.above, we discover that the Fourier coefficients are now operators.
Afterwards, we will see how these operators, and with them of
course the fields, create and annihilate particles. Using the La-
grangian for the corresponding fields, we are able to derive the
Hamiltonian operator representing energy.

Afterwards, we start developing interaction theory, which is what
quantum field theory is all about. We will see that in interaction the-
ory, the Hamiltonian is given by a linear combination of the Hamilto-
nian for the free field plus an interaction Hamiltonian. This insight
can then be used in the interaction picture, where the time evolu-
tion of the fields is governed by the free Hamiltonian and the time
evolution of the states by the interaction Hamiltonian. Using this pic-
ture, we are able to derive the probability amplitudes for scattering
processes, which are denoted in the Dirac notation by

〈 f | Ŝ |i〉 ,

where Ŝ denotes the operator describing the scattering process, |i〉
is the initial state and 〈 f | is the final state. We will discover that the
operator Ŝ can be written in terms of the interaction Hamiltonian HI

Ŝ(t, ti) = e
−i

∫ t
ti

dt′HI .

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_9
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This can’t be solved and therefore we evaluate the exponential
in terms of its series expansions. For most experiments the first few
terms suffice to get an accurate description.

Each term in this series expansion can be interpreted physically
as describing a different kind of scattering process. The interaction
Hamiltonian contains linear combinations of the fields, which create
and annihilate fields as mentioned above. For the first non-trivial
order, we get 8 terms and we will see that the first term describes a
scattering process of the form e−e+ → γ. This means we start with an
initial state consisting of an electron and a positron |e−e+〉, which are
annihilated by the field operators of the spin 1

2 fields and afterwards
a photon 〈γ| is created by the photon field. The other terms result in
zero when operating on this initial state |e−e+〉.

The next order in the series expansion consists of many, many
terms and we will take a look at just one of them. Again, we start
with an initial state |e−e+〉 and we will see that one term describes
the process e−e+ → γ → e−e+, where the initial and final electron
and positron have, in general, completely different momenta.

In exactly the same way, all terms can be interpreted for all in-
teraction Hamiltonians. A pictorial way to simplify these kinds of
computations are the famous Feynman diagrams. Each line and ver-
tex in such a diagram represents a factor of the kind we evaluated
above.

9.1 Field Theory Identifications

In this section, we want to understand how the Lagrangians we de-
rived from symmetry constrains can be used in a field theoretical
framework. The first step in deriving a field theory describing nature
is combining the Lagrangians we found with the result from Chap. 5,
specifically Eq. 5.5, which we recite here for convenience:

[Φ(x), π(y)] = iδ(x − y), (9.1)

where the conjugate momentum density π(y) is given by

π(y) =
∂L

∂(∂0Φ(y))
. (9.2)
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9.2 Free Spin 0 Field Theory

"Every act of creation is first of all an act of destruction."

- Pablo Picasso2 2 As quoted in Rollo May. The Courage
to Create. W. W. Norton and Com-
pany, reprint edition, 3 1994. ISBN
9780393311068Again, let’s start with the simplest possible case: free spin 0 fields,

described by scalars, which are objects that do not transform at all
under Lorentz transformations, as derived in Sec. 3.7.4. We already
derived in Chap. 6.2 the corresponding Lagrangian

L =
1
2
(∂μΦ∂μΦ − mΦ2) (9.3)

and the equation of motion, called Klein-Gordan equation

(∂μ∂μ + m2)Φ = 0. (9.4)

Computing the conjugate momentum is straightforward

π(x) =
∂L

∂(∂0Φ(x))
=

∂

∂(∂0Φ(x))
1
2
(∂μΦ(x)∂μΦ(x)−mΦ2(x)) = ∂0Φ(x)

The most general solution of the Klein-Gordan equation can be
written in terms of its Fourier-expansion3 3 See the appendix in Sec. 9.6 at the

end of this chapter for a detailed
computation of the integral measure
and a justification for writing the
solution like this.

Φ(x) =
∫

dk3 1
(2π)32ωk

(
a(k)e−i(kx) + b(k)ei(kx)

)
, (9.5)

with (ωk)
2 ≡�k2 − m2, which we can write, if we restrict to real scalar

fields as

Φ(x) =
∫

dk3 1
(2π)32ωk

(
a(k)e−i(kx) + a†(k)ei(kx)

)
(9.6)

because c + c† = Re(c) + i · Im(c)︸ ︷︷ ︸
c

+Re(c)− i · Im(c)︸ ︷︷ ︸
c†

= 2Re(c).

Now we are taking a look at the implications of Eq. 9.1, i.e. the
non vanishing commutator [Φ(x), π(y)] �= 0. This means that Φ(x)
and π(y) cannot be ordinary functions, but must be operators, be-
cause ordinary functions commute: (3 + x)(7xy) = (7xy)(3 + x).
By looking at Eq. 9.6, we conclude that the Fourier-coefficients a(k)
and a(k)† are operators, because e±i(kx) is just a complex number and
complex numbers commute.

Using Eq. 9.1 we can compute4 4 See for example chapter 4.1 in
Lewis H. Ryder. Quantum Field The-
ory. Cambridge University Press, 2nd
edition, 6 1996. ISBN 9780521478144

[a(k), a†(k′)] = (2π)3δ3(�k −�k′) (9.7)

and
[a(k), a(k′)] = 0 (9.8)
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[a†(k), a†(k′)] = 0 (9.9)

Now that we know that our field itself is an operator, the logical
next thing to ask is: What does it operate on? In a particle theory,
we identify the dynamical variables as operators acting on something
describing a particle (the wavefunction, an abstract Dirac vector, etc.).
In a field theory we have up to now nothing to describe a particle.
At this point, it is completely unclear how particles appear in a field
theory. Nevertheless, let’s have a look at how our field coefficents
a(k) and a†(k) act on something abstract and by doing this we, of
course, learn how the fields act on something abstract. To built intu-
ition about what is going on here let’s first have a look at something
we are familiar with: energy.

The energy E of a scalar field is given by, which we derived in
Eq. 4.40 from time-translation invariance

E =
∫

d3xT00

=
∫

d3x

⎛
⎜⎜⎜⎝ ∂L

∂(∂0Φ)

∂Φ
∂x0︸︷︷︸
=∂0Φ

−L

⎞
⎟⎟⎟⎠

=
∫

d3x
(
(∂0Φ)2 − 1

2
(∂μΦ∂μΦ − mΦ2)

)

=︸︷︷︸
∂μ∂μ=∂0∂0−∂i∂i

1
2

∫
d3x

(
(∂0Φ)2 + (∂iΦ)2 + mΦ2

)
(9.10)

By substituting Eq. 9.6 into Eq. 9.10 and using the commutation
relations (Eq. 9.7-9.9), we can write

E =
1
2

∫
dk3 1

(2π)3 ωk

(
a†(k)a(k) + a(k)a†(k)

)
=︸︷︷︸

Eq. 9.7

∫
dk3 1

(2π)3 ωk

(
a†(k)a(k) +

1
2
(2π)3δ3(0)

)
(9.11)

At this point we can see that our theory explodes. The second
term in the integral is infinite. We could stop at this point and say
that this kind of theory does not work. Nevertheless, some brave
man dug deeper, ignoring this infinite term and discovered a theory
describing nature very accurately. There is no explanation for this
and the standard way of continuing from here on is to ignore the
second term. The crux here is that this term appears in the energy
of every system and we are only able to measure energy differences.
Therefore, this constant infinite term appears in none of our measure-
ments.
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Conventionally, the energy written as an operator is called Hamil-
tonian Ĥ. We can compute the commutator5 of Ĥ and the Fourier 5 It will become clear in a moment why

this is useful.coefficents a(k) and a†(k). We get

[Ĥ, a†(k′)] =
∫

dk3 1
(2π)3 ωk[a†(k)a(k), a†(k′)]

=︸︷︷︸
[a†(k),a†(k′)]=0

∫
dk3 1

(2π)3 ωka†(k)[a(k), a†(k′)]

=
∫

dk3ωka†(k)δ3(k − k′)

=︸︷︷︸
See appendix D.2

ωk′ a
†(k′)

(9.12)

and equally
[Ĥ, a(k′)] = −ωk′ a(k

′) (9.13)

The quantum formalism works by operating with operators on
something that describes the physical system, which was explained
in Sec. 8.3. In this case, if we act with the energy operator, i.e. the
Hamiltonian Ĥ on something abstract |?〉 describing our physical
system, we get the energy of the system:

Ĥ |?〉 = E |?〉 (9.14)

Now we return to our starting question: How does a field6 act 6 Remember: Field=Operator!

on our system? Let’s have a look7 at the effect of the first Fourier
7 We will do something very clever
here, which was first discovered by
Dirac while solving the problem of
the harmonic oscillator in quantum
mechanics.

coefficient, now an operator, on the energy E of the system.

Ĥ
(
a(k′) |?〉) =

⎛
⎜⎝a(k′)Ĥ + Ĥa(k′)− a(k′)Ĥ︸ ︷︷ ︸

[Ĥ,a(k′)]

⎞
⎟⎠ |?〉

= a(k′) Ĥ |?〉︸ ︷︷ ︸
=E|?〉

+[Ĥ, a(k′)] |?〉

=
(

a(k′)E + [Ĥ, a(k′)]
)
|?〉

=︸︷︷︸
Eq. 9.13

(
a(k′)E − ωk′ a(k

′)
)
|?〉

=
(

E − ωk′)
(
a(k′) |?〉) (9.15)

and equally for the second Fourier coefficent

Ĥa†(k′) |?〉 = (E + ωk′)a†(k′) |?〉 (9.16)

How can we interpret this? We see that a(k′) |?〉 can be interpreted
as a new system with energy E − ωk. To make this more concrete we
define

|?2〉 ≡ a(k′) |?〉
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with
Ĥ |?2〉 =︸︷︷︸

Using Eq. 9.15

(E − ωk′) |?2〉 .

This suggests how we should interpret what the field does. Imag-
ine a completely empty system |0〉, with by definition H |0〉 = 0 |0〉.
If we now act with a†(k′) on |0〉 we know that this transforms our
empty system into a system having energy ωk′

Ĥa†(k′) |0〉 =︸︷︷︸
Using Eq. 9.16

ωk′ a
†(k′) |0〉 (9.17)

We see that a†(k′) creates something in the completely empty system
with energy ωk′ , which is what we call a particle with momentum

k′! If we act a second time on this system with a†(k′) we create a
second particle with the same momentum. If we act on it with a†(k′′)
we create a particle with momentum k′′ and so on. Therefore, we
call a†(k′) a creation operator. Similarly to a†(k′), we can interpret
a(k′): a(k′) destroys or annihilates a particle of energy ωk′ and is
therefore called annihilation or destruction operator. To make this
more concrete we introduce a new notation for particle states

a†(k) |0〉 ≡ |1k〉 (9.18)

a†(k) |1k〉 ≡ |2k〉 (9.19)

a†(k′) |2k〉 ≡ |2k, 1k′ 〉 (9.20)

Take a look at the energy again

E =
∫

dk3 1
(2π)3 ωka†(k)a(k).

What happens if this operator acts on a state like |2k1, k2〉? The result
should be

E = 2ωk1 + ωk2 ,

which is the energy of two particles with energy ωk1 and one particle
with energy ωk2 . Therefore, the operator

N(k) ≡ a†(k)a(k) (9.21)

appearing here is a number operator, denoted N(k) that extracts the
number of particles with momentum k from a state:

N(k) |nk, n′
k, . . .〉 = nk |nk, n′

k, . . .〉 (9.22)
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The energy operator can then be written as

E =
∫

dk3 1
(2π)3 ωk N(k).

Furthermore, take note that there are physical systems, where the
momentum spectrum is not continuous, but discrete8. For such sys- 8 Remember the particle in a box exam-

ple. It is an often used trick in quantum
field theory to assume the system in
question is restricted to a volume V.
This results in a discrete momentum
spectrum. At the end of the computa-
tion the limit limV→∞ is taken.

tems all integrals change to sums, for example, the energy is then of
the form

E = ∑
k

ωk N(k).

and the commutation relation changes to

[a(k), a†(k′)] = δk,k′ . (9.23)

Take note that quantum field theory is, like quantum mechan-
ics, a theory making probabilistic predictions. Therefore, our states

need to be normalized 〈k, k′, ..| |k, k′, ..〉 !
= 1, because a probability of

more than 100% = 1 doesn’t make sense. If we act with an operator
like a(k) on a ket, the new ket does not necessarily have unit norm.
Therefore, we write

a†(k) |nk〉 = C |nk + 1〉 , (9.24)

where nk denotes the number of particles with momentum k, and C
is some number. From this we get9 9 Recall that |nk〉† = 〈nk | and we have of

course (a†)† = a.

(a†(k) |nk〉)† = (C |nk + 1〉)†

→ 〈nk| a(k) = 〈nk + 1|C†. (9.25)

We can therefore write

〈nk| a(k)︸ ︷︷ ︸
9.25

a†(k) |nk〉︸ ︷︷ ︸
9.24

= 〈nk + 1| C†C︸︷︷︸
a number and no operator

|nk + 1〉 = C†C 〈nk + 1| |nk + 1〉︸ ︷︷ ︸
=1

(9.26)
or using the discrete commutation relation (Eq. 9.23)

〈nk| a(k)a†(k) |nk〉 = 〈nk|
(

a†(k)a(k)︸ ︷︷ ︸
=N(k) Eq. 9.21

+ δk,k︸︷︷︸
=1

)
|nk〉

Eq. 9.22︷︸︸︷
= 〈nk| (nk + 1)︸ ︷︷ ︸

a number and no operator

|nk〉 = (nk + 1) 〈nk| |nk〉︸ ︷︷ ︸
=1

(9.27)

Putting Eq. 9.26 and Eq. 9.27 together yields

C†C = nk + 1 → C =
√

nk + 1 (9.28)
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and we therefore have

a†(k) |nk〉 =
√

nk + 1 |nk + 1〉 . (9.29)

Following the same steps we can derive

a |nk〉 =
√

nk |nk − 1〉 . (9.30)

Two questions may pop up at this point. Firstly: What happens if
we want to annihilate a particle in a completely empty system? And
secondly: What about energy or charge conservation? How can we
create something from nothing without violating conservation laws?
Firstly, the conservation laws are never violated, but this will only
become clear when we develop the theory further. Maybe it helps to
see that at this point Richard Feynman had the same problem1010 Feynman’s Nobel Lecture (December

11, 1965)
I remember that when someone had started to teach me about creation
and annihilation operators, that this operator creates an electron, I said,
"how do you create an electron? It disagrees with the conservation
of charge", and in that way, I blocked my mind from learning a very
practical scheme of calculation.

Secondly, we are of course never able to destroy something which
is not there in the first place. If we act with the destruction operator
a(k) on a completely empty set |0〉 we get from Eq. 9.30

a(k) |0k〉 =
√

0 |0k − 1k〉 = 0 (9.31)

or equally
a(k′) |1k〉 =

√
0 |1k, 0k′ − 1k′〉 = 0. (9.32)

We can see that if we act with an annihilation operator a(k′) on a
ket, like |k〉 that does not include a particle with this momentum k′,
the theory produces a zero. The creation and annihilation operator
appear in the Fourier expansion of the fields, which includes an
integral (or sum) over all possible momenta. Therefore, if these fields
act on a ket like |k〉, only one annihilation operator will result in
something non-zero. This will be of great importance when we try to
describe interactions using quantum field theory.

Before we move on to interactions, we take a brief look at free spin
1
2 and spin 1 fields.

9.3 Free Spin 1
2 Theory

The equation of motion for free spin 1
2 fields is the Dirac equation,

which was derived in Sec. 6.3

(iγμ∂μ − m)Ψ = 0



quantum field theory 213

The general solution of the Dirac equation can be written in the
form11 11 The Dirac equation is solved in

Sec. 8.9. The general solution is then
written analogous to the solution of the
Klein-Gordon equation, discussed in
the last section.Ψ = ∑

r

√
m

(2π)3

∫ d3 p√wp

(
cr(p)ur(p)e−ipx + dr(p)vr(p)e+ipx

)
= Ψ+ + Ψ−, (9.33)

but this time we do not restrict to real fields, because we saw in
Sec. 6.3 that a Lorentz invariant Lagrangian needs complex spin 1

2
fields. In addition, we follow the standard convention and write the
solutions as

Ψ = ∑
r

√
m

(2π)3

∫ d3 p√wp

(
cr(p)ur(p)e−ipx + d†

r (p)vr(p)e+ipx
)

, (9.34)

because in this way, d†
r (p) can be seen to create an anti-particle. If

we would name it dr(p) in the solution, this could lead to confusion,
because for particles c†

r (p) creates and cr(p) annihilates. Naming
the Fourier coefficient d†

r (p) instead of dr(p), leads to an analogous
interpretation for anti-particles: d†

r (p) creates and dr(p) annihilates.
Analogously, we have for the adjoint Dirac equation

(i∂μΨ̄γμ + mΨ̄) = 0,

which was also derived in Sec. 6.3, the solution

Ψ̄ = ∑
r

√
m

(2π)3

∫ d3 p√wp

(
c†

r (p)ūr(p)e+ipx + dr(p)v̄r(p)e−ipx
)

= Ψ̄+ + Ψ̄− (9.35)

where u1, u2, v1, v3 are the "basis spinors" in an arbitrary frame12 12 We derived these spinors in the rest
frame (pi = 0) in Sec. 8.10. The basis
spinors in an arbitrary frame can be
computed from the basis spinors in the
rest frame by a boost transformation.

u1 =

√
E + m

2m

⎛
⎜⎜⎜⎜⎜⎝

1
0
p3

E+m

p1+ip2
E+m

⎞
⎟⎟⎟⎟⎟⎠ u2 =

√
E + m

2m

⎛
⎜⎜⎜⎜⎜⎝

0
1

p1−ip2
E+m

−p3
E+m

⎞
⎟⎟⎟⎟⎟⎠ (9.36)

v1 =

√
E + m

2m

⎛
⎜⎜⎜⎜⎜⎝

p1−ip2
E+m

−p3
E+m

0
1

⎞
⎟⎟⎟⎟⎟⎠ v2 =

√
E + m

2m

⎛
⎜⎜⎜⎜⎜⎝

p3
E+m

p1+ip2
E+m

1
0

⎞
⎟⎟⎟⎟⎟⎠ . (9.37)

The rest of the theory for free spin 1
2 fields can be developed sim-

ilarly to the scalar theory, but there is one small13 difference. It can 13 With incredible huge consequences!
In fact, nothing in this universe would
be stable if the spin 1

2 would work
exactly like the scalar theory.
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be seen that the commutation relation we used for scalar fields does
not work for spin 1

2 fields. In the general solution for the equation
of motion, i.e. the Dirac equation, we have two different coefficients:
c† creates particles, whereas d† creates anti-particles. If we are now
computing, using the commutation relation14, the Hamiltonian for a14 [Φ(x), π(y)]

= Φ(x)π(y)− π(y)Φ(x) = iδ(x − y) spin 1
2 field, we get something of the form

H ∼
∫

c†c − d†d

which shows that the energy of anti-particles is then negative. This is
a serious problem because every state could forever decay to lower
energy states and nothing in this universe would be stable. The
Hamiltonian is not bounded from below as in the scalar case. But
if we use instead the anticommutation relation

{Φ(x), π(y)} = Φ(x)π(y) + π(y)Φ(x) = iδ(x − y),

the term involving the anti-particle creation and annihilation opera-
tors comes out positive and the problem is therefore solved.

What may seem like an awkward trick, has very interesting conse-
quences. For example, we have then1515 Analogous to Eq. 9.9 for scalars, but

now with the anticommutator instead
of the commutator [, ] → {, }. {c†(k), c†(k′)} = 0

from which we can conclude

{c†(k), c†(k)} = c†(k)c†(k) + c†(k)c†(k) = 2c†(k)c†(k) = 0.

⇒ c†(k)c†(k) = 0 (9.38)

The action of two equal creation operators16always results in a16 For spin 0 fields the correspond-
ing equation isn’t very surpris-
ing, because there we use the
commutator: [c†(k), c†(k)] =
c†(k)c†(k)− c†(k)c†(k) = 0 .

zero! This means we cannot create two equal spin 1
2 particles and this

is famously called Pauli-exclusion principle.

The other anti-commutation relations for the Fourier coefficients
can be derived from the anti-commutator of the field and the conju-
gate momentum to be:

{cr(p), c†
s (p′)} = δrsδ(p− p′) {dr(p), d†

s (p′)} = δrsδ(p− p′) (9.39)

and all other possible combinations equal zero. Therefore, these coef-
ficients can be seen to have the same properties as those we derived
in the last section for the spin 0 field. They create and destroy, with
the difference that acting twice with the same operator on a state re-
sults in a zero. The Hamiltonian for a free spin 1

2 field can be derived
analogously to the Hamiltonian for a free spin 0 field

H
1
2
free =

∫
d3x(−iΨ̄γi∂

iΨ − mΨ̄Ψ) (9.40)
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or expressed in terms of the Fourier coefficients

H
1
2

free = ∑
r

∫
d3 p wp

(
c†

r (p)cr(p) + d†
r (p)dr(p) + const

)
(9.41)

where again the constant term leads to an infinite term and we
choose to ignore this.

9.4 Free Spin 1 Theory

The solution for the equation of motion for free spin 1 fields, the
Proca equation, which was derived in Sec. 6.4

m2 Aρ =
1
2

∂σ(∂
σ Aρ − ∂ρ Aσ) (9.42)

is, analogously to the spin 0 field solution, of the form

Aμ =
∫ d3k√

(2π)32ωk

(
εr,μ(k)ar(k)e−ikx + εr,μ(k)a†

r (k)e
ikx

)
(9.43)

Aμ = A+
μ + A−

μ (9.44)

where εr,μ(k) are basis vectors, called polarization vectors. For spin
1 fields we are again able to use the commutator instead of the anti-
commutator and we are therefore able to derive that the coefficients
ar, a†

r have the same properties as the coefficients for spin 0 fields.

9.5 Interacting Field Theory

The next step is to look at interactions between fields of different
spin. The corresponding Lagrangians were derived in earlier chapters
from Lorentz and gauge symmetry. For example, for the interaction
between a massive spin 1

2 field and one massless spin 1 field, we have
the Lagrangian (Eq. 7.17)

LDirac+Extra-Term = −mΨ̄Ψ + iΨ̄γμ∂μΨ + gAμΨ̄γμΨ (9.45)

from which we derive the corresponding Hamiltonian17 17 We will use this Hamiltonian in a
moment!
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H =
∫

d3xT00

=
∫

d3x
( ∂L

∂(∂0Ψ)︸ ︷︷ ︸
=iΨ̄γ0

∂0Ψ −L
)

=
∫

d3x
(

iΨ̄γ0∂0Ψ + mΨ̄Ψ − iΨ̄ γμ∂μ︸ ︷︷ ︸
=γ0∂0−γi∂i

Ψ − gAμΨ̄γμΨ
)

=
∫

d3x(mΨ̄Ψ + iΨ̄γi∂iΨ)︸ ︷︷ ︸
=H

1
2

free

−
∫

d3x
(

gAμΨ̄γμΨ
)

︸ ︷︷ ︸
≡−HI

= H
1
2
free + HI (9.46)

9.5.1 Scatter Amplitudes

One of the main goals in quantum field theory is to compute the
probability for a fixed number n of particles with defined18 momenta18 This is what physicists prepare in

collider experiments. p1, p2, .., pn to transform into a (possibly different) number of (pos-
sibly different) particles n′ with momenta q1, q2, .., qn′ . We can write
this using Dirac’s notation

〈q1, q2, .., qn′ | Ŝ |p1, p2, .., pn〉 , (9.47)

where Ŝ is the operator describing the scattering. We will derive how
this operator looks concretely in the next section. This means we have
some particles at initial time ti at some points in space xi and after
the interaction, i.e. at the final time t f , (possibly different) particles at
a possibly different location x f .

Therefore, the first question we have to answer is: What can we
say about the time evolution of states, denoted by |?〉, in quantum
field theory?

9.5.2 Time Evolution of States

To answer this question we observe that the energy operator is given
on the one hand by the identification with the generator of time-
translations i∂0 and on the other hand by the Hamiltonian. For exam-
ple, for the free spin 0 theory we derived (Eq. 9.10)

H0
free =

1
2

∫
d3x

(
(∂0Φ)2 + (∂iΦ)2 + mΦ2

)
(9.48)

while for the free spin 1
2 theory we have (Eq. 9.40)

H
1
2
free =

∫
d3x(mΨ̄Ψ + iΨ̄γi∂

iΨ). (9.49)
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Both identifications are operators in a field theory, representing en-
ergy, and we therefore write

i∂0 |?(t)〉 = H |?(t)〉 , (9.50)

which is the equation governing the time evolution of a state in quan-
tum field theory. We can use this equation to define a time-evolution
operator U that transforms the state from one point in time to an-
other. If we choose, for brevity, the start time to be t = 0 we have19 19 In general |?(t)〉 = U(t − t′) |?(t′)〉.

|?(t)〉 = U(t) |?(0)〉 . (9.51)

Putting this ansatz into Eq. 9.50 yields

i∂0U(t) |?(0)〉 = HU(t) |?(0)〉 . (9.52)

This equation holds for arbitrary |?(0)〉 and therefore20 20 We discussed this line of thought
already in a sidenote in Sec. 5.1.

i∂0U(t) = HU(t). (9.53)

The general solution of this equation is

U(t) = e−i
∫ t

0 dx0 H (9.54)

as we can check

i∂0U(t) = HU(t) → i∂0e−i
∫ t

0 dx0 H = He−i
∫ t

0 dx0 H

→ i(−iH)e−i
∫ t

0 dx0 H = He−i
∫ t

0 dx0 H

→ He−i
∫ t

0 dx0 H = He−i
∫ t

0 dx0 H � (9.55)

In experiments we never measure a ket |?(t)〉, but always the com-
binations of a bra with a ket. In general, we have objects of the form

〈 f (t)| Ô |i(t)〉 , (9.56)

with some operator Ô, initial state |i(t)〉 and final state 〈 f (t)|. Here
the states evolve in time, as described by the operator U, and the
operators are time independent. This somewhat arbitrary choice is
called Schrödinger picture and in the following we will talk about
different possible choices, i.e. different pictures.

Writing this in terms of the time-evolution operator leads us to21 21 Remember 〈 f | = | f 〉†

〈 f (0)|U†(t)ÔU(t) |i(0)〉 . (9.57)

An important idea is that we can switch our perspective and say the
operator Ô evolves in time, following the rule U†(t)ÔU(t) and the
bra and ket are time-independent. This new perspective is called
Heisenberg picture.
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There is a similar, very useful trick that is conventionally used in
interaction theory. The Hamiltonian is always the sum of the free
Hamiltonian and the interaction Hamiltonian (Eq. 9.46)

H = Hfree + HI . (9.58)

The trick is to use a mixture of the two perspectives introduced
above. We let the states evolve according to HI and the operators2222 Recall that in quantum field theory

the fields are our operators. according to Hfree. This is incredibly useful, because then we can
reuse all results we already derived for free fields. This type of per-
spective is called interaction picture. We define a state in the interac-
tion picture

|i(t)〉I ≡ U†
free |i(t)〉S , (9.59)

where Ufree = e−i
∫ t

0 dx0 Hfree and the index S stands for Schrödinger

picture, which is the name for the standard perspective where the
states evolve according to the full Hamiltonian and the operators are
time-independent.

Putting now Eq. 9.59 into Eq. 9.50 we get23 the time-evolution23 The equation holds in this form for
the Schrödinger picture. Therefore, we
have to solve |i(t)〉I ≡ U†

free |i(t)〉S for
|i(t)〉S. We multiply the equation with
Ufree and use UfreeU†

free = 1. This yields
|i(t)〉S = Ufree |i(t)〉I , which we can then
put into Eq. 9.50.

equation in the interaction picture:

i∂0 |i(t)〉S = H |i(t)〉S

→ i∂0Ufree |i(t)〉I = HUfree |i(t)〉I

→ i∂0e−i
∫ t

0 dx0 Hfree |i(t)〉I = (Hfree + HI)e−i
∫ t

0 dx0 Hfree |i(t)〉I

→︸︷︷︸
product rule

�����������
Hfreee−i

∫ t
0 dx0 Hfree |i(t)〉I + ie−i

∫ t
0 dx0 Hfree ∂0 |i(t)〉I = (���Hfree + HI)e−i

∫ t
0 dx0 Hfree |i(t)〉I

→ ie−i
∫ t

0 dx0 Hfree ∂0 |i(t)〉I = HIe−i
∫ t

0 dx0 Hfree |i(t)〉I

→ i∂0 |i(t)〉I = ei
∫ t

0 dx0 Hfree HIe−i
∫ t

0 dx0 Hfree︸ ︷︷ ︸
=Hint

I The interaction Hamiltonian in the interaction picture.

|i(t)〉I

→ i∂0 |i(t)〉I = Hint
I |i(t)〉I (9.60)

We conclude that the time-evolution of the states is now indeed
governed by the interaction Hamiltonian Hint

I . This little equation
will be incredibly important for everything that follows.

Now we are able to return to the starting question: How can we
compute scattering processes

〈 f (t f )| Ŝ(t f , ti) |i(ti)〉 ? (9.61)

The operator Ŝ(t f , ti) transforms the initial state |i(ti)〉 at time ti into
the final state |Ψ(t f )〉 at time (t f ). In general, this is not one specific
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particle state, but a linear combination of many possible outcomes.
If this would be not the case particle physics would be boring. An
interaction would always result in one specific outcome. We are
more general here and allow arbitrary linear combinations. After we
specify the operator Ŝ we will see that this is actually the case.

Concretely this means that Ŝ transforms an initial state into a
linear combination of final states. To avoid confusion we will call the
final time in the following simply t instead of t f . Then we have24 24 This can be seen as a series expansion

of the state |Ψ(t)〉 in terms of our
particle states | f (t)〉.Ŝ(t, ti) |i(ti)〉 = |Ψ(t)〉 = ∑

f
S f i︸︷︷︸

complex numbers

| f (t)〉 . (9.62)

The multiplication with one specific 〈 f ′(t)| from the left-hand side
terminates all but one term of the sum:

〈 f ′(t)|∑
f

S f i | f (t)〉 = ∑
f

S f i 〈 f ′(t)| | f (t)〉︸ ︷︷ ︸
=δ f f ′ because basis states are orthogonal

= ∑
f

S f iδ f f ′ = S f ′i. (9.63)

Therefore, the probability for this process to happen is |S f ′i|2.

Now we specify the scatter operator Ŝ. For this purpose we take a
look again at the time-evolution equation we derived above25 25 Eq. 9.60 and in order to avoid nota-

tional clutter we suppress the super-
script "int", which denotes that we are
working in the interaction picture here.i∂t |Ψ(t)〉I = HI |Ψ(t)〉I . (9.64)

We can rewrite this in terms of our initial state and the operator Ŝ
using Eq. 9.62,

→ i∂tŜ(t, ti) |i(ti)〉I = HIŜ |i(ti)〉I

→︸︷︷︸
product rule

i(∂tŜ(t, ti)) |i(ti)〉I + iŜ(t, ti) ∂t |i(ti)〉I︸ ︷︷ ︸
=0 because |i(ti)〉I does not depend on t

= HIŜ |i(ti)〉I .

Now using that this equation holds for arbitrary initial states we can
write

i∂tŜ(t, ti) = HIŜ (9.65)

with the general solution26 26 We omitted something very important
here, called time ordering, which we
will discuss in the next section.

Ŝ(t, ti) = e
−i

∫ t
ti

dt′HI (9.66)

At a first glance the problem is easy now. We know HI and just
have to solve the integral, which gives the operator Ŝ(t, ti) and by act-
ing with it on our initial states gives us the probability amplitudes for
the different processes. Unfortunately, the integral cannot be solved.
To simplify the problem mathematically, the initial time is taken to
be ti = −∞ and the final time t = ∞. By doing this we avoid our
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probability amplitudes depending on time. For example, if we scatter
particles, the probability that a certain process has happened 10−24

seconds after the assumed "collision" is different than 2 · 10−24 sec-
onds after the "collision", because the interaction is still happening!
By taking the time values to be very large we avoid these kind of
complications, because what we measure is always a result after all
the interactions have happened.

9.5.3 Dyson Series

Because there is no analytic solution for the exponentiated integral
we expand it in a Taylor series2727 This is derived in appendix B.4.1:

ex = 1 + x + x2

2! +
x3

3! +
x4

4! + ...
Ŝ(∞,−∞) = e−i

∫ ∞
−∞ dt′HI(t′)

= 1 − i
∫ ∞

−∞
dt1HI(t1)

− 1
2!

(∫ ∞

−∞
dt1HI(t1)

)(∫ ∞

−∞
dt2HI(t2)

)
+ ... (9.67)

This is called the Dyson series. We need to take a careful look at
the third term. HI(t1) and HI(t2) are not just numeric values, but
operators acting on a ket to their right. Therefore, we need to make
sure that the earlier time operator acts on the ket before the later time
operator. The operators need to operate on the ket in a time ordered
manner. It makes no sense if we act on a state with HI(t = 5 s) and
after that with HI(t = 2 s). In the series above, we need for t1 < t2(∫ ∞

−∞
dt2HI(t2)

)(∫ ∞

−∞
dt1HI(t1)

)
and for t2 < t1 (∫ ∞

−∞
dt1HI(t1)

)(∫ ∞

−∞
dt2HI(t2)

)
For this purpose an abstract time-ordering operator T is introduced,
which is defined by

T {A(x)B(y)} :=
A(t1)B(t2) if t1 > t2

B(t2)A(t1) if t1 < t2.
(9.68)

Therefore we write, giving a name to each term of the series expan-
sion,

Ŝ(∞,−∞) = 1︸︷︷︸
S(0)

−i
∫ ∞

−∞
dt1HI(t1)︸ ︷︷ ︸

S(1)

− 1
2!

T

{(∫ ∞

−∞
dt1HI(t1)

)(∫ ∞

−∞
dt2HI(t2)

)}
︸ ︷︷ ︸

S(2)

+... (9.69)
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or written with a sum

Ŝ(∞,−∞) =
∞

∑
n=0

(−i)n

n!

∫ ∞

−∞
...

∫ ∞

−∞
T

{(∫ ∞

−∞
dt1HI(t1)

)(∫ ∞

−∞
dt2HI(t2)

)
...

(∫ ∞

−∞
dtnHI(tn)

)}

=
∞

∑
n=0

S(n). (9.70)

This is useful because HI has a numerical factor28 in it, the cou- 28 See Eq. 9.46 where the coupling
constant is denoted e.pling constant of the corresponding interaction, i.e. HI ∝ g . This

coupling constant is, for example, for the electromagnetic interac-
tions, smaller than one. Therefore, the second term in the expansion
S(2) ∝ (HI)

2 ∝ g2 contributes less than the first term S(1) ∝ g. The
higher order terms in the expansion contribute even less. To describe
the system in question it often suffices to evaluate the first few terms
of the series expansion. Higher order terms often deliver corrections
that lie outside the possibility of measurement.

Unfortunately, going further from this point needs many pages of
heavy algebra. The first step is Wick’s-Theorem which enables one
to express the time ordering in terms of commutators. Furthermore,
these commutators need to be computed, which results in the famous
Feynman propagators. Nevertheless, we want to go further29, so we 29 Because now, the fun is about to

begin!are going to use these results without proofs. The interested reader is
referred to the standard texts on quantum field theory30. 30 Some recommended books will be

listed in the last section of this chapter.

9.5.4 Evaluating the Series

We will now return to the example introduced at the beginning of
this section: The interaction between a massive spin 1

2 field and a
massless spin 0 field. The corresponding interaction Hamiltonian is
(Eq. 9.46)

HI = −
∫

d3xgAμΨ̄γμΨ.

As explained above, we will look at each term of the series indi-
vidually.

The first term of the series is trivial as it is simply the identity
operator

S(0) = I (9.71)

The second term is more exciting.

S(1) = −i
∫ ∞

−∞
dtHI = ig

∫ ∞

−∞
d4xAμΨ̄γμΨ (9.72)

which we rewrite, recalling Eq. 9.33 and Eq. 9.44

S(1) = ig
∫ ∞

−∞
d4x(A+

μ + A−
μ )(Ψ̄

+ + Ψ̄−)γμ(Ψ+ + Ψ−). (9.73)



222 physics from symmetry

We can see this second term is actually 8 terms. Let us have a look at
how one of these terms, we call it S(1)

1 , acts on a state consisting of,
for example, one electron and one positron with prepared momenta
|e+(p1), e−(p2)〉

ig
∫ ∞

−∞
d4xA+

μ Ψ̄+γμΨ+ |e+(p1), e−(p2)〉 .

Ψ+ consists of destruction31 operators for particles for all32 possible31 Remember the operators with the †
are those who create and the operators
without are those who destroy. Ψ+ is
defined in Eq. 9.33.

32 We integrate over all possible mo-
menta!

momenta, multiplied with constants and a term of the form e−ipx1 .

Ψ+ ∝
∫

d3 p cr(p)e−ipx

For each momentum this destroys the ket, which means we get a
zero, because we are trying to destroy something which is not there,
except for cr(p) = cr(p2). Therefore, operating with Ψ+ results in

Ψ+ |e+(p1), e−(p2)〉 ∝ e−ip2x |e+, 0〉

In the same way, operating with Ψ̄+ on the ket results in

Ψ̄+e−ip2x |e+(p1), 0〉 ∝ e−ip2xe−ip1x |0, 0〉

Therefore, we are left with the pure vacuum state, multiplied with
lots of constants. The last term operating on the ket is A+

μ , which
creates photons of all momenta.

Fig. 9.1: Feynman graph for the process
e+e− → γ

Qualitatively we have, if we want the contribution of this one term
to the probability amplitude for the creation of a photon 〈γ|, with
momentum k′

〈 f | S(1)
1 |i〉 = 〈γk′ | S(1)

1 |e+(p1), e−(p2)〉 (9.74)

=
∫ ∞

−∞
d4x 〈γk′ |∑

k
constant(k) |γk〉 e−ix(p1+p2−k)

=
∫ ∞

−∞
d4x ∑

k
constant(k) 〈γk′ | |γk〉︸ ︷︷ ︸

=δkk′

e−ix(p1+p2−k)

=
∫ ∞

−∞
d4x constant(k′)e−ix(p1+p2−k′).

The integration over x results in a delta function δ(p1 + p2 − k) that
represents 4-momentum conservation33. In experiments we are never33 The 4-momentum (=energy p0 = E

and ordinary momentum pi) of e−
plus the 4-momentum of e+ must
be equal to the 4-momentum of the

photon γ: p1 + p2 − k !
= 0. Otherwise

δ(p1 + p2 − k) = 0 as explained in
appendix D.2.

able to measure or prepare a system in one defined momentum, but
only in a range. Therefore, at the end of our computation, we have to
integrate over the relevant momentum range.

Take note that the seven other terms contributing to Ŝ(1) result
in a zero, because they destroy for example, a photon, which is not
there in the beginning. If we had started with particles other than an
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electron and a positron, for example, a photon and a positron |γ, e+〉,
the first term results in a zero and some other term is non-zero.

Next we take a very quick, qualitative look at the third term of Ŝ.

S(2) = − 1
2!

T

{(∫ ∞

−∞
d4x1HI(x1)

)(∫ ∞

−∞
d4x2HI(x2)

)}

= − 1
2!

T

{(∫ ∞

−∞
d4x1gAμ(x1)Ψ̄(x1)γ

μΨ(x1)

)(∫ ∞

−∞
d4x2gAμ(x2)Ψ̄(x2)γ

μΨ(x2)

)}
,

(9.75)

where the time-ordering can be rewritten using Wick’s Theorem into
a sum of normal-ordered, denoted N{}, terms with commutators in
it. Normal ordering means, putting all creation operators to the left,
and all annihilation operators to the right. For instance, N{aa†a†a} =

a†a†aa One of the terms of this sum, for example, is

− 1
2!

g2
∫ ∫

d4x1d4x2N

{
Ψ̄(x1)γ

μΨ(x1)[Aμ(x1), Aμ(x2)]Ψ̄(x2)γ
μΨ(x2)

}

where the computation of the commutator can be done using the
explicit solution for Aμ and the result is called Photon propagator34 34 The propagators are one of the most

complicated things to derive in quan-
tum field theory. For instance, consid-
ering the scalar propagator, the starting
point is iΔ ≡ 〈0| T{Φ(x)Φ†(y)} |0〉,
which creates a particle from the vac-
uum at y and destroys it again at x.
This can be rewritten as the commu-
tator iΔ = 〈0| [Φ†+(y), Φ−(x)] |0〉
and after many pages of math
we get an expression of the form
iΔ = −i

2π3

∫ d3k
ωk

e−ik(x−y). This final
expression is what we can use in com-
putations. This is just a sketch and
many things here are not completely
correct, nevertheless it should give you
a rough idea of what is going on.

[Aμ(x1), Aμ(x2)] ≡ iDμ(x1 − x2) .
From this term we get again many, many terms, because every

Ψ, Ψ̄ etc. is actually a sum of two terms, and we will take a look at
just one of them. Therefore, qualitatively we have for one35 of these

35 We pick again the term not resulting
in a zero for the collision of an electron
with a positron.

many many terms, if we start again with an electron and a positron,
something of the form

− 1
2!

g2
∫ ∫

d4x1d4x2Ψ̄−(x1)Ψ−(x1)Dμ(x1 − x2)Ψ̄+(x2)Ψ+(x2) |e+, e−〉
(9.76)

This can be understood physically:

• The two particles we start with are destroyed at x2 by Ψ̄+(x2)Ψ+(x2).

• Then the propagator creates a "virtual" photon at x2 and propa-
gates it to x1 where it is destroyed.

• Finally Ψ̄−(x1)Ψ−(x1) again create at x1 an electron and a positron.

We can therefore compute with this term the probability ampli-
tude for a reaction e+e− → e+e−, where of course the individual
momenta of the incoming and outgoing particles can be completely
different, but not their sum. In the same way, all the other terms can
be interpreted as some reaction between massive36 spin 1

2 and mass- 36 Here we looked at electrons and
positrons. Other possibilities are the
quarks or the other two leptons μ and
τ.
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less37 spin 1 fields.

37 Here photons

Fig. 9.2: Feynman graph for the process
e+e− → γ → e+e−

The probability amplitudes we get from computations like this
can then be directly checked in experiments, because the probability
amplitude is directly connected to a quantity that can be measured in
experiments: the cross section.

The techniques outlined in this chapter can be used to derive
many important results of quantum field theory. The other inter-
action terms we derived can be put into the interaction Hamiltonian
and the corresponding probability amplitudes follow analogously.
Unfortunately, this does not always work for the interaction term that
follows from SU(3) gauge symmetry, because the coupling constant
of strong interactions is too big to allow the usage of a series expan-
sion. If the coupling constant is bigger than 1, higher order terms are
bigger than lower order terms and therefore it is by no means justi-
fied to use just the first terms of the series, to get an approximation.
For quantum chromodynamics, as this branch of physics is called,
other computational schemes are needed, but this goes beyond the
scope of this book.

Further Reading Tips

• Robert D. Klauber - Student Friendly Quantum Field Theory3838 Robert D. Klauber. Student Friendly
Quantum Field Theory. Sandtrove
Press, 2nd edition, 12 2013. ISBN
9780984513956

is, in my humble opinion, the best introduction to quantum field
theory. All chapters are pedagogically brilliant, because the au-
thor spent a lot of time thinking about what problems someone
learning quantum field theory faces.

• Francis Halzen, Alan D. Martin - Quarks and Leptons: An In-

troductory Course in Modern Particle Physics39 is a great book39 Francis Halzen and Alan D. Martin.
Quarks and Leptons: An Introductory
Course in Modern Particle Physics. Wiley,
1st edition, 1 1984. ISBN 9780471887416

which focusses on the applications of the computational schemes
of quantum field theory.

• Anthony Zee - Quantum Field Theory in a Nutshell40 has some40 Anthony Zee. Quantum Field Theory in
a Nutshell. Princeton University Press,
1st edition, 3 2003. ISBN 9780691010199

brilliant and unique explanations, but some chapters are simply
too short to understand as a beginner. Highly recommended after

learning some quantum field theory from another book.

• Franz Mandl, Graham Shaw - Quantum Field Theory41 is a very41 Franz Mandl and Graham Shaw.
Quantum Field Theory. Wiley, 2nd
edition, 5 2010. ISBN 9780471496847

good starting point regarding weak and strong interaction theory

• Michele Maggiore - A Modern Introduction to Quantum Field

Theory42 is a great introduction with a strong focus on group42 Michele Maggiore. A Modern Intro-
duction to Quantum Field Theory. Oxford
University Press, 1st edition, 2 2005.
ISBN 9780198520740

theoretical concepts.

• Ian J. R. Aitchison and Anthony J. G. Hey - Gauge Theories in

Particle Physics43 offers very illuminating explanations regarding43 Ian J.R. Aitchison and Anthony J.G.
Hey. Gauge Theories in Particle Physics.
CRC Press, 4th edition, 12 2012. ISBN
9781466513174

the ideas of gauge theories.



quantum field theory 225

9.6 Appendix: Most General Solution of the

Klein-Gordon Equation

It is not too hard to find one solution of the Klein-Gordan equation.
Certainly plane waves do the job

Φ(x) = aei(px−Et) = e−i(pμxμ)

because of the energy-momentum relation of special relativity (Eq. 8.2)

E2 = �p2 + m2 → pμ pμ = m2

we see

(∂μ∂μ + m2)Φ = (∂μ∂μ + m2)e−i(pμxμ)

= (−pμ pμ + m2)e−i(pμxμ)

= (−m2 + m2)e−i(pμxμ)

= 0 � (9.77)

Because we differentiate the field twice the sign in the exponent does
not matter. Equally

Φ†(x) = a†e−i(px−Et) = a†ei(pμxμ)

is a solution. Further solutions can be built by linear combinations.
A general solution is given by superposition of all possible solutions,
which can be seen as the Fourier expansion44 of the solution 44 Thats were the factors of 2π come

from. Another way of seeing this is
demanding the solutions to form an
orthonormal set:

∫
dkeikxe−ikx′ =∫

dkeik(x−x′) = 2πδ(x − x′). Therefore,
the factors of 2π are normalisation
constants.

Φ(x) =
∫ dp4

(2π)4 (a(p)e−i(pμxμ) + a†(p)ei(pμxμ))

Take note that we wrote a = a(p) because we can have a different
multiplication factor for each value of p and each term in the summa-
tion is a solution on its own.

In this context it is conventional to work with the wave number
ki = pi

h̄ and the frequency k0 = w = E
h̄ instead of the energy and

momentum. Because we work with h̄ = 1 we simply have to rename
our variables to get the standard textbook expressions. Furthermore
it’s conventional to abbreviate kx ≡ kμxμ. We therefore write

Φ(x) =
∫ dk4

(2π)4

(
a(k)e−i(kx) + a†(k)ei(kx)

)
Take note that not all solutions of the Klein-Gordon equation are

suited to describe nature, because we have the "mass-shell" condi-

tion

pμ pμ = kμkμ = m2 → k2
0 − k2

i
!
= m2 → k2 !

= m2. (9.78)



226 physics from symmetry

Only solutions satisfying the mass-shell condition are in agreement
with the relativistic energy-momentum relation (Eq. 8.2). We can
build this condition into our equation, excluding all non-physical
(off-shell) solutions with a delta distribution4545 This is explained in appendix D.2.

Φ(x)physical =
∫ dk4

(2π)4 2πδ(k2 − m2)
(

a(k)e−i(kx) + a†(k)ei(kx)
)

Besides that, only positive energy solutions are physical, because as
explained earlier, otherwise the energy would be unbounded from
below and nothing would be stable. We can built this constraint on
our solutions into the equation by using a Heaviside function θ(k0),
being zero for k0 < 0 and 1 for k0 ≥ 0. Our integral then reads

Φ(x)physical =
∫ 1

(2π)3 dk4δ(k2 − m2)θ(k0)︸ ︷︷ ︸
measure

(
a(k)e−i(kx) + a†(k)ei(kx)

)

where we can rewrite the measure as follows

dk4δ(k2 − m2)θ(k0) = dk4δ(k2
0 −�k2 − m2︸ ︷︷ ︸

≡−ω2
k (definition)

)θ(k0)

= dk4δ(k2
0 − ω2

k)θ(k0)

= dk4δ
(
(k0 − ωk)(k0 + ωk)

)
θ(k0)

=︸︷︷︸
using δ

(
f (x)

)
=∑i

δ(x−ai)∣∣∣∣ d f
dx (ai)

∣∣∣∣ where ai denotes the roots, i.e. f (ai)=0, of the function f (x)

dk4 1
2k0

(
δ(k0 − ωk) + δ(k0 + ωk)

)
θ(k0)

=︸︷︷︸
because the argument of δ(k0+ωk) never becomes zero with k0≥0

dk4 1
2k0

δ(k0 − ωk)

= dk3dk0
1

2k0
δ(k0 − ωk)

=︸︷︷︸
Integrating over k0

dk3 1
2ωk

(9.79)

So finally the general and physical solution to the Klein-Gordon
equation reads

Φ(x) =
∫

dk3 1
(2π)32ωk

(
a(k)e−i(kx) + a†(k)ei(kx)

)
(9.80)
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Classical Mechanics

In this chapter we want to explore the connection between quan-
tum and classical mechanics. We will see that the time derivative of
the expectation value for the momentum operator gives us exactly
Newton’s second law, which is one of the foundations of classical
mechanics.

Starting with the expectation value for an operator (Eq. 8.14)

< Ô >=
∫

d3xΨ�ÔΨ

and the Schrödinger equation for a particle in an external potential
(Eq. 8.22)

(i
d
dt

− ∇2

2m
)Ψ − VΨ = 0

→ i
d
dt

Ψ =

(∇2

2m
+ V

)
︸ ︷︷ ︸

=:H

Ψ

→ d
dt

Ψ =
1
i

HΨ

→︸︷︷︸
Because H†=H

d
dt

Ψ� = −1
i

Ψ�︸︷︷︸
Here Ψ†=Ψ�

H

Taking the time derivative of the expectation value yields

d
dt

< Ô >=
∫

d3x
((

d
dt

Ψ�

)
ÔΨ + Ψ�

(
d
dt

Ô
)

Ψ + Ψ�Ô
(

d
dt

Ψ
))

We use now d
dt Ô = 0, which is true for most operators. For example,

for Ô = �̂p = −i�∇ �= Ô(t). In addition, we use the Schrödinger
equation to rewrite the time derivatives of the wave function and its

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_10
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complex conjugate. This yields

d
dt

< Ô > =
∫

d3x
((

−1
i

Ψ�H
)

ÔΨ + Ψ�Ô
(

1
i

HΨ
))

=
1
i

∫
d3x

(
(−Ψ�H) ÔΨ + Ψ�Ô (HΨ)

)
=

1
i

∫
d3xΨ�[Ô, H]Ψ

=
1
i
< [Ô, H] >, (10.1)

which is known as Ehrenfest theorem. If we specify Ô = p̂ and

use H = p̂2

2m + V we get

d
dt

< p̂ > =
1
i
< [ p̂, H] >

=
1
i
< [ p̂,

p̂2

2m
+ V] >

=
1
i
< [ p̂,

p̂2

2m
]︸ ︷︷ ︸

=0

+[ p̂, V] >

=
1
i
< [ p̂, V] >

=
1
i

∫
d3xΨ�[ p̂, V]Ψ

=
1
i

∫
d3xΨ� p̂VΨ − 1

i

∫
d3xΨ�Vp̂Ψ

=
1
i

∫
d3xΨ�(−i∇)VΨ − 1

i

∫
d3xΨ�V(−i∇)Ψ

=︸︷︷︸
Product rule

−
∫

d3xΨ�(∇V)Ψ −
∫

d3xΨ�V∇Ψ +
∫

d3xΨ�V∇Ψ

= −
∫

d3xΨ�(∇V)Ψ

=< −∇V >=< F > . (10.2)

In words this means that the time derivative (of the expectation
value) of the momentum equals the (expectation value of the) nega-
tive gradient of the potential, which is known as force. This is exactly
Newton’s second law1. This equation can be used to compute the1 Recall that we used this equation,

without a derivation, to illustrate the
conserved quantities following from
Noether’s theorem in Sec. 4.5. Here we
deliver the derivation, as promised.

trajectories of macroscopic objects. Historically the force laws were
deduced phenomenologically from experiments. All forces acting on
an object were added linearly on the right-hand side of the equation.
By using the phenomenologically deduced momentum pmak = mv,
we can write the left-hand side as d

dt pmak = d
dt mv, which equals for

an object with constant mass m d
dt v. The velocity is the time-derivative

of the location2 and we therefore have2 In other words, the velocity v =
d
dt x(t) = ẋ(t) is the change-rate of the
position of the object and equally the
acceleration a d

dt
d
dt x(t) = d

dt v = ẍ(t) is
the change-rate of the velocity.

m
d2

dt2 x = F1 + F2 + ... (10.3)



classical mechanics 229

This is the differential equation one must solve for x = x(t) to get the
trajectory of the object in question. An example for such a classical
force will be derived in the next chapter.

10.1 Relativistic Mechanics

Using the Lagrangian formalism, we can look at classical mechanics
from quite a different perspective. We need an equation that de-
scribes the motion of individual particles. As always in this book,
we assume that we can derive the correct equation if we minimize
something. We already discussed at the beginning of Chap. 4 that
this something must be invariant under all Lorentz transformations,
because otherwise we don’t get the same equations of motion in all
frames of reference.

Happily, we already know something that is invariant under all
Lorentz transformations: The invariant of special relativity, which
was derived in Sec. 2.1

(ds)2 = (cdτ)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2, (10.4)

where τ is the proper time as explained in Sec. 2.2. Equally the
square root of this is invariant and therefore the simplest possible
thing we can minimize is

S =
∫

Cdτ with some constant C and dτ =
1
c

√
(cdt)2 − (dx)2 − (dy)2 − (dz)2

(10.5)
The correct constant turns out to be C = −mc2 and therefore we need
to minimize

S = −mc2
∫

dτ. (10.6)

For brevity we will restrict the following discussion to one dimen-
sion. Then we can write

dτ =
1
c

√
(cdt)2 − (dx)2 =

1
c

√
(cdt)2

(
1 − (dx)2

c2(dt)2

)

=
1
c
(cdt)

√
1 − 1

c2

(
dx
dt

)2
=︸︷︷︸

dx
dt =ẋ is the velocity of the particle in question

dt

√
1 − ẋ2

c2 . (10.7)

Putting this into Eq. 10.6 yields

S =
∫

−mc2

√
1 − ẋ2

c2︸ ︷︷ ︸
≡L

dt. (10.8)
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As always, we can find the minimum by putting this into the Euler-
Lagrange equation (Eq. 4.7)

∂L
∂x

− d
dt

(
∂L
∂ẋ

)
= 0

→ ∂

∂x

(
−mc2

√
1 − ẋ2

c2

)
︸ ︷︷ ︸

=0

− d
dt

(
∂

∂ẋ

(
−mc2

√
1 − ẋ2

c2

))
= 0

→ c2 d
dt

⎛
⎝ −m ẋ

c2√
1 − ẋ2

c2

⎞
⎠ = 0 → d

dt

⎛
⎝ mẋ√

1 − ẋ2

c2

⎞
⎠ = 0 (10.9)

This is the correct relativistic equation for a free particle. If the par-
ticle moves in an external potential V(x), we must simply add this
potential to the Lagrangian33 We add −V(x) instead of V(x),

because then we get in the energy of the
system, which we can compute using
Noether’s theorem, the potential energy
term +V(x). L = −mc2

√
1 − (ẋ)2

c2 − V(x) (10.10)

For this Lagrangian the Euler-Lagrange equation yields

d
dt

⎛
⎝ mẋ√

1 − ẋ2

c2

⎞
⎠ = −dV

dx
≡ F. (10.11)

Take note that in the non-relativistic limit (ẋ � c) we have
√

1 − (ẋ)2

c2 ≈
1 and the equation is exactly the equation of motion we derived in
the last section (Eq. 10.3).

10.2 The Lagrangian of Non-Relativistic

Mechanics

It is instructive to have a look at the Lagrangian we derived in the
last section in the non-relativistic limit, which means when the par-
ticle moves slowly compared with the speed of light: ẋ � c. We can
then use the Taylor formula44 See appendix B.3

−mc2

√
1 − ẋ2

c2 = −mc2
(

1 − 1
2

ẋ2

c2 + . . .
)

. (10.12)

In the limit ẋ � c we can neglect higher order terms and the La-
grangian reads

L = −mc2 +
1
2

mẋ2 − V(x) (10.13)
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We already know that a constant like −mc2 has no influence on the
equation of motion and therefore the Lagrangian for non-relativistic

mechanics reads

L =
1
2

mẋ2 − V(x). (10.14)

Without the external potential, i.e. V(x) = 0, this is exactly the
Lagrangian we used in section 4.5.1 to illustrate the conserved quan-
tities that follow from Noether’s theorem. Putting this Lagrangian
into the Euler-Lagrange equation (Eq. 4.7) yields

∂L
∂x

− d
dt

(
∂L
∂ẋ

)
= 0

→ ∂

∂x

(
1
2

mẋ2
)
− d

dt

(
∂

∂ẋ

(
1
2

mẋ2 − V(x)
))

= 0

→ − ∂

∂x
V(x)− d

dt
mẋ = 0 → d

dt
mẋ = − ∂

∂x
V(x) (10.15)

This is once more exactly the equation of motion we derived at the
beginning of this chapter (Eq. 10.3).
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Electrodynamics

We already derived in Chap. 7 one of the most important equations
of classical electrodynamics: The inhomogeneous Maxwell equations
(Eq. 7.22)

∂σ(∂
σ Aρ − ∂ρ Aσ) = Jρ (11.1)

or in a more compact form using the electromagnetic tensor1 1 Fσρ ≡ (∂σ Aρ − ∂ρ Aσ)

∂σFσρ = Jρ. (11.2)

We discovered in Sec. 7.1.6 that Jρ is a Noether current, i.e. ∂ρ Jρ = 0.
In a macroscopic theory this conserved current is the electric four-
current. The field-strength tensor Fσρ is antisymmetric Fσρ = −Fρσ ,
which can be seen directly from the definition Fσρ = ∂σ Aρ − ∂ρ Aσ ,
and has therefore 6 independent components: Three are

Fi0 = ∂i A0 − ∂0 Ai (11.3)

and three are

Fij = ∂i Aj − ∂j Ai = (δi
lδ

j
m − δi

mδ
j
l )∂

l Am =︸︷︷︸
This is a standard relation for the multiplication of two ε with one coinciding index

εijkεklm∂l Am (11.4)

The standard way to label these components is

∂i A0 − ∂0 Ai ≡ Ei (11.5)

εijk∂j Ak ≡ −Bi (11.6)

and therefore
Fi0 = Ei (11.7)

Fij = εijkεklm∂l Am = −εijkBk (11.8)

If we now rewrite the inhomogeneous Maxwell equations2 as 2 Plural because we have one equation
for each component ρ.
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∂σFρσ = ∂0Fρ0 − ∂kFρk = Jρ (11.9)

we have for the three spatial components3 (ρ → i)3 ∇× �B is εikl∂kBl in vector notation and
commonly called cross product.

∂0Fi0 − ∂kFik = ∂0Ei + εikl∂kBl = Ji

→ ∂t�E +∇× �B = �J (11.10)

and for the time-component (ρ → 0)

∂0 F00︸︷︷︸
=0 see the definition of Fρσ

−∂kF0k
Because Fμν=−Fνμ︷︸︸︷

= ∂kFk0 =︸︷︷︸
Eq. 11.7

∂kEk = J0

→ ∇�E = J0 (11.11)

This is the form of the inhomogeneous Maxwell equations that, for
example, engineers use.

11.1 The Homogeneous Maxwell Equations

It follows directly from the definition of the electromagnetic tensor
Fμν that if we multiply it with something totally antisymmetric44 εμνρσ is the four-dimensional Levi-

Civita symbol, which is defined in
appendix B.5.5. F̃μν = εμνρσFρσ (11.12)

the derivative ∂μ of this new object F̃μν, which is called the dual
electromagnetic tensor, vanishes:

∂μ F̃μν = ∂μεμνρσ(∂σ Aρ − ∂ρ Aσ) = 0. (11.13)

This follows from the fact that if we contract two symmetric indices
with two antisymmetric indices, the result is always zero5. This can5 This is explained in appendix B.5.4.

be seen, focussing for brevity on the first term

εμνρσ∂μ∂σ Aρ =
1
2
(εμνρσ∂μ∂σ Aρ + εμνρσ∂μ∂σ Aρ)

=︸︷︷︸
Renaming dummy indices

1
2
(εμνρσ∂μ∂σ Aρ + εσνρμ∂σ∂μ Aρ)

=︸︷︷︸
Because εμνρσ=−εσνρμ and ∂μ∂σ=∂σ∂μ

1
2
(εμνρσ∂μ∂σ Aρ − εμνρσ∂μ∂σ Aρ) = 0 � (11.14)

Equally the second term is zero. The equations66 Plural because we have one equation
for each component v = 0, 1, 2, 3.

∂μ F̃μν = 0 (11.15)
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are known as homogeneous Maxwell equations and we can see
that they are a direct consequence of the definition of Fμν. In or-
der to rewrite this in terms of B and E, we take a look at the time-
component ν → 0:

0 = ∂μ F̃μ0

= ∂μεμ0ρσFρσ

= ∂0 ε00ρσ︸ ︷︷ ︸
=0

Fρσ − ∂iε
i0ρσFρσ

=︸︷︷︸
Because εi0ρσ=0 for ρ=0 or σ=0

−∂iε
i0jkFjk

= ∂iε
0ijkFjk

=︸︷︷︸
See Eq. 11.8

−∂i ε0ijkεl jk︸ ︷︷ ︸
=2δil

Bl

= −2∂iδil Bl = −2∂iBi

⇒ ∂iBi = 0 or in vector notation ∇�B = 0 (11.16)

Analogously, we can take a look at the spatial-components ν → i and
derive

∇× �E + ∂t�B = 0 (11.17)

This is the conventional form of the homogeneous Maxwell equa-
tion that is used in applications.

11.2 The Lorentz Force

We can use the connection between quantum and classical mechanics
(the Ehrenfest theorem) we discovered in the last chapter to derive
the famous Lorentz force law. The starting point is the equation
describing a non-relativistic particle, without spin, in an external
electromagnetic field, i.e. the Schrödinger equation with coupling to
an external electromagnetic field7, see Eq. 8.23: 7 Derived from the Klein Gordan equa-

tion with coupling to an external
electromagnetic field, which we de-
rived from the Lagrangian describing
spin 0 particles which are coupled to
a massless spin 1 field, i.e. the pho-
ton field. Therefore, the real starting
point is once more Lorentz and gauge
symmetry, which we used to derive the
corresponding Lagrangian.

i∂tΨ =

(
1

2m
(�p − q�A)2 + qΦ

)
︸ ︷︷ ︸

≡H

Ψ. (11.18)

If we define the momentum8 of this system �Π = �p − q�A we can

8 This is actually the momentum of the
system following from invariance under
translations using the Noether theorem
∂L
∂ẋ = Π.

write the Hamiltonian as

H =
1

2m
�Π2 + qΦ.
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Having defined the Hamiltonian H we are able to follow the exact
same steps described in the last section and arrive at Eq. 10.1, but
this time carrying the partial time-derivative with us, because the
operator we are going to look at is time dependent:

d
dt

< Ô >=
1
i
< [O, H] > + <

∂O
∂t

>

→ d
dt

< �Π >=
1
i
< [�Π, H] > + <

∂�Π
∂t

>,

We can see that ∂�Π
∂t �= 0 because A can depend on time. If we now

put the explicit form of H into the equation we get

→ d
dt

< �Π >=
1
i
< [�Π,

1
2m

�Π2 + qΦ] > + <
∂�Π
∂t

>

→ d
dt

< �Π >=
1
i
< [�Π,

1
2m

�Π2] > +
1
i
< [�Π, qΦ] >︸ ︷︷ ︸
=<q∇Φ>

+ <
∂�Π
∂t

> .

In the last step we use that [�Π, qΦ] can be computed analogously
to [ p̂, V], which we considered in the last chapter, because [A, Φ] = 0.
The next task is to compute [(�Π)2, �Π], which is non-trivial, because
the components Πi do not commute. Instead we have

[Πi, Πj] = − q
i

(
∂Aj

∂xi
− ∂Ai

∂xj

)
= − q

i
εijk Bk︸︷︷︸
=εklm

∂
∂xl

Am

(11.19)

with the usual definition of the magnetic field B = ∇× A written in
index form. If we now define the speed9 of our particle as �v ≡ �Π

m we9 The momentum divided by the mass
of the particle: p = mv arrive at

1
2m

[�Π2, �Π] =
q
2i
(v × B − B × v) =

q
i
(�v × �B)

Then we can write the classical equation of motion as

d
dt

< �Π >=< q∇Φ > − < q(v × B) > +<
∂�Π
∂t

>︸ ︷︷ ︸
=−q ∂�A

∂t

d
dt

< �Π >= −q < (v × B) > +q< ∇Φ − ∂�A
∂t

>︸ ︷︷ ︸
=<E> see Eq. 11.5

,

We finally arrive at

d
dt

< �Π >≡ FLorentz = −q(< (v × B) > + < E >). (11.20)

This is the equation of motion that describes, when solved, the classi-
cal trajectory of a particle in an external electromagnetic field.
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11.3 Coulomb Potential

We learned in Chap. 7 that our Lagrangians are invariant under
internal transformations. We can use this freedom to simplify com-
putations, i.e. we transform the field in question with an internal
transformation such that the computation becomes especially simple.
This is allowed because the physics we describe with the field and
the transformed field are the same, as long as we stick to the gauge
transformations that leave the Lagrangian invariant. An often used
choice is gauging the photon field Aμ such that10 ∂μ Aμ = 0. This is 10 It can be shown explicitly that there

is such a gauge choice. Further details
can be found in the standard textbooks
about electrodynamics.

called the Lorentz gauge. Using this gauge simplifies the inhomoge-
neous Maxwell equations to

∂σ(∂
σ Aρ − ∂ρ Aσ) = ∂σ∂σ Aρ = Jρ (11.21)

We now have a look at the physical situation where a fixed, static
charge is located in a symmetric region around the origin of our co-
ordinate system. We want to describe physics in the outside region,
which means in the region without a source in it, i.e. Jρ = 0. There-
fore the Maxwell equations are in this region

∂σ∂σ Aρ = ∂0∂0 Aρ − ∂i∂i Aρ = 0. (11.22)

We now use that we are considering a static (∂0 Aρ = 0), symmetric
system, by rewriting the equation using spherical coordinates11. Then 11 Instead of using x, y, z to deter-

mine the position of some objects,
it’s possible to use two angels θ, φ
and the distance from the origin r.
Then we have ∂i∂i Aρ = ∂2

∂r2 (rAρ) +

1
r2 sin θ

∂
∂θ

(
sin θ ∂Aρ

∂θ

)
+ 1

r2 sin2 θ
∂2 Aρ

∂φ2 . This
is especially useful when considering
spherically symmetric systems, because
these do only depend on r.

we can neglect all terms12 but the term involving the ∂r derivative.

12 For a spherically symmetric field, we
have ∂θ A = ∂φ A = 0.

This yields

→ ∂2

∂r2 (rAμ) = 0. (11.23)

The general solution of this equation is

Aμ = εμ C
r
+ εμD (11.24)

with some constant four-vector εμ and constants C and D. The field
Aμ must vanish at infinity and therefore D = 0. For the zeroth com-
ponent13 of Aμ this is the famous Coulomb potential 13 In a lengthy computation using

symmetry considerations it can be
shown that all other components
vanish.A0 = Φ =

C
r
=

Ze
r

, (11.25)

where Z is an integer and e the electric charge of an electron. The
reason for writing the constant C like this is that the electric charge
is quantized in terms of multiples of the electron charge. In the stan-
dard model there is no satisfying explanation for this curious fact of
nature.
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Further Reading Tips

• Richard P. Feynman - The Feynman Lectures on Physics

Volume 214 is a great book to start learning electrodynamics.14 Richard P. Feynman, Robert B.
Leighton, and Matthew Sands. The
Feynman Lectures on Physics: Volume 2.
Addison-Wesley, 1st edition, 2 1977.
ISBN 9780201021172

• David J. Griffiths - Introduction to Electrodynamics15 is another

15 David J. Griffiths. Introduction to
Electrodynamics. Addison-Wesley, 4th
edition, 10 2012. ISBN 9780321856562

great book to learn more about the concepts of electrodynamics.
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Gravity

Unfortunately, the best theory of gravity we have does not fit into the pic-
ture outlined in the rest of this book. This is one of the biggest problems of
modern physics and the following paragraphs try to give you a first impres-
sion.

The modern theory of gravity is Einstein’s general relativity.
The fundamental idea is that gravity is a result of the curvature of
spacetime. Mass and energy change the curvature of spacetime and
in turn the changed curvature influences the movement of mass and
energy. This interplay between energy and curvature is described by
the famous Einstein equation

Gμν = 8πGTμν. (12.1)

On the left-hand side is the Einstein tensor Gμν, which describes
the curvature and on the right-hand side is the energy-momentum
tensor1 Tμν. G is the gravitation constant. 1 Recall that the energy-momentum

tensor is the quantity which is directly
related to translational symmetry
(Eq. 4.36).

From the idea gravity = curvature of spacetime, the derivation
of the Einstein equation is, from a modern point of view, relatively
straightforward2. How? Firstly, one of the most important laws of 2 Einstein needed 100 years ago ca. 6

years for the derivation of the correct
equation. Today, with the power of
hindsight we are of course much faster.

physics is the conservation of energy and momentum, which as we
saw, follows directly when considering a homogeneous spacetime.
In a homogeneous spacetime the laws of physics are invariant under
translations in space and time. Therefore, one of the most basic as-
sumptions of physics is that spacetime is homogeneous and therefore
energy and momentum are conserved. In mathematical terms this
conservation law is expressed as (Eq. 4.36)

∂μTμν = 0. (12.2)

Next we need something to describe curvature mathematically.

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
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This is what makes general relativity computationally very demand-
ing. Nevertheless, we already know the most important object: the
metric. Recall that metrics are the mathematical objects that enable
us to compute the distance between two points3. In a curved space3 Up to this point we were only

considering the Minkowski metric

ημν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ and the

Euclidean metric δij =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

the distance between two points is different than in a flat space as il-
lustrated in Fig. 12.1 and therefore metrics will play a very important
role when thinking about curvature in mathematical terms.

Fig. 12.1: Distance between two points
in a curved and a flat space

Having talked about this, we are ready to "derive" the Einstein
equation, because it turns out that there is exactly one mathematical
object that we can put on the left-hand side: The Einstein tensor Gμν.
The Einstein tensor is the only divergence-free4 function of the metric

4 ∂μGμν = 0

gμν and at most their first and second partial derivatives. Therefore,
the Einstein tensor may be very complicated, but it’s the only object
we are allowed to write on the left-hand side describing curvature.
This follows, because we can conclude from

Tμν = CGμν that ∂μTμν = 0 → ∂μGμν = 0 (12.3)

must hold, too. The Einstein tensor is a second rank tensor5 and has

5 This means two indices μν, which
is a requirement, because Tμν on the
right-hand side has two indices, too.

exactly this property.

The Einstein tensor is defined as a sum of the Ricci Tensor Rμν and
the trace of the Ricci tensor, called Ricci scalar R = Rν

ν

Gμν = Rμν − 1
2

Rgμν (12.4)

where the Ricci Tensor Rμν is defined in terms of the Christoffel
symbols Γμ

νρ

Rαβ = ∂ρΓρ
βα − ∂βΓρ

ρα + Γρ
ρλΓλ

βα − Γρ
βλΓλ

ρα (12.5)

and the Christoffel Symbols are defined in terms of the metric

Γcab =
1
2

(
∂gca

∂xb +
∂gcb
∂xa − ∂gab

∂xc

)
=

1
2
(∂bgca + ∂agcb − ∂cgab) . (12.6)

This can be quite intimidating and shows why computations in gen-
eral relativity very often need massive computational efforts.

Next we need to know how things react to such a curved space-
time. What’s the path of an object from A to B in curved spacetime?
The first guess is the correct one: An object follows the shortest path
between two points in curved spacetime. We can start with a given
distribution of energy and mass, which means some Tμν, compute the
metric or Christoffel symbols with the Einstein equation and then get
the trajectory through the geodesic equation

d2xλ

dt2 + Γλ
μν

dxμ

dt
dxν

dt
= 0. (12.7)
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The geodesic is the locally shortest6 curve between two points on a 6 This is a bit oversimplified, but the
correct definition needs some terms
from differential geometry we haven’t
introduced here.

manifold.

It is interesting to note that Einstein thought about the Christoffel
Symbols as the gravitational field7 7 Others prefer to think of the metric as

the gravitational field.
If the Γμ

νρ vanish, then the point moves uniformly in a straight line.
These quantities therefore condition the deviation of the motion from
uniformity. They are the components of the gravitational field.

- Albert Einstein8 8 Albert Einstein. The foundation of the
general theory of relativity. 1916

We can understand what Einstein means by looking at Eq. 12.7. For
Γμ

νρ = 0 the geodesic equation reduces to

d2xλ

dt2 = 0. (12.8)

The solutions of this equation describe a straight line.

Fig. 12.2: In order to be able to compare
the red arrow with the black arrow, we
transport the black arrow to the location
of the red arrow.

Another interesting aspect of a curved spacetime is that the notion
of differentiation changes. Remember how the derivative is defined
in flat space using the difference quotient

f ′(a) = lim
h→0

f (a + h)− f (a)
h

. (12.9)

This definition requires that we compare the function in question
at two different points. In a curved space this comparison is not
as trivial as in the flat space. Take a look at Fig. 12.2. If we want to
compare two vectors on a sphere, how can we make sure that the
vectors are really different and the difference is not just an effect of
the curved space? The answer of differential geometry is parallel
transport. We have to move one vector to the location of the other
one, to be able9 to compare them. 9 In fact in differential geometry one

has only local coordinate systems.
The defining feature of a manifold is
that it’s looks locally flat=Euclidean,
as explained in Sec. 3.11. Therefore,
the coefficients we use to describe the
objects in questions are only valid in a
small region of the manifold and thus
we can only compare coefficients of the
same coordinate system.

The derivative becomes in a curved space the covariant deriva-

tive10

10 In this context the Christoffel symbols
Γa

bc are often called connection coef-
ficients, because of their property to
connect the points we want to compare.

Dbva ≡ ∂bva + Γa
bcvc. (12.10)

Therefore, if we want any equation we derived so far to be valid in
curved spacetime, we need to change

∂b → Db = ∂b + Γa
bc. (12.11)

Does this look familiar? Take a look again at Eq. 7.18. We learned in
an earlier chapter that a locally U(1) invariant Lagrangian for spin 0
or spin 1

2 fields required a specific coupling with a spin 1 field. This
specific coupling can be summarized in the prescription

∂μ → Dμ ≡ ∂μ + ieAμ. (12.12)
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Remember that this wasn’t just a mathematical gimmick. This pre-
scription gives us the correct theory of electromagnetism. The same is
true for the weak

∂μ → Dμ ≡ ∂μ + ig Wμ︸︷︷︸
=Wi

μσi

(12.13)

and the strong interaction (see Eq. 7.152)

∂μ → Dμ = ∂μ + ig′ Gμ︸︷︷︸
=TCGC

μ

. (12.14)

Although things look quite similar here, there is for many rea-
sons no formulation of gravity that is compatible with the quantum
description of all other forces. All other forces are described in a
quantum theory and one can only make probability predictions.
In contrast, general relativity is a classical theory, because particles
follow defined trajectories and there is no need for probability predic-
tions.

To make things worse, at the current time no experiment can shine
any light on the interplay between those forces. The effects of gravity
on elementary particles is too weak to be measured. Because of this,
the standard model, which ignores gravity entirely and only takes
the weak, the strong and the electromagnetic interactions into ac-
count, works very well. The effects of general relativity only become
measurable with very heavy objects. For such quantum effects play
no role, because massive objects consist of many, many elementary
particles and all quantum effects get averaged out. We discovered in
Chap. 10 that the equation of motion for the average value is just the
classical one and no quantum effects are measured.

One can make a long list of things that make constructing a quan-
tum theory of gravity so difficult, but Einstein formulated the differ-
ence between gravity and all other forces very concisely:

...according to the general theory of relativity, gravitation occupies
an exceptional position with regard to other forces, particularly the
electromagnetic forces, since the ten functions representing the gravita-
tional field at the same time define the metrical properties of the space
measured.

- Albert Einstein1111 Albert Einstein and Francis A. Davis.
The Principle of Relativity. Dover Publi-
cations, reprint edition, 6 1952. ISBN
9780486600819
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We are able do describe quantum particles in a curved space, by
changing the derivative to the covariant derivative. But this is of
course no dynamical theory of gravity. We could make the right-
hand side of the Einstein equation quantum, if we make the usual
identification with the corresponding generator, but what about
the left-hand side? The Einstein tensor in terms of the Christoffel
Symbols is

Gαβ = (δγ
α δ

ζ
β −

1
2

gαβgγζ)(∂εΓε
γζ − ∂ζ Γε

γε + Γε
εσΓσ

γζ − Γε
ζσΓσ

εγ). (12.15)

Thus maybe we can think of the Einstein equation as the field equa-
tion12 for Γε

ζσ, and the terms generated by the prescription ∂b → 12 Analogous to the Maxwell equation
for the electromagnetic field.Db = ∂b + Γa

bc as the corresponding coupling between the gravita-
tional field Γε

ζσ and the other fields?

Regardless of if you prefer to think of the metric or the Christof-
fel symbols as the gravitational field, the two or three vector indices
indicate that we may need to investigate the (1, 1) or even higher
representations, which we would call consequently spin 2, 3, . . . rep-
resentation of the Poincare group. In fact most physicists believe that
the boson responsible for gravitational attraction, the graviton, has
spin 2.

Until the present day, there is no working13 theory of quantum 13 Many attempts result in an infinite
number of infinity terms, which is quite
bad for probability predictions.

gravity and for further information have a look at the books men-
tioned in the next section.

Further Reading Tips

For more information about the standard theory of gravity, Einstein’s
general relativity, see

• Ta-Pei Cheng - Relativity, Gravitation and Cosmology14 is a 14 Ta-Pei Cheng. Relativity, Gravitation
and Cosmology: A Basic Introduction.
Oxford University Press, 2nd edition, 1
2010. ISBN 9780199573646

great, rather low-level introduction to general relativity with
many very enlightening explanations. Perfect for getting a quick
overview.

• A. Zee - Einstein Gravity in a Nutshell15, is the best book to learn 15 Anthony Zee. Einstein Gravity in a
Nutshell. Princeton University Press, 1st
edition, 5 2013. ISBN 9780691145587

about general relativity. It really starts at the beginning, avoids
unnecessary, confusing mathematical tools and does a great job
explaining the origin and usage of general relativity.

• Charles W. Misner, Kip S. Thorne, John Archibald Wheeler -

Gravitation16 is a really, really big book, but often offers in depth 16 Charles W. Misner, Kip S. Thorne, and
John Archibald Wheeler. Gravitation. W.
H. Freeman, 1st edition, 9 1973. ISBN
9780716703440

explanations for points that remain unclear in most other books.
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For more information about attempts to quantize gravity have a
look at

• John C. Baez, Javier P. Muniain - Gauge Fields, Knots, and

Gravity17 which is a magnificent book. The focus lies on intro-17 John C. Baez and Javier P. Muniain.
Gauge Fields, Knots, and Gravity. World
Scientific Pub Co Inc, 1st edition, 9
1994. ISBN 9789810220341

ducing the mathematical tools needed to understand attempts to
quantize gravity in a way that physicists understand.
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Closing Words

In my humble opinion we are a long way from a theory that is able
to explain all the things that we would like. Even the beautiful theory
we developed in the major part of this book still has many loose
ends that need clarification. In addition, we still have no clue how to
derive the correct quantum theory of gravity as discussed in the last
chapter.

Besides that there is experimental evidence, mostly from cosmol-
ogy and astroparticle physics (Dark Matter and Dark Energy), which
indicates the present theories are not the end of the story.

I personally think there is still much to come and maybe a com-
pletely new framework is needed to overcome the present obstacles.
Anyway, the future developments will be very interesting and I hope
you will continue following the story and maybe contribute some-
thing yourself.

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7_13
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Appendices



A

Vector calculus

It is often useful in physics to describe the position of some object

using three numbers

⎛
⎜⎝x

y
z

⎞
⎟⎠. This is what we call a vector �v and de-

note by a little arrow above the letter. The three numbers are the
components of the vector along the three coordinate axes. The first
number tells us how far the vector in question goes in the x-direction,
the second how far in the y-direction and the third how far in the

z-direction. For example, �w =

⎛
⎜⎝0

4
0

⎞
⎟⎠ is a vector that points exclusively

in the y-direction.
Vectors can be added

�v =

⎛
⎜⎝vx

vy

vz

⎞
⎟⎠ �w =

⎛
⎜⎝wx

wy

wz

⎞
⎟⎠ → �v + �w =

⎛
⎜⎝vx + wx

vy + wy

vz + wy

⎞
⎟⎠ (A.1)

or multiplied

�v · �w =

⎛
⎜⎝vx

vy

vz

⎞
⎟⎠ ·

⎛
⎜⎝wx

wy

wz

⎞
⎟⎠ = vxwx + vywy + vzwz. (A.2)

The result of this multiplication is not a vector, but a number (=
a scalar), hence the name: Scalar product. The scalar product of a
vector with itself is directly related to its length:

length(�v) =
√
�v ·�v. (A.3)

Take note that we can’t simply write three quantities below each
other between two brackets and expect it to be a vector. For example,

� Springer International Publishing Switzerland 2015
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let’s say we put the temperature T, the pressure P and the humidity
H of a room between two brackets:

⎛
⎜⎝T

P
H

⎞
⎟⎠ . (A.4)

Nothing prevents us from doing so, but the result would be rather
pointless and definitely not a vector, because there is no linear con-
nection between these quantities that could lead to the mixing of
these quantities. In contrast, the three position coordinates transform
into each other, for example if we look at the vector from a different
perspective1. Therefore writing the coordinates below each other1 This will be made explicit in a mo-

ment. between two big brackets is useful. Another example would be the
momentum of some object. Again, the components mix if we look at
the object from a different perspective and therefore writing it like
the position vector is useful.

For the moment let’s say a vector is a quantity that transforms
exactly like the position vector �v. This means, if under some trans-
formation we have �v → �v′ = M�v any quantity that transforms like
�w → �w′ = M�w is a vector. Examples are the momentum or accelera-
tion of some object.

We will encounter this idea quite often in physics. If we write
quantities below each other between two brackets, they aren’t nec-
essarily vectors, but the quantities can transform into each other
through some linear operation. This is often expressed by multiplica-
tion with a matrix.

A.1 Basis Vectors

We can make the idea of components along the coordinate axes more
general by introducing basis vectors. Basis vectors are linearly inde-
pendent2 vectors of length one. In three dimensions we need three2 A set of vectors {�a,�b,�c} is called

linearly independent if the equation
c1�a + c2�b + c3�c = 0 is only true for
c1 = c2 = c3 = 0. This means that
no vector can be written as a linear
combination of the other vectors,
because if we have c1�a + c2�b + c3�c = 0
for numbers different than zero, we can
write c1�a + c2�b = −c3�c.

basis vectors and we can write every vector in terms of these basis
vectors. An obvious choice is:

�e1 =

⎛
⎜⎝1

0
0

⎞
⎟⎠ , �e2 =

⎛
⎜⎝0

1
0

⎞
⎟⎠ , �e3 =

⎛
⎜⎝0

0
1

⎞
⎟⎠ (A.5)
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and an arbitrary three-dimensional vector �v can be expressed in
terms of these basis vectors

�v =

⎛
⎜⎝v1

v2

v3

⎞
⎟⎠ = v1�e1 + v2�e2 + v3�e3 = v1

⎛
⎜⎝1

0
0

⎞
⎟⎠+ v2

⎛
⎜⎝0

1
0

⎞
⎟⎠+ v3

⎛
⎜⎝0

0
1

⎞
⎟⎠ . (A.6)

The numbers v1, v2, v3 are called the components of �v. Take note that
these components depend on the basis vectors.

The vector3 �w we introduced above can therefore be written as
3 �w =

⎛
⎝0

4
0

⎞
⎠

�w = 0�e1 + 4�e2 + 0�e3. An equally good choice for the basis vectors
would be

�̃e1 =
1√
2

⎛
⎜⎝1

1
0

⎞
⎟⎠ , �̃e2 =

1√
2

⎛
⎜⎝ 1
−1
0

⎞
⎟⎠ , �̃e3 =

⎛
⎜⎝0

0
1

⎞
⎟⎠ . (A.7)

In this basis the vector �w looks quite different:

�w = 2
√

2�̃e1 − 2
√

2�̃e2 + 0�̃e3 = 2
√

2
1√
2

⎛
⎜⎝1

1
0

⎞
⎟⎠− 2

√
2

1√
2

⎛
⎜⎝ 1
−1
0

⎞
⎟⎠ =

⎛
⎜⎝0

4
0

⎞
⎟⎠ .

(A.8)
Therefore we can write �w in terms of components with respect to this
new basis as

�̃w =

⎛
⎜⎝ 2

√
2

−2
√

2
0

⎞
⎟⎠ .

This is not a different vector just a different description! To be pre-
cise, �̃w is the description of the vector �w in a coordinate system that is
rotated relative to the coordinate system we used in the first place.

A.2 Change of Coordinate Systems

The connection between different coordinate systems can be made
precise through the use of matrices. Two different coordinate systems
can mean that we have two different observers that look at our exper-
iment from different perspectives or this can simply mean that one

observer decides to use a different set of basis vectors. How are those
descriptions related? To avoid complications, let’s assume that the
origin of the two coordinate systems coincide and both coordinate
systems have the same z-axes. Therefore only the x and y coordinates
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are different. Let’s assume further that the position of something
important in the experiment is described by the vector �v.

If the first observer sees the vector �v =

⎛
⎜⎝vx

vy

vz

⎞
⎟⎠, we can compute

how the same vector looks like in the coordinate system of the sec-

ond observer �v =

⎛
⎜⎝vx′

vy′

vz′

⎞
⎟⎠ by using the usual trigonometric functions

sin(φ),cos(φ) and tan(φ) = sin(φ)
cos(φ) , as illustrated in Fig. A.1.

Fig. A.1: Illustration of the components
of a vector in two different coordinate
systems. Details can be found in the
text.

The relationship between vx and vx′ can be computed using

cos(φ) =
vx′

vx + a
→ vx′ = (vx + a) cos(φ)

and

tan(φ) =
a

vy
→ a = vy tan(φ).

This yields

vx′ =
(
vx + vy tan(φ)

)
cos(φ) =

(
vx + vy

sin(φ)
cos(φ)

)
cos(φ)

= vx cos(φ) + vy sin(φ).

Analogously we can use
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cos(φ) =
vy

vy′ + b
→ vy′ = vy

1
cos(φ)

− b

and

tan(φ) =
b

vx′
→ b = vx′ tan(φ),

which yields using sin2(φ) + cos2(φ) = 1

vy′ = vy
1

cos(φ)
− vx′ tan(φ) = vy

1
cos(φ)

− (vx cos(φ)+ vy sin(φ))
sin(φ)
cos(φ)

= vy
sin2(φ) + cos2(φ)

cos(φ)
− vx sin(φ)− vy

sin2(φ

cos(φ)
= vy cos(φ)− vx sin(φ)

Therefore vy′ = −vx sin(φ) + vy cos(φ).
We can write this using a rotation matrix:

⎛
⎜⎝vx′

vy′

vz′

⎞
⎟⎠ = Rz(φ)�v =

⎛
⎜⎝ cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝vx

vy

vz

⎞
⎟⎠

=

⎛
⎜⎝ cos(φ)vx + sin(φ)vy

− sin(φ)vx + cos(φ)vy

vz

⎞
⎟⎠ . (A.9)

We multiply each row of the matrix with the unrotated vector to
compute the rotated vector. As already noted above, the component
along the z-axis v3 is the same for both observers. The matrix Rz(φ)

describes a rotation by the angle φ about the z-axis.

A.3 Matrix Multiplication Fig. A.2: Schematic matrix multi-
plication. The important thing to
keep in mind is row times col-

umn. The first index denotes the
row number, the second the col-
umn number. In the example, the
red element of the product matrix is
c1,2 = a1,1b1,2 + a1,2b2,2 and the blue ele-
ment is c3,3 = a3,1b1,3 + a3,2b2,3. In gen-
eral ci,j = ai,kbk,j = ai,1b1,j + ai,2b2,j + . . ..
Figure by Olivier Perrin (Bilou
Wikimedia Commons) released un-
der a CC BY-SA 3.0 licence: http:
//creativecommons.org/licenses/

by-sa/3.0/deed.en . URL: http:
//commons.wikimedia.org/wiki/File:

Matrix_multiplication_diagram_2.svg

, Accessed: 28.1.2015

Computations like this are tremendously simplified through the use
of matrices. The rule for Matrix multiplication is always row times
column. We can see the scalar product introduced above as a special
case of this, if we interpret a vector as a matrix with one column and
three rows (a 3 × 1 matrix). The scalar product of two vectors is then

�v · �w = �vT�w =
(

vx vy vz

)⎛
⎜⎝wx

wy

wz

⎞
⎟⎠ = vxwx + vywy + vzwz, (A.10)

where the T denotes transposing, which means that every columns
becomes a row and every row a column. Therefore, �vT is a matrix

http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
http://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
http://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
http://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
http://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
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with 1 row and 3 columns. Written in this way the scalar product is
once more a matrix product with row times columns.

Analogously, we get the matrix product of two matrices from the
multiplication of each row of the matrix to the left with a column
of the matrix to the right. This is explained in Fig. A.2. An explicit
example for the multiplication of two matrices is

M =

(
2 3
1 0

)
N =

(
0 1
4 8

)

MN =

(
2 3
1 0

)(
0 1
4 8

)
=

(
2 · 0 + 3 · 4 2 · 1 + 3 · 8
1 · 0 + 0 · 4 1 · 1 + 0 · 8

)
=

(
12 26
0 1

)
(A.11)

The rule to keep in mind is row times column. Take note that the
multiplication of two matrices is not commutative, which means in
general MN �= NM.

A.4 Scalars

An important thing to notice is that the scalar product of two vectors
has the same value for all observers. This can be seen as the defini-
tion of a scalar: A scalar is the same for all observers. This does not
simply mean that every number is a scalar, because each component
of a vector is a number, but as we have seen above a different number
for different observers. In contrast the scalar product of two vectors
must be the same for all observers. This follows from the fact that the
scalar product of a vector with itself is directly related to the length
of the vector. Changing the perspective or the location we choose to
look at our experiment may not change the length of anything. The
length of a vector is called an invariant for rotations, because it stays
the same no matter how we rotate our system.

A.5 Right-handed and Left-handed Coordinate

Systems

When we talked above about two observers, we implicitly assumed
they agree in terms of the definition of their coordinate system. In
fact, there are two possible choices, which are again related by matrix
multiplication, but not by rotations. One observer may choose what
we call a right-handed coordinate system and another observer what
we call a left-handed coordinate system.Fig. A.3: Right-handed and left-handed

coordinate system. Figure by Pri-
malshell (Wikimedia Commons)
released under a CC-BY-SA-3.0 li-
cence: http://creativecommons.org/
licenses/by-sa/3.0/deed.en. URL:
http://commons.wikimedia.org/

wiki/File:3D_Cartesian_Coodinate_

Handedness.jpg , Accessed: 1.12.2014

There is no way to rotate a left-handed into a right-handed coordi-
nate system. Instead, such coordinate systems are related through a

http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:3D_Cartesian_Coodinate_Handedness.jpg
http://commons.wikimedia.org/wiki/File:3D_Cartesian_Coodinate_Handedness.jpg
http://commons.wikimedia.org/wiki/File:3D_Cartesian_Coodinate_Handedness.jpg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:3D_Cartesian_Coodinate_Handedness.jpg
http://commons.wikimedia.org/wiki/File:3D_Cartesian_Coodinate_Handedness.jpg
http://commons.wikimedia.org/wiki/File:3D_Cartesian_Coodinate_Handedness.jpg
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reflection in a mirror. This means the descriptions in a right-handed
and a left-handed coordinate system are related by a transformation
of the form ⎛

⎜⎝v1

v2

v3

⎞
⎟⎠ →

⎛
⎜⎝−v1

−v2

−v3

⎞
⎟⎠ , (A.12)

which means we flip the sign of all spatial coordinates. The conven-
tional name for this kind of transformation is parity transformation.
We can describe a parity transformation by

�v → �v′ = P�v =

⎛
⎜⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎟⎠

⎛
⎜⎝v1

v2

v3

⎞
⎟⎠ =

⎛
⎜⎝−v1

−v2

−v3

⎞
⎟⎠ . (A.13)



B

Calculus

B.1 Product Rule

The product rule

d
(

f (x)g(x)
)

dx
=

(d f (x)
dx

)
g(x) + f (x)

(dg(x)
dx

)
≡ f ′g + f g′ (B.1)

follows directly from the definition of derivatives

d
dx

[ f (x)g(x)] = lim
h→0

f (x + h)g(x + h)− f (x)g(x)
h

= lim
h→0

[ f (x + h)g(x + h)− f (x + h)g(x)] + [ f (x + h)g(x)− f (x)g(x)]
h

= lim
h→0

f (x + h)
g(x + h)− g(x)

h
+ g(x)

f (x + h)− f (x)
h

= f (x)g′(x) + g(x) f ′(x)

B.2 Integration by Parts

A (likely apocryphal) story goes: when Peter Lax was awarded the
National Medal of Science, the other recipients (presumably non-
mathematicians) asked him what he did to deserve the Medal. Lax
responded: " I integrated by parts."

- Willie Wong1 1 Told on www.math.stackexchange.com

An important rule for integrals follows directly from the product
rule. Integrating the product rule2 2 See Eq. B.1 and we then use for the

first term the fundamental theorem of
calculus

∫ b
a dx h′(x) = h(b)− h(a).

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7
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∫ b

a
dx

d
(

f (x)g(x)
)

dx︸ ︷︷ ︸
= f (x)g(x)

∣∣b

a

=
∫ b

a
dx

(d f (x)
dx

)
g(x) +

∫ b

a
dx f (x)

(dg(x)
dx

)
(B.2)

and rearranging the terms yields

∫ b

a
dx

(d f (x)
dx

)
g(x) = f (x)g(x)

∣∣∣b

a
−

∫ b

a
dx f (x)

(dg(x)
dx

)
. (B.3)

This rule is particularly useful in physics when working with fields,
because if we integrate over all space, i.e. a = −∞,b = ∞, the bound-

ary term vanishes f (x)g(x)
∣∣∣b=∞

a=−∞
= 0, because all fields must vanish

at infinity3.3 We discover in Sec. 2.4 that nothing
can move faster than the speed of
light. Therefore the field configuration
infinitely far away mustn’t have any
influence on physics at finite x. B.3 The Taylor Series

The Taylor series is a formula that enables us to write any infinitely
differentiable function in terms of a power series

f (x) = f (a) + (x − a) f ′(a) +
1
2
(x − a)2 f ′′(a) + . . . (B.4)

• On the one hand we can use it if we want to know how we can
write some function in terms of a series. This can be used for
example to show that eix = cos(x) + i sin(x).

• On the other hand we can use the Taylor series to get approxi-
mations for a function about a point. This is useful when we can
neglect for some reasons higher order terms and don’t need to
consider infinitely many terms. If we want to evaluate a function
f (x) in some neighbouring point of a point y, say y + Δy, we can
write44 Don’t let yourself get confused by

the names of our variables here. In the
formula above we want to evaluate the
function at x by doing computations
at a. Here we want to know something
about f at y + Δy, by using information
at y. To make the connection precise:
x = y + Δy and a = y.

f (y + Δy) = f (y) + (y + Δy − y) f ′(y) + . . . = f (y) + Δy f ′(y) + . . . .
(B.5)

This means we get an approximation for the function value at
y + Δy, by evaluating the function at y. In the extreme case of an
infinitesimal neighbourhood Δy → ε, the change of the function
can be written by one (the linear) term of the Taylor series.

Δ f = f (y + ε)− f (y) = f (y) + ε f ′(y) + . . . − f (y) = ε f ′(y) + . . .︸︷︷︸
≈0 for ε2≈0

(B.6)
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This formula is one of the most useful mathematical tools and
we can derive it using the fundamental theorem of calculus and
integration by parts. The fundamental theorem tells us

∫ x

a
dt f ′(t) = f (x)− f (a) → f (x) = f (a) +

∫ x

a
dt f ′(t). (B.7)

We can rewrite the second term by integrating by parts, because
we have of course an implicit 1 in front of f ′(t) = 1 f ′(t), which
we can use as a second function in Eq. B.3: g′(t) = 1. The rule for
integration by parts tells us that we can rewrite an integral

∫ b
a v′u =

vu|ba +
∫

vu′ by integrating one term and differentiating the other.
Here we integrate g′(t) = 1 and differentiate f ′(t), i.e. in the formula
g′ = v′ and f ′ = u. This yields

f (x) = f (a)+
∫ x

a
dt f ′(t) = f (a)+ g(t) f (t)

∣∣∣x

a
−

∫ x

a
dt g(t) f ′′(t). (B.8)

Now we need to know what g(t) is. At this point the only infor-
mation we have is g′(t) = 1, but there are infinitely many functions
with this derivative: For any constant c the function g = t + c satisfies
g′(t) = 1. Our formula becomes particularly useful5 for g = t − x, i.e. 5 The equation holds for arbitrary c

and of course you’re free to choose
something different, but you won’t get
our formula. We choose the constant c
such that we get a useful formula for
f (x). Otherwise f (x) would appear on
the left- and right-hand side.

we use minus the upper integration boundary −x as our constant c.
Then we have for the second term in the equation above

g(t) f (t)
∣∣∣x

a
= (t − x) f (t)

∣∣∣x

a
= (x − x)︸ ︷︷ ︸

=0

f (x)− (a − x) f (a) = (x − a) f (a)

(B.9)
and the formula now reads

f (x) = f (a) + (x − a) f ′(a) +
∫ x

a
dt (x − t) f ′′(t). (B.10)

We can then evaluate the last term once more using integration by
parts, now with6 v′ = (x − t) and u = f ′′(t): 6 Take note that integrating v′ = (x − t)

yields a minus sign: → v = − 1
2 (x −

t)2 + d, because our variable here is t
and with some constant d we choose to
be zero.

→
∫ x

a
dt (x − t)︸ ︷︷ ︸

=v′

f ′′(t)︸ ︷︷ ︸
=u

= −1
2
(x − t)2︸ ︷︷ ︸
=v

f ′′(t)︸ ︷︷ ︸
=u

∣∣∣x

a
−

∫ x

a
dt

(
− 1

2
(x − t)2

)
︸ ︷︷ ︸

=v

f ′′′(t)︸ ︷︷ ︸
=u′

where the boundary term is again simple

−1
2
(x − t)2 f ′′(t)

∣∣∣x

a
= −1

2
(x − x)2︸ ︷︷ ︸

=0

f ′′(x) +
1
2
(x − a)2 f ′′(a).

This gives us the formula

f (x) = f (a) + (x − a) f ′(a) +
1
2
(x − a)2 f ′′(a) +

∫ x

a
dt

1
2
(x − t)2 f ′′′(t).

(B.11)
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We could go on and integrate the last term by parts, but the pattern
should be visible by now. The Taylor series can be written in a more
compact form using the mathematical sign for a sum ∑:

f (x) =
∞

∑
n=0

f (n)(a)(x − a)n

n!

=
f (0)(a)(x − a)0

0!
+

f (1)(a)(x − a)1

1!
+

f (2)(a)(x − a)2

2!

+
f (3)(a)(x − a)3

3!
+ . . . , (B.12)

where f (n) denotes the n-th derivative of f , e.g. f (2) = f ′′ and n! is
the factorial of n, i.e. n! = 1 · 2 · 3 . . . n. For example for n = 5 we have
5! = 5 · 4 · 3 · 2 · 1 = 120, 2! = 2 · 1 = 2 and by definition 0! = 1. Series
are the topic of the next section.

B.4 Series

In the last section we stumbled upon a very important formula that
includes an infinite sum. In this section some basic tricks for sum
manipulation and some very important series will be introduced.

B.4.1 Important Series

In the last section we learned that we can write every infinitely differ-
entiable function as a series. Let’s start with maybe the most impor-
tant function: The exponential function ex. The Taylor series for the
exponential function can be written right away

ex =
∞

∑
n=0

xn

n!
, (B.13)

by using the defining feature of the exponential function that the
derivative is the exponential function itself: (ex)′ = ex, evaluating the
Taylor series about a = 0 and using e0 = 1. This yields the Taylor
series (Eq. B.12) for the exponential function:

ex =
∞

∑
n=0

e0(x − 0)n

n!
=

∞

∑
n=0

xn

n!
(B.14)

This series can be seen as a definition of ex.

Two other important, infinitely differentiable functions are sin(x)
and cos(x). We can compute the Taylor series for these functions,
by using (sin(x))′ = cos(x), (cos(x))′ = − sin(x), cos(0) = 1 and
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sin(0) = 0.

sin(x) =
∞

∑
n=0

sin(n)(0)(x − 0)n

n!

Because of sin(0) = 0 every term with uneven n vanishes, which we
can use if we split the sum. Observe that

∞

∑
n=0

n =
∞

∑
n=0

(2n + 1) +
∞

∑
n=0

(2n)

1 + 2 + 3 + 4 + 5 + 6 . . . = 1 + 3 + 5 + . . . + 2 + 4 + 6 + . . . (B.15)

Splitting the sum for sin(x) yields

sin(x) =
∞

∑
n=0

sin(2n+1)(0)(x − 0)2n+1

(2n + 1)!
+

∞

∑
n=0

sin(2n)(0)(x − 0)2n

(2n)!︸ ︷︷ ︸
=0

=
∞

∑
n=0

sin(2n+1)(0)(x − 0)2n+1

(2n + 1)!
. (B.16)

Every even derivative of sin(x), i.e. sin(2n) is again sin(x) (with pos-
sibly a minus sign in front of it) and therefore the second term van-
ishes because of sin(0) = 0. Every uneven derivative of sin(x) is
cos(x), with possibly a minus sign in front of it. We have

sin(x)(1) = cos(x)

sin(x)(2) = cos′(x) = − sin(x)

sin(x)(3) = − sin′(x) = − cos(x)

sin(x)(4) = − cos′(x) = sin(x)

sin(x)(5) = sin′(x) = cos(x)

(B.17)

The pattern is therefore sin(2n+1)(x) = (−1)n cos(x), as you can
check by putting some integer values for n into the formula7. We can 7 sin(1)(x) = sin(2·0+1)(x) =

(−1)·0 cos(x) = cos(x), sin(3)(x) =
sin(2·1+1)(x) = (−1)1 cos(x) = − cos(x)

therefore rewrite Eq. B.16 as

sin(x) =
∞

∑
n=0

sin(2n+1)(0)(x − 0)2n+1

(2n + 1)!

=
∞

∑
n=0

(−1)n cos(0)(x − 0)2n+1

(2n + 1)!

=︸︷︷︸
cos(0)=1

∞

∑
n=0

(−1)n(x)2n+1

(2n + 1)!
(B.18)
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This is the Taylor series for sin(x), which again can be seen as a defi-
nition of sin(x). Analogous we can derive

cos(x) =
∞

∑
n=0

(−1)n(x)2n

(2n)!
, (B.19)

because this time uneven derivatives are proportional to sin(0) = 0.

B.4.2 Splitting Sums

In the last section we used a trick that is quite useful in many compu-
tations. There we used the example

∞

∑
n=0

n =
∞

∑
n=0

(2n + 1) +
∞

∑
n=0

(2n)

1 + 2 + 3 + 4 + 5 + 6 . . . = 1 + 3 + 5 + . . . + 2 + 4 + 6 + . . . , (B.20)

to motivate how we can split any sum in terms of even and uneven
integers. 2n is always an even integer, whereas 2n + 1 is always an
uneven integer. We already saw in the last section that this can be
useful, but let’s look at another example. What happens if we split
the exponential series with complex argument ix?

eix =
∞

∑
n=0

(ix)n

n!

=
∞

∑
n=0

(ix)2n

(2n)!
+

∞

∑
n=0

(ix)2n+1

(2n + 1)!
(B.21)

This can be rewritten using that (ix)2n = i2nx2n and i2n = (i2)n =

(−1)n. In addition we have of course i2n+1 = i · i2n = i(−1)n. Then
we have

eix =
∞

∑
n=0

(ix)n

n!

=
∞

∑
n=0

(−1)n(x)2n

(2n)!
+ i

∞

∑
n=0

(−1)n(x)2n+1

(2n + 1)!

=
∞

∑
n=0

(−1)n(x)2n

(2n)!︸ ︷︷ ︸
=cos(x) see Eq. B.19

+i
∞

∑
n=0

(−1)n(x)2n+1

(2n + 1)!︸ ︷︷ ︸
=sin(x) see Eq. B.18

= cos(x) + i sin(x) (B.22)

B.4.3 Einstein’s Sum Convention

Sums are very common in physics and writing the big sum sign ∑
all the time can be quite cumbersome. For this reason a clever man
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introduced a convention, called Einstein sum convention. According
to this convention every time an index appears twice in some term,
like n in the sums above, an implicit sum is understood. This means

anbn ≡ ∑
n

anbn. (B.23)

Other examples are

anbncm ≡ ∑
n

anbncm. (B.24)

ambncm ≡ ∑
m

ambncm. (B.25)

but

anbm �= ∑
n

anbm, (B.26)

because in general m �= n. An index without a partner is called a free

index, an index with a partner a dummy index, for reasons that will
be explained in the next section.

For example in the sum anbncm ≡ ∑n anbncm, the index n is a
dummy index, but m is a free index. Equivalently, in ambncm ≡
∑m ambncm, the index m is a dummy an n is free.

B.5 Index Notation

B.5.1 Dummy Indices

It is important to take note that the name of indices with a partner
plays absolutely no role. Renaming n → k, changes absolutely noth-
ing8, as long as n is contracted 8 Of course we can’t change an index

into another type of index. For ex-
ample, we can change i → j but not
i → μ, because Greek indices like μ are
always summed from 0 to 3 and Roman
indices, like i from 1 to 3.

anbncm = akbkcm ≡ ∑
n

anbncm ≡ ∑
k

akbkcm. (B.27)

On the other hand free indices can not be renamed freely. For exam-
ple, m → q can make quite a difference because there must be some
term on the other side of the equation with the same free index. This
means when we look at a term like anbncm isolated, we must always
take into account that there might be other terms with the same free
index m that must be renamed, too. Let’s look at an example

Fi = εijkajbk. (B.28)

A new thing that appears here is that some object, here εijk, is al-
lowed to carry more than one index, but don’t let that bother you,
because we will come back to this in a moment. Therefore, if we look
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at εijkajbk we can change the names of j and k as we like, because
these indices are contracted. For example j → u, k → z, which yields
εiuzaubz is really the same. On the other hand i is not a dummy index
and we can’t rename it i → m: εmuzaubz , because then our equation
would read

Fi = εmuzaubz. (B.29)

This may seem pedantic at this point, because it is clear that we need
to rename i at Fi, too in order to get something sensible, but more
often than not will we look at isolated terms and it is important to
know what we are allowed to do without changing anything.

B.5.2 Objects with more than One Index

Now, let’s talk about objects with more than one index. Objects with
two indices are simply matrices. The first index tells us which row
and the second index which column we should pick our value from.
For example

Mij ≡
(

M11 M12

M21 M22

)
. (B.30)

This means for example that M12 is the object in the first row in the
second column.

We can use this to write matrix multiplication using indices. The
product of two matrices is

MN ≡ (MN)ij = Mik Nkj. (B.31)

On the left hand side we have the element in row i in column j of
the product matrix (MN), which we get from multiplying the i-th
row of M with the j-th column of N. The index k appears twice and
therefore an implicit sum is assumed. One can give names to objects
with three or more indices (tensors). For the purpose of this book
two are enough and we will discuss only one exception, which is the
topic of one of the next sections.

B.5.3 Symmetric and Antisymmetric Indices

A matrix is said to be symmetric if Mij = Mji. This means in our two
dimensional example M12 = M21 and an example for a symmetric
matrix is

(
9 3
3 17

)
(B.32)
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A matrix is called totally antisymmetric if Mij = −Mji for all i, j
holds. An example would be.

(
0 3
−3 0

)
(B.33)

Take note that the diagonal elements must vanish here, because
M11 = −M11, which is only satisfied for M11 = 0 and analogously for
M22.

B.5.4 Antisymmetric × Symmetric Sums

An important observation is that every time we have a sum over
something symmetric in its indices multiplied with something anti-
symmetric in the same indices, the result is zero:

∑
ij

aijbij = 0 (B.34)

if aij = −aji and bij = bji holds for all i, j. We can see this by writing

∑
ij

aijbij =
1
2

(
∑
ij

aijbij + ∑
ij

aijbij

)
(B.35)

As explained earlier we are free to rename our dummy indices
i → j and j → i, which we use in the second term

→ ∑
ij

aijbij =
1
2

(
∑
ij

aijbij + ∑
ij

ajibji

)
(B.36)

Then we use the symmetry of bij and antisymmetry of aij, to switch
the indices in the second term, which yields9 9 If this looks like a cheap trick to you,

compute some explicit examples to see
that this is really true.

→ ∑
ij

aijbij =
1
2

(
∑
ij

aijbij + ∑
ij

aji︸︷︷︸
=−aij

bji︸︷︷︸
=bij

)

=
1
2

(
∑
ij

aijbij − ∑
ij

aijbij

)
= 0 (B.37)

B.5.5 Two Important Symbols

One of the most important matrices is of course the unit matrix. In
two dimensions we have

1 =

(
1 0
0 1

)
. (B.38)
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In index notation the unit matrix is called the Kronecker symbol,
denoted δij, which is then defined for arbitrary dimensions by

δij =

⎧⎨
⎩1 if i = j

0 if i �= j
(B.39)

The Kronecker symbol is symmetric because δij = δji.

Equally important is the Levi-Civita symbol εijk, which is defined
in two dimensions by

εij =

⎧⎪⎪⎨
⎪⎪⎩

1 if (i, j) = {(1, 2)}
0 if i = j

−1 if (i, j) = {(2, 1)}
(B.40)

In matrix form

εij =

(
0 1
−1 0

)
(B.41)

In three dimensions the Levi-Civita symbol is

εijk =

⎧⎪⎪⎨
⎪⎪⎩

1 if (i, j, k) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
0 if i = j or j = k or k = i

−1 if (i, j, k) = {(1, 3, 2), (3, 2, 1), (2, 1, 3)}
(B.42)

and in four dimensions

εijkl =

⎧⎪⎪⎨
⎪⎪⎩

1 if (i, j, k, l) is an even permutation of{(1, 2, 3, 4)}
−1 if (i, j, k, l) is an uneven permutation of{(1, 2, 3, 4)}
0 otherwise

(B.43)
For example (1, 2, 4, 3) is an uneven (because we make one change)
and (2, 1, 4, 3) is an even permutation (because we make two changes)
of (1, 2, 3, 4).

The Levi-Civita symbol is totally anti-symmetric because if we
change two indices, we always get, by definition, a minus sign:

εijk = −εjik, εijk = −εikj etc. or in two dimensions εij = −εji.
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Linear Algebra

Many computations can be simplified by using matrices and tricks
from the linear algebra toolbox. Therefore, let’s look at some basic
transformations.

C.1 Basic Transformations

The complex conjugate of a matrix is defined by

M�
ij =

(
M�

11 M�
12

M�
21 M�

22

)
, (C.1)

which means we simply take the complex conjugate of each ele-
ment1. 1 Recall that the complex conjugate of a

complex number z = a + ib, where a is
the real part and b the imaginary part,
is simply z� = a − ib.

The transpose of a matrix is defined by MT
ij = Mji, in matrix form

Mij =

(
M11 M12

M21 M22

)
→ MT

ij =

(
M11 M21

M12 M22

)
, (C.2)

which means we swap columns and rows of the matrix. An impor-
tant consequence of this definition and the definition of the prod-
uct of two matrices is that we have (MN)T �= MT NT . Instead
(MN)T = NT MT , which means by transposing we switch the po-
sition of two matrices in a product. We can see this directly in index
notation

MN ≡ (MN)ij = Mik Nkj

(MN)T ≡ ((MN)ij)
T = (MN)ji = (Mik Nkj)

T

(Mik Nkj)
T = MT

ik NT
kj = Mki Njk = Njk Mki ≡ NT MT , (C.3)

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7
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where in the last step we use the general rule that in matrix notation
we always multiply rows of the left matrix with columns of the right
matrix. To write this in matrix notation, we change the position of the
two terms to Njk Mki, which is rows of the left matrix times columns
of the right matrix, as it should be and we can write in matrix nota-
tion NT MT .

Take note that in index notation we can always change the position
of the objects in question freely, because for example Mki and Njk are
just individual elements of the matrices, i.e. ordinary numbers.

C.2 Matrix Exponential Function

We already derived how the exponential function looks as a series,
and therefore we can define what we mean when we put a matrix
into the exponential function. eM, with an arbitrary matrix M, is
defined by this series

eM =
∞

∑
n=0

Mn

n!
. (C.4)

It is important to take note that in general eMeN �= eM+N . The iden-
tity eMeN = eM+N is only correct if MN = NM.

C.3 Determinants

The determinant of a matrix is a rather unintuitive, but immensely
useful notion. For example, if the determinant of some matrix is
non-zero, we automatically know that the matrix is invertible2. Un-2 A matrix M is invertible, if we can find

an inverse matrix, denoted by M−1,
with M−1 M = 1.

fortunately proving this lies beyond the scope of this text and the
interested reader is referred to the standard texts about linear alge-
bra.

The determinant of a 3 × 3 matrix can be defined using the Levi-
Civita symbol

det(A) =
3

∑
i=1

3

∑
j=1

3

∑
k=1

εijk A1i A2j A3k (C.5)

and analogously for n-dimensions

det(A) =
n

∑
i1=1

n

∑
i2=1

. . .
n

∑
in=1

εi1i2...in A1i1 A2i2 . . . Anin . (C.6)

It is instructive to look at an explicit example in two dimensions:

det(A) = det

(
3 1
5 2

)
= (3 · 2)− (5 · 1) = 1
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Or for a general three dimensional matrix

det

⎛
⎜⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞
⎟⎠ = a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

(C.7)

C.4 Eigenvalues and Eigenvectors

Two very important notions from linear algebra that are used all over
physics are eigenvalues and eigenvectors. The eigenvectors �v and
eigenvalues λ are defined for each matrix M by the equation

M�v = λ�v. (C.8)

The important thing is that we have on both sides of the equation
the same vector �v. In words this equation means that the vector �v
remains, up to a constant λ, unchanged if multiplied with the matrix
M. To each eigenvector we have a corresponding eigenvalue. There
are quite sophisticated computational schemes for finding the eigen-
vectors and eigenvalues of a matrix and the details can be found in
any book about linear algebra.

To get a feeling for the importance of these notions think about
rotations. We can describe rotations by matrices and the eigenvector
of a rotation matrix defines the rotational axis.

C.5 Diagonalization

Eigenvectors and eigenvalues can be used to bring matrices into diag-
onal form, which can be quite useful for computations and physical
interpretations. It can be shown that any diagonalizable matrix M
can be rewritten in the form3 3 In general, a transformation of the

form M′ = N−1 MN refers to a basis
change. M′ is the matrix M in another
coordinate system. Therefore, the result
of this section is that we can find a basis
where M is particularly simple, i.e.
diagonal.

M = N−1DN, (C.9)

where the matrix N consists of the eigenvectors as its column and D
is diagonal with the eigenvalues of M on its diagonal:

(
M11 M12

M21 M22

)
= N−1

(
λ1 0
0 λ2

)
N =

(
�v1,�v2

)−1
(

λ1 0
0 λ2

)(
�v1,�v2

)
(C.10)



D

Additional Mathematical

Notions

D.1 Fourier Transform

The idea of the Fourier transform is similar to the idea that we can
express any vector �v in terms of basis vectors1 ( �e1, �e2, �e3). In ordinary 1 This is explained in more detail in

appendix A.1.Euclidean space the most common choice is

�e1 =

⎛
⎜⎝1

0
0

⎞
⎟⎠ , �e2 =

⎛
⎜⎝0

1
0

⎞
⎟⎠ , �e3 =

⎛
⎜⎝0

0
1

⎞
⎟⎠ (D.1)

and an arbitrary three-dimensional vector �v can be expressed in
terms of these basis vectors

�v =

⎛
⎜⎝v1

v2

v3

⎞
⎟⎠ = v1�e1 + v2�e2 + v3�e3 = v1

⎛
⎜⎝1

0
0

⎞
⎟⎠+ v2

⎛
⎜⎝0

1
0

⎞
⎟⎠+ v3

⎛
⎜⎝0

0
1

⎞
⎟⎠ (D.2)

The idea of the Fourier transform is that we can do the same
thing with functions2. For periodic functions such a basis is given

2 In a more abstract sense, functions
are abstract vectors. This is meant in
the sense that functions are elements of
some vector space. For different kinds
of functions a different vector space.
Such abstract vector spaces are defined
similar to the usual Euclidean vector
space, where our ordinary position
vectors live (those with the little arrow
� ). For example, take note that we can
add two functions, just as we can add
two vectors, and get another function.
In addition, it’s possible to define a
scalar product.

by sin(kx) and cos(kx). This means we can write every periodic func-
tion f (x) as

f (x) =
∞

∑
k=0

(ak cos(kx) + bk sin(kx)) (D.3)

with constant coefficients ak and bk.

An arbitrary (not necessarily periodic) function can be written
in terms of the basis eikx and e−ikx, but this time with an integral
instead of a sum3 3 Recall that an integral is just the limit

of a sum, where the discrete k in ∑k
becomes a continuous variable in

∫
dk.

� Springer International Publishing Switzerland 2015
J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-19201-7
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f (x) =
∫ ∞

0
dk

(
akeikx + bke−ikx

)
, (D.4)

which we can also write as

f (x) =
∫ ∞

−∞
dk fke−ikx. (D.5)

The expansion coefficients fk are often denoted f̃ (k), which is then
called the Fourier transform of f (x).

D.2 Delta Distribution

In some sense, the delta distribution is to integrals what the Kro-
necker delta4 is to sums. We can use the Kronecker delta δij to pick4 The Kronecker delta is defined in

appendix B.5.5. one specific term of any sum. For example, consider

3

∑
i=1

aibj = a1bj + a2bj + a3bj (D.6)

and let’s say we want to pick the second term of the sum. We can do
this using the Kronecker delta δ2i, because then

3

∑
i=1

δ2iaibj = δ21︸︷︷︸
=0

a1bj + δ22︸︷︷︸
=1

a2bj + δ23︸︷︷︸
=0

a3bj = a2bj. (D.7)

Or more general

3

∑
i=1

δikaibj = akbj. (D.8)

The delta distribution δ(x − y) is defined by

∫
dx f (x)δ(x − y) = f (y). (D.9)

Completely analogous to the Kronecker delta, the delta distribution
picks one term5 from the integral. In addition, we can use this anal-5 The term where x = y. For example,∫

dx f (x)δ(x − 2) = f (2). ogy to motivate from the equality

∂xi
∂xj

= δij (D.10)

the equality
∂ f (xi)

∂ f (xj)
= δ(xi − xj). (D.11)

This is of course by no means a proof, but this equality can be shown
in a rigorous way, too. There is a lot more one can say about this ob-
ject, but for the purpose of this book it is enough to understand what
the delta distribution does. In fact, this is how the delta distribution
was introduced in the first place by Dirac.
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Dyson series, 220

E field, 233
Ehrenfest theorem, 228
Einstein, 11
Einstein summation convention, 17
electric charge, 137
electric charge density, 137
electric field, 233
electric four-current, 137, 233
electrodynamics, 233
elementary particles, 85
energy field, 104
Energy scalar field, 208
energy-momentum relation, 174
Energy-Momentum tensor, 103
Euclidean space, 20
Euler-Lagrange equation, 95

field theory, 97
particle theory, 96

expectation value, 177, 227
extrema of functionals, 93

Fermat’s principle, 92
fermion, 169
fermion mass, 156
Feynman path integral formalism,
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field energy, 104
field momentum, 104
field-strength tensor, 233
four-vector, 18
frame of reference, 5
free Hamiltonian, 216
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functional, 92

gamma matrices, 122
gauge field, 145
gauge symmetry, 129
Gaussian wave-packet, 181
Gell-Mann matrices, 165
general relativity, 239
generator, 38, 39
generator boost x-axis, 63
generator boost y-axis, 63
generator boost z-axis, 63
generator SO(3), 42
generators, 40
generators SU(2), 46
global symmetry, 130
gluons, 168
Goldstein bosons, 149
gravity, 239
Greek indices, 17
group axioms, 29
groups, 26

Hamiltonian, 100
Hamiltonian scalar field, 209
Heisenberg picture, 217
Higgs potential, 147
Higgs-field, 149
homogeneity, 11
homogeneous Maxwell equations,

137

inertial frame, 11
infinitesimal transformation, 38
inhomogeneous Maxwell equations,

125, 134, 233
interaction Hamiltonian, 216
interaction picture, 218
internal symmetry, 106
invariance, 20, 118
invariant of special-Relativity, 14
invariant of special-relativity, 12
invariant subspace, 52
irreducible representation, 52
isotropy, 11

ket, 185
Klein-Gordan equation, 207
Klein-Gordan equation solution, 207
Klein-Gordon equation, 119

ladder operators, 54
Lagrangian formalism, 93
left-chiral spinor, 69
Lie algebra

definition, 40
Lorentz group, 66
modern definition, 44
Poincare group, 84
SO(3), 43
SU(2), 46

Lie bracket, 40
local symmetry, 130
Lorentz force, 235
Lorentz group, 59
Lorentz group components, 60
Lorentz transformations, 19

magnetic field, 233
Majorana mass terms, 120
mass-shell condition, 225
matrix multiplication, 253
metric, 18
minimal coupling, 135
Minkowski metric, 17
momentum, 99
momentum field, 104

natural units, 5
Newton’s second law, 228
Noether current, 105
Noether’s Theorem, 97
non-continuous symmetry, 26

operators of quantum mechanics, 174

parity, 60, 78
particle in a box, 181, 187
Pauli matrices, 46
Pauli-exclusion principle, 214
Pauli-Lubanski four-vector, 85
Poincare group, 29, 84
principle of locality, 17
principle of relativity, 11
probabilistic interpretation, 176
probability amplitude, 176
Proca equation, 124
Proca equation solution, 215

quantum gravity, 244
quantum mechanics, 173
quantum operators, 174
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quaternions, 33

relativity, 11
representation

definition, 50
Lorentz group, 61

(0,0), 68
(0,0)(1/2,0), 68
(0,1/2), 69
(1/2,1/2), 75
spin 0, 86
spin 1, 86
spin 1/2, 86

SU(2), 53
right-chiral spinor, 70
rotation matrices, 33
rotational symmetry, 26
rotations in Euclidean space, 20
rotations with quaternions, 36

scalar product, 249
scalar representation, 86
scatter Amplitude, 216
Schrödinger picture, 218
Schur’s Lemma, 52
similarity transformation, 51
SO(2), 29
SO(3), 41
special relativity, 11, 12
spin, 85
spin representation, 85
spinor, 69
spinor metric, 71
spinor representation, 86

Standard Model, 7
strong interaction, 169
SU(2), 35, 45, 139
SU(3), 164
SU(n), 87
subrepresentation, 52
sum over histories, 193
summation convention, 17
superposition, 176
symmetry, 20
symmetry group, 29

time evolution of states, 216
total derivative, 102
trace, 41
triplet, 165

U(1), 31, 130
unit complex number, 31
unit complex numbers, 130
unit quaternions, 33
unitary gauge, 149

vacuum state, 149
vacuum value, 149
Van der Waerden notation, 70
variational calculus, 92
vector representation, 86

wave function, 176, 185
Weyl spinor, 70, 79

Yukawa coupling, 157
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