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Preface

The renewed interest in general relativity is due to
several factors. For the theorist, quantization of Einstein’s
gravitational field offers a challenging approach to a new
theory of elementary particles and amelioration of the diffi-
culties of quantum field theory. For the experimentalist the
technological advances of the past two decades make possible
some new gravitation experiments and more precise ways of
doing the older ones.

A book of this length on general relativity cannot be
complete. I have attempted to give a fairly thorough intro-
duction to the foundations of the theory, to the Riemannian
geometry and tensor calculus ordinarily required in this field,
to the conservation laws, and to the classical experiments.

About a fourth of the book is mainly devoted to a treat-
ment of the theoretical and experimental aspects of gravita-
tional radiation. The last chapter gives a brief discussion of
the deduction of the equations of motion, of unified field
theories, of Friedman’s solution of the cosmological problem,
and of the Hamiltonian formulation of general relativity.

This tract is serving as a text for my relativity course in
the Physics Department of the University of Maryland.

I wish to express appreciation to Professor John A.
Wheeler for the very stimulating year I was privileged to
spend with him, to Professor James Anderson in whose
lectures I saw these field equations for the first time, to
Professor Peter G. Bergmann for his many illuminating
comments at the Stevens Institute of Technology colloquia,
and to Dr. Charles Misner for his lucid remarks on a number
of issues. Several sections of the book were substantially
improved in consequence of discussions with a graduate

v
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student, Mr. George Hinds. Professor C. J. Goebel read the
manuscript and gave valuable criticism.
The photograph of Einstein which appears here was
kindly made available by Mrs. T. Ehrenfest Afanassjewa.
My own research has had the support of the National
Science Foundation.

J. WEBER

Professor of Physics,
University of Maryland,
College Park, Maryland
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CHAPTER 1

The Equivalence Principle

This assumption of exact physical equivalence makes it im-
possible for us to speak of the absolute acceleration of the system
of reference, just as the usual theory of relativity forbids us to talk
of the absolute velocity of a system. A. Einstein

1.1 The Eétvos Experiment

From the time of Newton it had been assumed that the
ratio of the inertial mass to the weight (gravitational mass)
of a body is the same for all substances. If we assume this and
write the equations of motion for a body in the earth’s gravi-
tational field, the mass cancels out and all freely falling
bodies have the same acceleration.

In 1890 Eétvos (1) performed an ingenious experiment
designed to test the ratio of inertial mass to weight. Consider
8 mass on the earth’s surface (Fig. 1.1). There is a gravita-

l

I

Fig. 1.1

tional force G acting toward the earth’s center, and an
inertial force I which is the centrifugal force associated with
the earth’s rotation. The ratio of the two magnitudes, and

1
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of the corresponding components of these forces, depends on
the ratio of the gravitational to the inertial mass. Eotvos
suspended two masses from a torsion balance, as shown in
Fig. 1.2, at a latitude about midway between the equator

Fig. 1.2

and the pole. Suppose matters are arranged so that the
balance is in equilibrium with the rod connecting the masses
in the observer’s horizontal plane and pointing in the east-
west direction. We can first conclude that the net torque
component resulting from the vertical components of the
resultant forces G 4+ I on the two bodies is zero. If the
ratio of inertial to gravitational mass is not the same for
both, then the horizontal components of G + I will give rise
to a torque which is canceled by an opposite torque of the
suspension wire. If now the entire apparatus is rotated
through the angle =, the bodies are interchanged and the sign
of the torque associated with the horizontal components of
G + I will reverse. The torque of the suspension wire, how-
ever, remains the same. The result is that an angular deflec-
tion of the rod and masses relative to the frame of the appara-
tus will be observed if the ratio of inertial to gravitational
mass is not the same for both bodies.

Let the gravitational mass of one of the bedies be M,
and letits inertial mass be m,. Let i, be a unit vector from the
body to the center of the earth, and let i, be a unit vector in
the plane of the meridian, normal to the earth’s axis of
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rotation. Let g, be the magnitude of the earth’s gravitational
field. Then the gravitational force G, is given by
G, = g, M,i, (L.1)
Let a be the earth’s radius, let w be its angular velocity,
and let ¢ be the latitude. Then the inertial (centrifugal)
force I, is given by
I, = (m,aw? cos p)i,, (1.2)
Suppose the second body has gravitational mass M, and
inertial mass m,. We compare the forces on it with those on
the first body, by means of the torsion balance. Assume that
M, and M, are so chosen that the rod can be suspended in
the center. Let the rod be represented by the vector b, and
let the torque be denoted by T. We can write

T=20X[6—-Gl+2xm—1) (9

The resultant of the four forces must be in the direction

of the thin wire which supports the rod, and is given by
F = G1+G2+Il+12 (1.4)

The component of the torque parallel to the supporting
wire will tend to cause an observable rotation. Employing

the preceding expressions enables us to write for the effective
torque

F- T

T,= T
~ (8.[M,+M,]i,+aw? cos p[m;+m,]i,,) b x [G,— Gy+1,-1]
28.(My+M,) (1.5)
In (1.5) we have omitted the centrifugal force in the denomi-

nator since it is very small in comparison with the gravita-
tional force. Evaluating (1.5) and making the substitutions,

ay = Myjm,; ay = Myfm, (1.6)
gives, for the effective torque,
aw? cos ¢ mymy(a,—ay)[b-i,x1,]
T, ~
oymy +axam,

(1.7)
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Expression (1.7) vanishes if «; = a,, and for «;, # a, it
will have a value which depends on the orientation of the rod
b, with respect to the vector i, X1i,,, which is normal to the
meridian plane. It has its maximum when b points in the
east-west direction. As we remarked earlier, the torsion
balance is brought to equilibrium by turning it until the rod
points in the east-west direction, in a plane tangent to the
earth’s surface. Then the apparatus is rotated through the
angle z, reversing the sense of b; if a; # «, there will be a
torque which may then give a rotation of the rod relative to
the frame which supports the balance. Eétvos observed no
rotation and concluded that within one part in 108, ¢; = «,
for all the materials which were tested. This experiment has
been repeated. (2, 8) The work of Southerns was done with
pendulums and demonstrated the equality of « for radioac-
tive materials. Professor R. H. Dicke (4) is now repeating the
Eotvos experiment with greatly refined apparatus employing
three bodies, and a threefold axis of symmetry, to minimize
local disturbances. At this time his results agree with those
of Eotvos, and the equality of « for certain substances is
established to a few parts in 1010,

The Eétvos experiment enables certain conclusions to be
drawn concerning the elementary particles. The ratio of
mass to weight for an electron plus a proton may be shown to
be the same as for the neutron to one part in 107, and the
reduction in mass of a nucleus resulting from nuclear binding
forces can be shown to one part in 10° to be accompanied by a
similar reduction in weight. With an accuracy of five parts in
a thousand it can be concluded that the binding energy of the
orbital electrons is accompanied also by a corresponding
change in weight.

Bondi (5) notes a possibledistinction between mass which
is acted upon and mass which is the source of a gravitational
field. The mass which is acted upon he calls passive gravita-
tional mass, and a mass which is a source is called active
gravitational mass. The Eotvos experiment, in this view, de-
termines the equality of the ratio of inertial and phssive
gravitational mass.
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1.2 Negative Mass

Nothing in either Newtonian or relativistic gravitation
theory precludes the existence of negative mass, but it is an
empirical fact that it has never been observed. Both Newton-
ian gravitation theory and general relativity indicate a quite
different behavior for negative mass than for the correspond-
ing situation in electrodynamics. If a small negative mass
interacts with a large positive mass, again the (negative)
mass cancels out on both sides of the equation of motion and
the acceleration is still toward the positive mass. Thus a
positive mass attracts all other masses, both positive and
negative. A small negative mass would be expected to fall in
the earth’s gravitational field. Similarly a negative mass re-
pels all other masses, regardless of their sign. For a pair of
bodies, one with positive mass and one with negative mass,
with magnitudes about equal, we should expect the positive
mass to attract the negative mass and the negative mass to
repel the positive mass so that one chases the other! If the
motion is confined to the line of centers the pair is expected
to move with uniform acceleration. This problem has been
discussed by Bondi (5).

Schiff (6) has recently considered the possibility that the
gravitational mass of an anti particle, the positron, might be
negative. His arguments are based on the renormalized
quantum electrodynamics. The Coulomb field of an atomic
nucleus produces a polarization of the vacuum. This effect,
first calculated by Uehling (7) for hydrogen, produces a
27 Mc contribution to the Lamb shift of the 2S5 state in
hydrogen. The virtual electron-positron pairs associated with
vacuum polarization would be expected to contribute to the
renormalized mass of atoms. We know from experiment
that the inertial mass of the positron is positive. If the
gravitational mass were negative, different atoms would be
expected to have slightly different ratios of inertial to (pas-
sive) gravitational mass. This follows because the relative
contribution of virtual pairs to the mass would depend on the
nuclear charge and its distribution. This would vary for
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different atoms. For the case where the gravitational rest
mass of a positron is assumed equal in magnitude and oppo-
site in sign to that of a negative electron, but its kinetic
energy is acted upon normally by a gravitational field, the
difference between gravitational mass and renormalized
inertial mass is finite and approximately equal (6) to

] 2
(m/sx)(zpsry [ F(@)da
o (¢° + 4u*)!
Here m is the electron mass, z = me/#i, Z is the atomic num-
ber, and F(q) is the Fourier transform for the nuclear charge
distribution, normalized to unit total charge. This expression
has a ratio to the atomic mass of 10-7, 2 x 10~7, and
4.8 X 1077 for aluminum, copper, and platinum, respective-
ly. Since these numbers are larger than the uncertainties in
the mass ratios determined by Eo6tvos, Schiff concludes that
the possibility that the gravitational mass of the positron is
negative is ruled out.

It is likely that some experiment to see if anti neutrons
fall in the earth’s gravitational field may be attempted. As
we remarked earlier, if existing theories of gravitation are
accepted they will be expected to fall, in any case.

1.3 Equivalence of Different Frames of Reference

The empirical fact that the two kinds of mass are equiv-
alent did not fit anywhere in theoretical physics until
Einstein (5) pointed out that it could be understood in terms
of the equivalence of different frames of reference. Einstein
postulated that an accelerated frame in a region free of gravi-
tational fields is equivalent?® to a rest frame in a giveninfinite-
simal region ¢ of a time-independent gravitational field.
This is called the principle of equivalence. From this postu-
late the equivalence of gravitational and inertial mass can be

! This implies that all observations made locally on a system in u uni-
form static gravitational field will be the same as that on a system subjected
to a uniform acceleration.

§ The nonuniformity of a real gravitational field precludes replacing it
by a single accelerated frame over a large region.
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shown to be a consequence, by the following (8) argument
(see Fig. 1.8). Here we have two systems X and 2’, whose
z axes coincide. The X frame is assumed so be at rest in a
gravitational field of strength g. The X’ frame is assumed to

X o4
I <
2 E
s 8

have no gravitational field but it is being accelerated with
aceceleration g, in the positive z direction. Let X" be at rest
at { = 0 when a light pulse of energy E, is emitted from point
«. This light is absorbed at point g, at which time the veloc-
ity of 2" is glfc.

The light had energy E, and momentum E,fc. The

encrgy at point § can be obtained by use of the Lorentz trans-
formation and is given by

E; = E cosy + iE,siny (1.8)
where
cos p = (1 — v2/c?)}; sin p = (—ivfe)(1 — v?¥[c?)t
Evaluating (1.8) gives
Ey = E,[(c+v)/(c—v)) ~ E,(1+4v/e) = E,+ Eqglfc* (1.9)
From the equivalence principle we assume that expres-
sion (1.9) holds for the same process taking place in the %
frame. Imagine a mass M to be initially at «, in 2, then
moved to 8. Light of energy E, is emitted at « and absorbed
by M at 8. The total gravitational mass of M plus the ab-
sorbed light is M’. Now lift M’ back to « and re-emit light
so that the mass at « is again M. There is no net change of
energy during the process, so the change in energy going
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from a to § can be set equal to the energy change on the
return.

Mgl + E; — E, = M'gl (1.10)
Making use of (1.9) then leads to
M — M = E_[c? (1.11)

Expression (1.11) states that the increment in gravita-
tional mass is the change in the inertial mass, and it therefore
follows that the equivalence of mass and weight can be con-
sidered as a consequence of the equivalence of an accelerated
frame to a gravitational field.

1.4 Gravitational Red Shift of Spectral Lines

It follows also from the equivalence principle that we
should expect a gravitational red shift of spectral lines. For
consider again the emission of light at « by an atom in
accelerated frame 2’, which is momentarily at rest. The light
of frequency » is received by an observer at § who measures
the frequency in units of his own proper time. The Doppler
shift in the frequency at B gives rise to

vs = vall(c + v)f(c — o) (1.12)
and

vg = ¥,(1 + v/e) (1.18)

In the equivalent gravitational field, (1.18) again holds, and

EgfE, = vl =1 + glfe* (1.14)

The quantity gl in (1.14) is the change in the gravita-
tional potential, and we write the frequency shift »; — v, as

dv = (g, — pp)le* (1.15)

In (1.15) ¢, is the gravitational potential (a negative quan-
tity) at the point where the light is received and g, is the
gravitational potential at the point where the light is emitted.
For light received on earth from a star, g; > @,. If M is the
star’s mass, G is the gravitational constant, r, is the star’s
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radius, and m and r, the mass and radius of the earth,
respectively, (1.15) becomes

dv s =G [% - ﬁ] (1.16)

This predicts a red shift. In deriving (1.16) we have
assumed that the frequency remains invariant in terms of
the local proper time of the atom or molecule, even in a gravi-
tational field. This assumption is really a statement about
the atom. It would clearly not be valid for a pendulum clock
but might be fulfilled at least approximately for a quartz
oscillator clock,! and more precisely for “atomic™ clocks.
In the absence of a complete quantum theory of atomic
spectra which includes effects of all fields in interaction with
a quantized gravitational field, it seems reasonable to sup-
pose that (1.16) will be valid to a very good approximation.
However, one might expect some effects due to the space
derivatives of the gravitational field which would cause very
small departures from (1.16) in some cases, even for an
atomic or molecular system whose center of mass falls freely.
Additional discussion of the red shift is given in Chapter 5.

1.5 Further Remarks on the Equivalence Principle

Since an accelerated frame is equivalent to a certain
gravitational field it follows that we can annul a gravita-
tional field by an appropriate acceleration. For example, a
freely falling elevator in a gravitational field appears to be
an inertial frame insofar as gravitational forces are con-
cerned. A body would move within it as though no gravita-
tional field were present, and no observation made on the

! A quartz oscillator at rest on earth is compressed by its own weight,
thus altering its dimensions slightly from the frec-fall value it would have in
a satellite.

§ The fact that the atom is in free fall implies that there are minimal
stresses resulting from the gravitational field. An atom at rest in an acceler-
ated frame might be perturbed by such stresses. These might lead to some
observable (and calculable) effects for experiments which are carried out
in accelerated frames. See, however, C. W. Sherwin(18).
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body could enable a distinction to be drawn between an
inertial frame and the space inside the elevator.

It is not so clear that this will still be true if the body
within the elevator is electrically charged. There have been
a number of investigations of the possible radiation from a
uniformly accelerated point charge (9, 10, 11, 12). Bondi and
Gold, and Fulton and Rohrlich predict that such a charge
does indeed radiate. The radiation reaction (for uniform
acceleration) is zero and the issue of energy conservation is
complicated by the infinite self energy. It may be that
when the internal structure of elementary particles is proper-
ly taken into account, a charged particle will be found to
radiate and have a non vanishing radiation reaction when
fallingin a uniform gravitational field. It would follow that by
observing a charged and an uncharged body falling freely
we can distinguish by local measurements whether we are in
an inertial frame or falling freely in a gravitational field.
The equivalence principle then becomes merely a guide for
formulation of the equations of the gravitational field alone,
and not a general law of nature.
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CHAPTER 2

Generalization of the Special Theory of Relativity

The general laws of nature are to be expressed by equations
which hold good for all systems of coordinales, that is, are co-
variant with respect to any substitutions whatever (generally
co-variant). A. Einstein

2.1 The Idea of Covariance

Minkowski made the important discovery that trans-
forming from one inertial frame to another moving with
relative velocity v corresponds (1) to the rotation of axes in
a four-dimensional space-time coordinate system. The re-
quirements of special relativity are indeed met in a most
elegant fashion by writing the laws of physics as relations
among four-dimensional vectors. While this procedure is not
essential, it does add elements of beauty and simplicity.

We employ coordinates labeled by superscripts. In the
Minkowski space of special relativity we have the coordinates
z, Y, 2, and cf, which we will denote 2!, 22, 23, and 2° The
important quantities are the relations between events. An
event has no extension in space or time. It is a point in a
four-dimensional space. The interval between two events a
and b is denoted by the symbol s,, and defined by

Sap” = (20 —2, 0P — (2! —ay' 2 — (22 — a2 — (x, 3 —x,2)* (2.1)
If we transform from one Minkowski system of coor-
dinates to another, the interval between the same events
remains invariant and in terms of new coordinates a'l, z'2,
23, 2’0 is given by
(s00)? = (@0 — 2%, — (2% — &) — (&%, — &%,
— (23, —a'%)? (2.2)
11
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While the magnitudes of some quantities such as s,, are
invariant, others such as z,! — z,! do change under these
coordinate transformations, which constitute a group. The
form of the relation for s,, does not change, and such a
relation is said to be covariant under the group of coordinate
transformations (rotation of axes in Minkowski space). For
two events separated by a differential interval we can write

ds? = da® — da"* — dz? — da® (2.3)

2.2 The Metric Tensor -

We shall employ a great many sums and shall follow the
summation convention that an index which is repeated rep-
resents a sum. This enables us to write (2.8) in the form

—ds? = g, dzrdzr (2.4)
The elements of g,, are represented by

-1 0 o0 o
1o 41 0o o
=l o o0 +1 o
0 0 0 +1

8,4» is called the metric tensor and the expression (2.5), which
retains its form under Lorentz transformations, is called a
‘Lorentz metrie.

In curvilinear coordinates, the metric tensor assumes a
different form, but a coordinate transformation can trans-
form it to the form (2.5), throughout the space, provided
Euclidean geometry is valid there.

(2.5)

2.3 The Metric Tensor in Curved Spaces and Accel-
erated Frames

The curved two-dimensional space on the surface of a
sphere is described by the squared line element
guvdrédar = r2db® + r?sin® 0 de?;
re 0
0 r?sin?d

(2.6)

Bur =




THE SPECIAL THEORY OF RELATIVITY 18

Triangles composed of arcs of great circles have the sum
of their angles greater than » and less than 8z. This non-
Euclidean, curved character is implied by the metric (2.6),
through relations involving the derivatives of g,,. No coor-
dinate transformation can reduce (2.6) everywhere to a
diagonal form in which the diagonal elements are one. The
concept of curvature will be discussed in more detail later.

Suppose now that we have a plane triangle in an inertial
frame. If we measure from a different inertial frame, the
shape of the triangle may change, but the sum of its angles
remains & and the geometry will not have changed.

Consider a set of points which lie on a circle in an inertial
frame. If we observe from a rotating frame of reference with
center coinciding with the center of the circle and survey the
same points, we find that the ratio of circumference to dia-
meter now depends on our operational procedure for measur-
ing length. To avoid, for the moment, the issue of clock
synchronization within a rotating system, we assume that
length is measured by bringing pairs of points into coincid-
ence using the clocks of the inertial frame to define simul-
taneity. The ratio of circumference to radius using measuring
rods at rest within the rotating system will exceed n. This
follows because a rigid measuring rod would measure the
same diameter as before, but when laid along the circum-
ference it would be foreshortened by the Lorentz contraction.
The metric tensor in the rotating frame now has to describe
a non-Euclidean, curved space.

In the inertial frame we may set up a system of fixed syn-
chronized clocks throughout the space. In the rotating frame
clocks at different radii will have different time measures.
Identical clocks at different radii are similar to identical
clocks in different inertial frames. They cannot be syn-
chronized. Suppose that coordinate time is measured by
pulses emitted by a clock at the center of the rotating frame.
A clock at each point in the rotating frame ticks intervals for
an observer at that point. The relation between these inter-
vals and the coordinate time differences corresponding to
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receipt of successive light pulses will be described by the g,
component of g,,. This will now be a function of radius, and
the metric (2.5) of special relativity does not apply.}

The equivalence of a gravitationalfield to an accelerated’
frame then implies that the special theory of relativity can-
not be valid in an extended region (2) where gravitational
fields are present. A curved-space metric is needed. To con-
sider another example, suppose we make up a triangle in an
inertial frame with sides which are light rays. The sum of the
angles is #. If this is repeated in a gravitational field the
sides of the triangle will become curved because of the action
of gravitation on the energy of the photons. The sum of the
angles of the triangle will now differ from . In a covariant
theory this is deseribed by saying that the paths of light rays

t An appropriate metric for the rotating frame is
—ds® = drt4rrdpt4-dzt 4 20rt depdt — (c* —w? rt)det

§ A few remarks on the clock paradox are in order. It was noted in
Einstein's first paper on the electrodynamics of moving bodies that if we
have two identical clocks and keep one at rest in an inertial frame and then
move the other in a closed path which returns to the position of the first
clock, the two clocks will no longer agree. Consider now a pair of twins.
One remains at rest in an inertial frame and the other scts off in a rocket and
then returns. The traveler will on returning find that the stay-at-home twin is
older than he. Darwin has pointed out (C. G. Darwin, Nature 180, 976 (1957))
that the entire problemm may be understood within the framework of special
relativity, for the acceleration times of the rocket may be short and the period
of uniform motion extremely long. Then the result cannot depend on what
happened during the short acceleration periods. If the velocity of the travel-
er relative to the twin at rest in an inertial frame is v then

ty = tm | V1—0c?

where {, is the elapsed time for the twin at rest and 1, is the elapsed time for
the moving twin. This result follows immediately from special relativity,
since we must carry out all calculations in the frame of the twin who remains
fixed at all times in the inertial frame. The identical result may be obtained
(see C. Moller, The Theory of Relativity, Oxford University Press, New York,
1952) if we calculate in the frame of the moving twin, using the formalism of
general relativity, which is appropriate for frames that may undergo ac-
celerations. There is, therefore, no paradox.
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are always geodesics and that a curved-space metric is re-
quired in a gravitational field.

It has been pointed out (8, 4) that by suitably redefining,
operationally, the measurement of length and time, the
Lorentz metric may always be used. We could similarly
insist that the earth’s surface is flat. By suitably defining
the operations of measurement as a funection of latitude and
longitude, internal consistency would be achieved with
Euclidean geometry. This is not the point of view which we
adopt in this tract.

2.4 General Covariance

If we consider gravitational fields alone, the equivalence
principle denies us the possibility of distinguishing, by local
measurements, between an inertial frame and a freely falling
system in a gravitational field. There is then no a priori
reason to give special significance to inertial frames. Also it
is not possible to set up the required system of synchronized
clocks throughout a gravitational field. For these reasons
Einstein was led to postulate that all systems of coordinates
are cqually good for the description of nature and that the
laws of physics should have the same form in all. This is the
principle of general covariance.

If we adopt this principle the coordinates become noth-
ing more than a bookkeeping system to label the events.
The principle of general covariance has been a valuable guide
in deducing correct equations. It leads us to avoid principles
which seem simple only in certain coordinate systems, and to
retain those which can be simply expressed in arbitrary
systems of coordinates. It has been pointed out by Kretsch-
mann (5) that any physical law can be written in a covariant
form. The result is usually not simple. Kretschmann also
pointed out that the principle of general covariance therefore
has absolutely no necessary physical consequences. The re-
quirements of simplicity of form plus covariance have none-
theless been a valuable guide in deducing equations which in
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a final analysis must stand or fall on the basis of comparison
with experiment.

The treatment of generally covariant equations in a

curved space is facilitated by the formalism of the tensor
calculus.

1.

4.
8.
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CHAPTER 3

Riemannian Geometry and Tensor Calculus

The inner properties of surfaces are “most worthy of being
diligently exploited by geometers.” C. F. Gauss

3.1 Some Ideas about Curvature

A more general kind of geometry, in which g,, is not
necessarily reducible by a coordinate transformation every-
where to the Lorentz metric, will now be discussed.

Gauss considered the following question. Suppose we
have a two-dimensional curved surface, inhabited by intelli-
gent two-dimensional animals. Can they determine that

b

x'eax’

Fig. 8.1

their space is curved? Is it possible to determine the elements
of curvature by means of measurements made within the
surface alone? He found that this can indeed be done. First
we proceed by labeling the points of the surface in any

17
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regular but nonetheless arbitrary way. Two arbitrary
families of curves, ! = constant and #® = constant are the
coordinate system (Fig. 8.1). Direct measurement of length
between points @ and b gives gg; similarly by measuring
lengths ac and ad we obtain g,, and g;,. Gauss gave formulas
which allow the curvature to be written in terms of the g,,,
and their derivatives.

Curvature is an intrinsic property, at any given point
the same value is obtained in every coordinate system. We
shall see how the idea of curvature can be extended to more
than two dimensions. Einstein’s theory of gravitation relates
the curvature of the space to the distribution of stress and
energy. This follows in part the suggestion of Mach to the
effect that the properties of the space-time continuum are
determined by the distribution of encrgy.

3.2 Transformation Laws for Different Kinds of

Tensors
Let us start our discussion with the assumption that we
have M variables 2!, 2%, a3 ... a¥. A set of particular

values of these variables is now regarded as a point in a hyper-
space or manifold having M dimensions. The space is made
up of all the points corresponding to the range of values which
can be assumed by these variables. Suppose we employ a
different labeling for the points 2}, 2’2, 23, . . ., '™, such
that

2'e = fe(al, 2%, . . ., ) (8.1)
We assume that derivatives exist, and write
ofs Ja'=
dz's = daf = — dxb 8.2
ox? ox# (8.2)

The coordinate differentials dz* are said to be the com-
ponents of a contravariant vector.! Similarly, any set of
quantities F= are defined to be a contravariant vector if they
obey the transformation law

t A vector is a tensor of the first rank, a scalar is a tensor of rank zero,
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o'«

Fla =
oxh

F# (3.8)

Consider now quantities such as dp/dz8, where ¢ is some
function of the variables z!, z2, . . ., 2*:
o _ g oot
ox'=  Ox# Oox'=
The quantities dp/dz= are seen to obey a different trans-

formation law from (8.8) and any set of quantities trans-
forming according to

(3.4)

cxf
K'y = m s (8'5)
are said to form a covariant ! vector.

Note that our definitions of covariant and contravariant
vectors require the existence of derivatives on our manifold
and not the existence of a metric. We are following the con-
vention of denoting covariant vectors by subscripts and
contravariant vectors by superscripts.

The product of two contravariant vectors A= and B#

will satisfy the transformation law
__Oa's ox'f
ox» Ox®
A set of quantities T#*, which obey the transformation
law (8.6), are said to form a contravariant tensor of the
second rank. Similarly a covariant second-rank tensor is one
which obeys the transformation law
__ Oz* Oxf
B ' r oz ¥

A mixed tensor of any rank obeys the transformation

A'=B'# A B (3.6)

T (8.7)

! The word covariant has two quite different meanings. A covariant
theory or equation has the same form in all systems of coordinates. The
word covariant is used also to signify that a tensor obeys the transformation
law (8.5). Thus a covariant equation may contain contravariant tensors as
well as covariant ones, and other abjects which are not tensors.
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law
oz= Oxf ox's dx'v

T dedi et '______,,,Tal"f 8.
Terl dx'e dx'm oxrP O0x° 8 ( 8)

Certain other quantities transform according to the law

ox'# Oxh
W T
=7 oz ox's " A

(8.9)

] is the Jacobian determinant |dz*/dz’ ‘| The superscript W
is the power to which J is raised. 7%::: is said to be a tensor
density of weight W.

A function S, which transforms to S’, such that § = §’
at every point and in all coordinate systems is said to be an
invariant, or scalar.

In all cases when a quantity is given, its form provides a
preseription for getting it in other coordinate systems. Thus
if T,, = A4,B,, then in a different system of coordinates
T, =4, B’

The product A, B? of a covariant and a contravariant
vector transforms in the following way:

A'\B'A = % %; A,B>=46,,4,B" = A,B" (8.10)
This product is therefore a scalar. It also follows that the
inner product (summation over upper-lower index pairs) is a
scalar for tensors of higher rank. These notions may be
employed to test for tensor character. Let B#be an arbitrary
contravariant tensor and let 4, be a set of quantities which
may or may not have tensor character. Then if the product
A ,B#is an invariant we can show that 4, is a tensor, for

ox's
ox=

A,Br=A4',B= (8.11)

An index such as a or u, over which a sum is to be carried
out, may be given any convenient letter. This is an impor-
tant aid in manipulation. We may then write (8.11) as



RIEMANNIAN GEOMETRY AND TENSOR CALCULUS 21

, ox'v
(A,, — A, o

It follows from (8.12) that A, transforms according to
A, = A',02'7/oxr and is therefore a covariant vector.

The Kronecker delta, written as 4" is a quantity which
is unity if u = » and zero if u # v». If we write

Ozv _ Oxv oOx'= __ Oxv Ox'=
dxk  Ox'c oxs  Ox'f OxP

it is evident that 4,” is a mixed tensor.

If a tensor Sava = Svse it is said to be symmetrice in the
indices x and ». If A«fr = — A#=r, the tensor is said to be
antisymmetric (or skew-symmetric) in the indices « and g.
By writing out the transformation laws it becomes clear that
the symmetry properties of a tensor are retained under co-
ordinate transformations if the pair of indices are both sub-
scripts or both superscripts. In general the symmetry prop-
erties are not retained if one index is a subscript and one a
superscript. The symmetry properties are therefore meaning-
ful only for the same kind of indices.

We may write any tensor A4#v,$ as

) Bs = 0 (8.12)

|

M 0'nf (8.18)

Aw = JAmgd + Ave ] + HAm? — Aves] (8.14)

and it follows from (8.14) that any tensor may be considered
as the sum of a part which is symmetric and a part which is
antisymmetric in a given pair of upper or lower indices.

It follows from the transformation laws that if all com-
ponents of a given tensor vanish in one coordinate system,
then all components vanish in all coordinate systems. This
fact is of great importance in theoretical physics. If a law is
written in tensor form, for example by saying that one tensor
equals another, the difference of the two tensors will vanish
in all coordinate systems and the law has a validity independ-
ent of the coordinates which may be employed. Similarly,
if we establish a tensor equation in a special coordinate
system, it is valid in general.
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We have seen that the derivatives of a scalar form a co-
variant vector. The derivatives of a covariant vector, on the
other hand, do not have the required transformation law of
tensors. For

oy () Lt
ore  dxo \ dxr “) "~ Qar Oxc Ox'8

aZw’a
A, ——— (815
+ Ala orms (8:15)
A new kind of derivative, the covariant derivative, does
permit us to form tensors from the differentiation of other
tensors. In order to see how this comes about, we must con-
sider the concept of parallel displacement of a vector.

3.3 Parallel Displacement and Covariant Differentia-

tion

It is possible to extend the idea of parallel displacement
of a vector to curved spaces in a consistent way. We assume
that there always exists a reference frame such that the
geometry is Euclidean (or Minkowskian) in the immediate
vicinity of a point * P, and Cartesian coordinates are employ-
ed in that neighborhood. In such a coordinate system theidea
of an infinitesimal parallel displacement of a vector simply
means that none of its components change. Also the scalar
product of two vectors A4 and B, A,B#, does not change
under parallel displacement. For arbitrary coordinates we
define the operation of infinitesimal parallel displacement of
a vector 4, from a point P to a neighboring point P’ to be

one which leaves the scalar product with an arbitrary vector
B invariant.

! We can always transform to a Lorentz metric at any given point where
8uv is well defined. Suppose the space has n dimensions. The g, at the point
are a set of n(n +1)/2 numbers. Write dz® = magdx’8; for convenience assume
meg = mé,. Substitute this in ds? and set g’y = dup. This gives n(n+1)/2
equations for the same number of m's which are then determined. There
are other ways of doing this. It cannot in general be done over a region,
because the m’s become functions rather than numbers, and the equations
dx® = m®gdz’'# will not ordinarily be integrable to give the required coordinate
transformation.
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The idea of a parallel displacement along some given
curve in a two-dimensional surface can be given an intuitive
interpretation. Suppose the surface is developable. Then we
can unroll it on to a plane and parallel-displace vectors in
the plane. The surface is then rolled back and we have the
required parallel-transported vector. If a given surface is
not developable, we must first sclect a path for parallel
transport, then erect a tangent plane at each point of the
path. These tangent planes will envelope a developable sur-
face. This new developable surface can then be unrolled and
the operations of parallel transport and rerolling carried out.
If the curve along which the parallel displacement is to be
carried out happens to be a geodesic, it becomes a straight
line when unrolled on to a plane. It is then clear that the
angle between a geodesic and a vector remains unchanged in
a parallel displacement. The angle between two vectors
would also be expected to remain constant in a parallel dis-
placement. We emphasize that the operation of parallel dis-
placement from one point to another depends in general on
the path which is specified between the points.

In curvilinear coordinates in both curved and flat spaces,
the components of a vector 4” would be expected to change,
under a parallel displacement. Let 64* be this change,
for an infinitesimal parallel displacement. 64* should be a
linear function of the coordinate differentials and the com-
ponents Av. It can be written

0A» = —TIv, 3 Axdxh (8.16)

The quantities I, are coefficients whose properties are to

be determined. First we show that I',; is symmetric in «
and 8. Let A” be a coordinate differential dzv:

o(dxv) = — I, zdzedat (8.17)

We now return to the local Cartesian coordinate system
by the transformations
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as = fo(z't, 2%, . . .)

a'e = ga(al, 22, .. .) (8.18)

The primed coordinates are local Cartesian coordinates.

of«
da‘}“ = — dm'ﬂ 8.19
Under a parallel displacement, d(dz') = 0 by definition,
so that from (8.19) we can write

2 fv 3
Bf 000 297 g das

(8.20)

Comparing this expression with (8.17) it follows that
_ O dg? dpY
ox'8 0z'v dx= Oxf

The right side of (8.21) is clearly symmetric in the in-
dices « and B, so I',; must be symmetric in « and g also.
Earlier we stated that the use of upper or lower indices is
employed to give the transformation properties of tensors.
Unfortunately the index notation is also employed for quan-
tities such as I, which, as we shall see, do not obey the
transformation laws of tensors.

If the operation of parallel displacement from a given
point to all other points in its neighborhood is defined for all
vectors, the point is said to be affinely connected to its neigh-
borhood.

It is desirable now to employ the metric tensor g,,,
which we defined earlier by .

—ds® = g,,dxrdz”

The tensor character of g,, follows from the invariance of
the squared “length” ds?, since all the coordinate transforma-
tions which are employed here leave unchanged the “lengths”
of curves. If the g,, are arranged as a matrix and the inverse
is taken, we obtain new quantities g=#, and

N 32/» '8 ot _
Ndar) = oy WY = o oa B Oab

Iy = (8.21)
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g =0, (8.22)

Since the Kronecker delta is a mixed tensor, it follows that
g’ is a contravariant tensor. The covariant and contra-
variant metric tensors are useful for raising and lowering
indices ! to give new? tensors; i.e.,

As = grag, (8.28)

We derive formulas for the I, in terms of the metric
tensor. From the definition for a parallel displacement,

d
8(A,40) = g,, (;‘(’;z't‘ ) [A? + 84%][A# + 644]
first vl u (8.24)
— Ew (point) Ardr =0

Carrying out these operations gives

3g_w4:' ArAvdas 4 g, Ar6AY + g, Av8Ar = 0 (8.25)

0
Making use of (8.16) to eliminate dA4# and 64 gives
08 v
ail; - gpﬁ-rﬂya - gvﬂ[wﬂa =0 (3'26)

The symmetry of I's,, with respect to the lower indices
allows permutation of the indices » and « to obtain

-y g#ﬂpﬂva - gaﬁpﬂ/w =0 (3.27)

— 8up TPy — gag I, = 0 (8.28)

Solving (8.26), (8.27), and (8.28) gives, with the help of
(8.22),

! Note that in arbitrary coordinates, 4,y is replaced by &y, for
Suy = 8uadi® = gy, also 6 —guv, Only 0, = 1ifp = v and zero if us£v,
in general.

§ In general B,# 3£ Bs,. The left to right order of indices must be pre-
served when raising and lowering them.
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— 1oy | %8s | 08va __ 98pa
Ir,, = 487 [awa + o ] (8.29)

» ox¥
The three-index quantity

agv;l agva. _ 38;«: —
%[a? + 2 3.1:"] =Ly

is called the Christoffel symbol of the first kind and is often
written as [ua, ¥]. I'7,, is called the Christoffel symbol of the

second kind and is often written as Y1 As we remarked

earlier the I'#,; are not components of a tensor. By starting
with the differentiated transformation law for g,,, it is not too
difficult to show that [ua, »] transforms according to

dzf oxv ox! oz Pz
v = — — — By, 6 — .80
(e #) = 37 3= 2 [Br: 81 + 861 527 3 woars (8.80)
Making use of the transformation law for g=4 then leads to the
transformation law for I'%;, as
oa't 0x# Ox~r ox's o%axx
o T I 22" _ (8.8
o= ox'8 dz'r ** ¥ 3 wPox (8.81)
A study of (8.81) indicates that it is always possible to
choose a coordinate system such that all the Christoffel sym-
bols vanish at a point. One way to do this is the following.
Suppose the given point is labeled P and the Christoffel
symbols do not vanish there. Carry out the coordinate trans-
formation

a's = 2% — w%p + $ % sm (28 — 2P )a@? —2hip)  (8.52)

Here the subscript (P) refers to the value at point P,
Making use of (8.81) to directly calculate the new values of
TI',, shows that the new values vanish at point P. This
constitutes a proof that the Christoffel symbols may be trans-
formed away because (8.82) can always be carried out wher-
ever the Christoffel symbols are not infinite. A coordinate
system in which the Christoffel symbols vanish at point P is

Iy, =
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called a geodesic coordinate system: P is said to be the pole.
It is also possible to transform away the Christoffel symbols
along a curve (4).

We return to our main objective, which is the formation
of new tensors by differentiation. As we saw earlier, the
partial derivative of a vector is not a tensor. A new kind of
derivative is formed in the following way. Let a vector at a
given point be A#. At a neighbouring point the vector is
A# + dAs. The vector resulting from parallel transport to
the neighboring point is 4# + §44. Subtract these quanti-
ties to obtain

dAs — 8As = (?‘ + Pﬂ,,Aa) dze  (3.88)
agd

(8.88) would be expected to be a vector since it is the differ-
ence of two vectors at the same point; the quantity

0A»
dac

then, is a mixed tensor called the covariant derivative of A#
and written

+ In,, A=

As, = %‘ + I's,, Aa (8.84)
' oz

From 6(A,A#) = 0 it follows, using (8.16), that
84, =I=,,A4,dFf (3.16a)

From this and a procedure similar to that of (8.88) and (8.84)
we write the covariant derivative of 4 4 8S
04
g = W: —rIe,. A, (8.85)
The tensor character of (8.84) and (8.85) can be formally
established by showing that they obey the required trans-
formation laws, employing (8.81). The contravariant deriva-

tive is formed by raising the index which denotes differen-
tiation,

A

A#o = goagp (8.86)



28 GENERAL RELATIVITY AND GRAVITATIONAL WAVES

The covariant derivatives of a second-rank tensor Cg,
may be obtained from the requirement that the Cj; A4B?
remain invariant under a parallel displacement for arbitrary
A# and B¢, Setting 6(C 4y A#B?) equalto zero gives dCy;, and
the covariant derivatives may be written :

3C g5

o — I‘“‘p Caa — F“ap Cﬂa (337)

Cpa;p =

Similarly,

cos. =" rw cet e Cre (8.88
0 = 'a—a?;‘ + ap + ap ( . )

ace
Cty,, = —(,jw—pi + I, ,Cey — I'%y ,C8, (8.89)

The extension to higher-rank tensors is evident.

Consider the covariant derivative of the metric tensor
g This is a tensor. In geodesic coordinates all components
of this tensor must vanish. It therefore follows that

guv;o' =0 (8‘40)
in all other systems of coordinates.

3.4 The Curvature Tensor

Earlier we noted that if it is possible to carry out a
coordinate transformation such that the metrie tensor is a
Lorentz metric everywhere, a region of space is said to be flat.
A given vector may be parallel-displaced throughout such
a space and give a constant vector field. Parallel displace-
ment about a closed path results in a vector identical with
the original one. In a curved space, parallel transport about
a closed path does not, in general, yield the original vector.
Consider, for example the surface of a sphere (Fig. 8.2) on
which is a spherical triangle composed of geodesic curves.
We start with the vector A and parallel transport it. It
becomes B, then G, and finally D. Clearly A and D are not
the same. We now proceed to calculate the change in com-
ponents of a vector under a parallel displacement about an
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Fig. 8.2
infinitesimal closed path defined by four curves of the two-
parameter set
ze = fa(u, v) (8.41)
The path to be considered is shown cross-hatched in Fig. 8.8,
in which the sides are 4u at constant v and Ao at constant x.

Fig. 8.3
The change in n# for the entire closed path is

one = — § Ts,ynedas (8.42)
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Considering the algebraic sum of the contributions from op-
posite sides of the “parallelogram” and retaining terms only
up to first order in du and A4v gives

0 ox# 0 oxy
= — a —— Auw — — (T a —
on# P (Iazgm2)Av = u au( Fayn®) AU o Av

(8.48)

We carry out the operations indicated by (8.48), utiliz-

ing the expression for the change in n= under parallel displace-
ment. The result is then arranged in the form

ors, ols, ,
nr = — [ aﬂ" - 8:1:7’ + laggle,, — I't,, I, ]
oxv 0z
e — — dud 8.44
e e udv ( )
Since only first-order terms have been retained it is
more precise to write, from (8.44)

. on# _ BI'#” _ 61"1',,3 -
?E»o dvdu [ dxt dzY + Lropl ey — Loy Ias ]
w0 oz dzf
@ 8.45
dv ou ( )

The left side of (8.45) is a vector. 9z#/0u and dx7/dv

are vectors because u and v are parameters, It follows,
therefore, that the quantity R#.s, defined by
ors, ol's,
‘%ﬂ—z - —am_Tﬂ + I‘Fo-ﬂrdar - Fﬂo-’,r“ap (3.46)
is a tensor. It is called the Riemann-Christoffel tensor, or
simply the curvature tensor. For an infinitesimal closed path,
then?,

Rl‘aﬂr =S

oxf ox
ons = —Rbg,m S 5 dudv (8.47)

t This discussion implies that the result of two covariunt differentiations
depends, in general, on the order in which they are carried out. From (8.47)
and (8.47a) it follows that

Biap — BE gia= —BY Rbyap
Bua:p — Bugia = By R¥pap
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Also for a parallel displacement é(n an#) vanishes. This leads
to

on, = Re 5,m, %’ %’ du dv (8.47a)
From (8.47) and (8.47a) it follows that for any finite closed ¢
path (requiring integration over « and v), the vanishing of
R#,s, guarantees that an arbitrary vector will not change
under a parallel displacement.

For a Lorentz metric in a given region the curvature
tensor vanishes because of the constant gu If coordinate
transformations are carried out in such a space, the trans-
formed components of R#, g, will still vanish in consequence
of its tensor character. It follows that a necessary condition
for the space to be flat is the vanishing of R#,;. On the
other hand, if R#,;, vanishes everywhere, then a Lorentz
metric may be generated by parallel propagation of a
(Minkowski) set of axes because this is now a unique opera-
tion, independent of the path. The components of an arbi-

! Since n=is a parallel-displaced vector, its value at any point within
a given contour depends on the path taken. A meaning can be given to the
integration of (3.47) or (8.47a) by carrying out the parametrization as in-
dicated in Fig. 8.3. Suppose the initial point is 0. Parallel-displace n® from
0 to 0’ along all the given curves. This generates a continuous vector field.
The vanishing of (8.47) then guarantees no change in n® as it is parallel-
displaced around the (boundary) contour returning to 0. The entire matter
can also be viewed using (8.16) alone. For a given contour, (8.16) may be
written

dAn dzf
o e —ra, 40T
ds B

This is a set of equations to determine A# as long as the tangent vector
dxB(ds is prescribed by specifying the path. If the change in A4# is to vanish
for all closed paths, the quantity I'4,3.42dx# must be an exact differential,
and this leads to

? 2
3oy (THea %) = — (Phey a2)

Evaluating this with the condition that A= is being parallel-displaced then
gives the requirement that the right side of (8.46) has to vanish.
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trary vector will not change on parallel-displacement any-
where. All the Christoffel symbols will vanish everywhere
and all first derivatives of the metric will vanish everywhere.
Since the metric was a Lorentz metric at the starting point it
is then clear that it is a Lorentz metric everywhere. It fol-
lows therefore that necessary and sufficient conditions for the
space to be flat are the vanishing of all components of R#,,,.
It is also clear that the vanishing of R#,;, guarantees the
integrability of the set of equations (8.16).

Expression (8.46) tells us that R#,,, is antisymmetric in
the indices § and y. The tensor R,,z, is given® by

1/ 2%g,; 0% dap gsp g
R = R = — L4 - - ?
sapy = Busfllapy 2 (3x“ 28 ' Ozt oxr Oz dxr 0’ 8mﬂ)

+ g;w(rpaﬂpyay - P"ayrvaﬂ) (3'4'8)
From (8.48) it follows that
Raspgy = —Riuapy = —Rasyp = Rpyas (3.49)
From (8.48) and (8.46) it may be verified that
Regys + Reggy + R2ygp =0
Raﬁy& + Radﬂy + Ray&ﬂ =0
3.5 The Bianchi Identities

An important differential identity may now be proved.
Select at a point, a geodesic coordinate system; then the
Christoffel symbols vanish and the covariant derivative of
Re#4p, becomes

(8.50)

. 32["‘37 _ azI‘l‘“
oxf oz  Oxv oz

 The rearrangement of (8.48) can be done by writing out gusRéqgy,
then noting that

R‘“Jﬂy;v (3.51)

kg '] 08us
Bus o Fyon (8us )] af

oxY

0,
guTrog = [aB, 8] and B =y, 8+ (3y, )
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From (8.51) it then follows that
R”My:v + R"Mﬂ:r + R"amﬁ =0 (8.52)

The left side of (8.52) is a tensor which we have calculat-
ed in a particular coordinate system and found all compo-
nents to be zero. The result must therefore be valid in all
other coordinate systems. The relations (8.52) are known as
the Bianchi identities.

A mixed tensor of the second rank or higher can be
summed over an upper and a lower index to give a tensor two
ranks lower. This operation is called contraction. The tensor
R,, is formed by contraction of R=,,
olr=,, orIs,,

— I, lb,,—I=, I, (8.53)

R = R = =02 — 0

and is called? the Ricci tensor. Its symmetry is evident. The
scalar formed by contraction of R,, according to

gwR,, = R (3.54)

is called the curvature scalar.$
Muitiplication of (3.52) by g#4,r gives

8%[R7spy + R¥3upy + R7404] = 0 (8.55)

The covariant derivative of gé# vanishes; also from (8.46)
we have Rvg;, = — R?; ., Equation (8.55) may then be
written

(R, — 36,*R),, =G, =0 (8.56)
(3.56) is the contracted Bianchi identity. The tensor

S

3 Contraction on the first and second indices gives zero, since R4,
= g'XR,¢gy and this vanishes because R, gy is antisymmetric in ¢ and «.
Contraction on the first and fourth index gives the negative of (8.53).

§In a two-dimensional space the following relations are valid at any
given point:

& TETin s

Here g is the determinant of g, r, and r, are the principal radii of curvature,
§ is the area of a small geodesic quadrilateral at the point, and A8 is the
excess of the sum of its angles over four right angles.
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G,» = R,»—}6,'R is called the Einstein tensor.

3.6 Geodesics

Suppose we ask what is the equation of the curve defined
by the requirement that each element of it is a parallel dis-
placement of the preceding element. The equations of any
curve are the one-parameter family of points

a* = f(s) (8.57)

The tangent vector is dz=/ds, and the new tangent vector
which results from a parallel displacement is

dxr dx=
T'P=——Pa —d$ﬁ 8.5
s s (8.58)
The new tangent vector T'7 is also given by
,, _dxr d (dxr -
=% 2 (—ds)ds (8.59)

Setting (8.58) equal to (8.59) gives the equations of the curve
whose elements are parallel-displaced preceding ones, as
d?ze dza daf
— =0 3.60
i T s (8.60)
As might be expected, (8.60) represcnts the equations of
the curves of extremal length, called geodesic curves. To
show this we seek the relations which must be satisfied to
give a stationary value to the integral

J‘ds =_[\/—gﬂ,dm/‘ iz (8.61)
We introduce a parameter k and write
dxs dzv
.62
Jou V- Ge e
Let
Lo g, 028 42 (3.68)

dk dk
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The condition for a stationary valué for (8.61) becomes?
adek =0 (8.64)

k may be chosen to be the length s along the geodesic. It is
not the length for the other curves.

Accordingly, (8.64) becomes

6JLds = f[gf_‘ szt + a(fl—fw_‘)a(d%)] ds  (3.65)
as

The second term of the integrand may be written as the two

terms
d oL s\ — d oL St
E(a(dm) ) E(a(a.w))
ds Os
and on integration the first of these contributes nothing

because the variations vanish at the end points. The Euler-
Lagrange equations for this problem are then

d oL oL

_ - = 3.

dsa(da:') oz 0 (8.66)
ds

We note that L = 1 along the geodesic.
Making use of (8.68) gives

a_oL __[dg,,dx"_l_ @].E—_‘r’g#vgdﬂ/g
ds(d.z‘— ds ds 5 gt |’ 2z oa< ds ds
2 ds)

and (8.66) becomes

! Here § means a variation corresponding to change in coordinates and
Lhe vector dxt/dk as we go from one possible path to another; k merely labels
corresponding points on different paths.
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Ear [1 28,0 ag,,] dot da»

bt T 2 er  Bar) ds ds

dzw"_}_l[agm‘_i_agxp ag;w] da# dxv

= 8w ol = v b ra i el

Multiplying (8.67) by g** and summing then leads to the
geodesic equation

d

as dxs dxv
g+ Do g g =0 (8.68)
(8.68) and (3.60) are identical.

If we are dealing with the propagation of light, we have
null geodesics. The deduction as given above cannot be ap-
plied because ds vanishes throughout. Clearly the argument
leading to (8.60) remains valid. It is therefore consistent to
define the geodesic equation as the appropriate one for the
null case, with the important proviso that the variable s is
a parameter along the geodesic other than the length.

3.7 Some Useful Calculational Aids

We complete this section by giving a number of useful
aids in manipulation of tensor quantities. First consider the
covariant divergence A44,,:

An, = aaA“+ I, (8.69)
From (8.29) we obtain
= v gﬂ” 8
lll %g“ ama ( ’70)

(8.70) can be written in terms of the determinant of g,,,
which we denote by g. The rule for expansion of a determi-
nant leads to the relation

g )
g =4

In (8.71) 4#» is the cofactor of the element g,,. From

(8.71)
ar



RIEMANNIAN GEOMETRY AND TENSOR CALCULUS 87

the rule for obtaining the inverse of a determinant, and from
the definition of g#v, (8.71) may be written

dg
= ggm (8.72)
08 v
dg = ggrdg,, = —g8, dg" (8.72a)

The expression on the far right of (8.72a) follows from
d(g.g#") = 0. We then have

ag g/ll’ g/w

e £ pue dae . SEM G Oz (8.78)

The use of (8.78) enables us to write (8.70) in the forms

dgr 1 g
Is, , =_ 6 _ 8.74
Expression (8.74) is now employed to write the co-
variant divergence (8.69) as

1 0
A= g

For a contravariant tensor of the second rank, (8.88) and
(8.74) give

Ars/—g) (8.75)

1 9
Cab, 5 = =g 5 (Cabr/—g) + I'2y,CPe (8.76)

and for a mixed tensor, (3 89) leads to

Caﬁ;ﬂ \/ ga ﬁ( a '\/ g) Pﬁaacﬂa (3°77)

For an antisymmetric tensor F4, the last term of (8.76)
vanishes and the covariant divergence is

1 0
Feb p = v —g 3zt Faby/—g) (8.78)

For a symmetric tensor S=4, rearrangement of the last term
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of (8.77) leads to
1 2
V=g %
The Levi Civita symbol e,4,, is often useful in perform-
ing calculations. It is defined by the statement that ¢ = 0
if any two of the four indices are identical. It changes sign
on interchange of any pair of indices, and gy, = 1. A con-

venient way of expressing the expansion of the determinant
K of the tensor K, is

Sefia = (54 —¢) — 4 Ber s (8.19)

Keaﬂyd = 54:ApKu¢KxﬂK4\7Kp8 (8'80)
The transformation law
ox'8 oz’ _,,

“= G o

may now be employed in (8.80) and the result rearranged to
show that the determinants (K) and (K') are related by

K = [] (%)]2K (3.81)

Employing (8.80), (8.81), and the transformation law for
K,, then gives

€apys = ( 7 (a:c))" dr' dx~ dx* Oz (8.82)

— — &
ox' dz'e dx'f dx'r 3z’ "

(8.82) tells us that e,4,, is a tensor density of weight —1.
Also it can be similarly shown that £287¢ is a tensor density?
of weight +1. Note that this treatment requires the total
number of indices on ¢ to be equal to the number of dimen-
sions in the space if ¢ is to be a tensor density in the given
space. We now let K,, = g,, and from (8.81) conclude that
the determinant of g’,, is related to that of g,z by

(—0 = J (25)(—ep (8.89)

1 The metric tensor cannot be used to raise or lower indices of ¢ since
eapys and £207¢ have different weights.
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A four-dimensional volume element dz’ is related to
diz according to the Jacobi rule

oz
Sy — Ty .
diz=7] (8.1:') diz (8.84)
Combining (8.88) and (8.84) gives
V—gdix = VvV —g'd2’ (8.85)

the quantity v —g d*2 is seen to be an invariant.
q y 8

3.8 Length Measurements

We have been dealing with coordinates and intervals.
In the special theory of relativity we deal also with lengths.
A rod at rest in a given Lorentz frame has a well-defined
length. The world lines of the ends of the rod are parallel to
the time axis. In a different Lorentz frame with coordinates
z'e, the increment of length is given by

(Az"1) + (Az'2)® + (A2'3): (8.86)

Ax’? refers to the difference of 2! coordinates at the two
points where the hyperplane 2'® = constant intersects the
world lines of the ends of the rod (see Fig. 8.4). If we have

ict’  jict

Fig. 8.4
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a pair of events we proceed differently and project each
space-time point normally onto the hyperplane z'® = con-
stant, again using (8.86).

In a curved space we can define length in the same way.
Let the coordinates be 20 z!, 22, and z®, with metric Euve
Introduce at a given point a local Lorentz frame with coor-
dinates 20, 2!, 2’2, 2'3. Let 2'® be parallel to 29, so that

o't ox'?
B w7

The index i refers to a space coordinate. For a pair of events
we define

oz't ox't
oxt Oxv
The transformation law for the metric tensor is written

__ 0zt dz't ox'® ox'0
& = 20 ol o

3m’° 3:12'0 . _ 3&3'0 3w’°
T T T e o

Use of (8.88) in (8.87) then gives

i = da'*da’t = dxsdzy (3.87)

(3.88)
&oo =

de = (g,,, ~ é’_"gfﬁ) o det = pudide  (8.89)

00
with y, defined by

Vi = (gn, — Busbor g"") (8.90)
8oo

¥# can be shown? to be the reciprocal of the three-by-three

matrix g”*. The determinant of the g,, (four-by-four)isrelat-

ed to the (three-by-three) determinant

1 Write
8"8n+E%8n = 8% 88,0188 =0
then eliminate g/ to obtain gy, = 82
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of y4, which we denote by y, according? to

£ = goo? (3.91)

For a pair of events we may similarly define the time
differential by its value in the locally Lorentz frame as

(d2"°)? = dI® — g, dxrdz”
Employing (8.89), and extracting the square root gives
dz’® = (—goo)¥da® — (—goo) Hgo.da’

3.9 Determination of the Metric Tensor

If we have a bendable (but not stretchable) rod and a
“natural” clock which ticks at invariant intervals, these
may be used to obtain the g,, at a given point by direct
measurement, using suitably chosen pairs of events, with
known coordinates. No rigid rods exist, but ordinary ones
may be used if the departure from complete rigidity is cal-
culable.

An alternative procedure makes use of a locally Lorentz
frame and knowledge of the coordinates of events in both the
original frame and the Lorentz frame. The squared lengths
may be measured with rods in the Lorentz frame. No correc-
tion for lack of rigidity is needed since the rods are in free fall
and are not stressed. Measurements on six pairs of events
then allows us to calculate y,; using (8.89).

Suppose the original time coordinate is established by
the receipt of radio signals, and we have a caesium beam
clock at the given point where the g,, are desired. Compari-
son with the time signals gives g,,. To determine g, we
arrange radio receivers at two points which differ in their 2!

! First set
8w O o 0
y = 1 18w Y iz Vs
Boo |8x0 VY21 V22 Vas

8% Yu Y1z Vs
Add (g0/800) times the first column to the second column. Similar operations
involving the third and fourth columns then lead to (3.91).
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coordinate. We then arrange to transmit a pulse of radiation
from one receiver to the other, measuring the times of arrival
in terms of the time coordinate signals.

ds® = 0 = gy, [da']® + 2g,0da®dx’ + goo[da®]* (8.92)
from (8.89) we have '
@y = (g — ) pamye (8.98)

(8.98) is then used to eliminate g,, from (8.92), giving

(dny: + ‘i"‘lgﬁﬂ + 2gidatda’ + goo[daV] =0 (8.94)

00

Everything in (8.94) is known except gq,, which is therefore
determined. Similarly gy, and g,; are determined. Knowl-
edge of these plus the fact that the y,; were measured then
gives all the remaining components of g,,.
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CHAPTER ¢

Field Equations of General Relativity
and Electromagnetism

Gravitation occupies an exceptional position with regard
to other forces, particularly the electromagnetic forces, since the
ten functions representing the gravitational field at the same time
define the metrical properties of the space measured. A. Einstein

4.1 The Gravitational Field Equations

In Chapter 2 we discussed a rotating frame of reference.
In consequence of the acceleration a Riemannian metric was
needed. A nonuniform gravitational field is equivalent,
within each small region, to an appropriate accelerated frame.
A Riemannian metric would therefore be expected also to
give a description of a gravitational field. The square of the
line element is given by

—ds? = g, dz+dzv (4.1)

We identify the metric tensor g,, as the gravitational
field. This identification, which has followed from the equiv-
alence principle, is perhaps the most important new feature
of general relativity. The task now is to formulate the differ-
ential equations which relate g, to the distribution of matter
energy. The starting point is Newton’s law of gravitation,
described by the Poisson equation for the gravitational po-
tential ¢ as

Vip = 4aGpy (4.2)

Here G is the constant of gravitation, py is the mass per unit
volume.
The left side of (4.2) may be made at least Lorentz-in-
variant by writing
Op = 4aGpy (4.8)
43
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(4.8) is similar to the set of equations for the four poten-
tial in electrodynamics. There, the electric charge density
is one component of a four vector in consequence of the in-
variance of total electric charge. Mass, however, is not an
invariant, so the right side of (4.8) is not a component of a
four vector. It is a component of the second-rank stress-
energy tensor already known from the special theory of rela-
tivity. This second-rank tensor character leads to a more
complex theory than electrodynamics. Also the particles of
zero rest mass associated with the gravitational field, the
gravitons, will have spin two, again in consequence of the
second-rank tensor character of the gravitational “poten-
tials,” g,,.

We recall the conservation laws. For a fluid in non-
relativistic mechanics the conservation of mass is expressed
by the equation of continuity

a(pv') dpy __
™ T (4.4)
v* is the velocity, and the summation over ¢ includes the
three space coordinates. (4.4)can be multiplied by dz! dz®da®
and integrated over a given volume. The first three terms
are readily transformed to an integral over the closed surface
bounding the volume. The result then states that the time
derivative of the total mass within the region of integration
equals that carried in through the surface.
The special relativity generalization of (4.4) is

Ty _ o (4.5)
oxr
T,» is the stress energy tensor.

For the remainder of this tract we shall usually indicate
the operation 9/0x= by a comma followed by «. Thus (4.5)
becomes T ,*, = 0.

In the theory of fields of special relativity a procedure is
available for obtaining T,, from the Lagrangian density L,
which is assumed to be a function of the field variables g= and
their first derivatives ¢= ;. The action function is the four-
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volume integral of L/c, and the principle of stationary action
states that for variations of the field variables which vanish
on the boundary,

aJ'Ld4a: =0 (4.6)

Here the symbol d is taken in the usual sense, and it is
assumed that the field variables g= and g2 4 are functions of a
parameter. If the parameter is k, 6 means dk(d/dk), with
0/0k meaning x# is constant. Thus the order of differentiation
involving a coordinate and k¥ may be interchanged. (4.6) can
be expressed as

) diz

o_aJLd4m—f(

3 aL a 4 @ 4
J(Bq“ %Bq“,) +f6ﬂ(3q“ q)dw

The last term on the right of (4.7) is then written as a surface
integral which is zero since d¢= are assumed to vanish on the
boundary of the region. (4.7) has to hold for arbitrary varia-
tions and the field equations

(4.7)

______=o (4.8)

follow. We multiply (4. 8) by g* 5, and note that

oL _ 0oL oq= oL dg¢= ,

P 9= 9xf ' dq=, oxP
also that ¢=, ; = ¢ ;,. The result is then rearranged to
give

oL
gL — g2 ] =0 (4.9)
[ ? g o
From (4.9) and (4.5) it follows that
Tﬂy = 6371. - q“’ﬂ oL (4.10)
oq%,,

From classical mechanics we recognize —T® as the energy
density, since the g2, correspond to velocities. A study of
(4.9) and (4.10) indicates that the definition (4.10) does not
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make T unique. Any quantity @z* ; can be added to T
provided @,z . is antisymmetric in ¥ and «. It has been
customary to select the function @ in such a way that the
resulting tensor T, (both indices raised or lowered) is sym-
metric (1, 2). The reason for this is the desirability of having
the angular momentum density, defined by

Maﬁ)' = Taﬁmy —_— T,.,a:ﬂ (4‘.11)
satisfy a conservation law

M.z,0% =0 (4.12)

Carrying out the differentiation indicated by the left side of
(4.12) shows that (4.12) is indeed satisfied by a symmetric
T,s.

For a fluid, T,, is given in terms of the four velocity
U,, by

Tw=(p+ EWU,U, +8,p (4.13)

Here p is the pressure and E is the total (mass) energy
density, evaluated at each point in the rest frame of the
local matter. Equation (4.18) is the four-dimensional gener-
alization of the three-dimensional stress® tensor T, which
gives the force dF, transmitted across the element of surface
ds' as

dF, =T,ds (4.14)

(4.4) gave the conservation of mass; (4.5) includes the
conservation of both total energy and momentum. The mo-
mentum and energy are given by the space and time com-
ponents of P,, with

P, = J‘ Todz'datda®; P, = f T dat dz? da’

P, transforms like a four vector, under Lorentz transfor-
mations.

! Historically this is where the stress energy tensor had its origins.
In elasticity T',, is symmetric in consequence of the balance of turning mo-
ments on volume elements.
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In electrodynamics? the stress energy tensor is given in
terms of the field tensor F,, by

1
T,}:E(FMF”“—iFGﬂF“ﬂ(S"") (4‘.15)

This follows from (4.10) by using the Lagrangian density
for the Maxwell field which is given later in this chapter. The
term

1
— A, Fre va
4n( wF7)

was added to make T,, symmetric.

These expressions were obtained from arguments ap-
propriate for Lorentz frames. However (4.18) and (4.15) are
tensor equations and arc therefore validin arbitrary coor-
dinates. Any result obtained from (4.10) will either be in
tensor form or can be readily modified (for example by chang-
ing ordinary derivatives to covariant derivatives) so that it
transforms as a tensor. A manifestly covariant expression
for T,, is given later in this chapter.

We return now to (4.3) and note that the right side of
it is identified as the zero-zero component of T,,. This sug-
gests that the gravitational field equations be formulated
as a second-rank tensor relation set equal to the stress
energy tensor associated with the other fields. The left side
of the tensor field equations should reduce to the D’Alember-
tian operator in a certain level of approximation. The number
of possibilities for this tensor is reduced by the requirements
that it be formed from g,, and contain no higher than second
derivatives of g,,. It should reduce to the D’Alembertian for
weak fields. To guarantee this and to obtain dimensional
consistency in a simple way it is reasonable to require that
the equations at least be linear in the second derivatives of
the g,,.

Suppose then that a given tensor does not contain higher
derivatives of g,, than the second and it is linear in these.

t We are using C.G.S. absolute units.
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Introduce geodesic coordinates so that the Christoffel sym-
bols vanish. From (8.48) we see that the second derivatives
of g,, can in these coordinates always be written as linear
functions of the curvature tensor. If a second-rank tensor is
needed, its most general form must therefore be

Cl R;w + ngpvR + Cag;w = B;w (4"16)
C,, C,, and C, are constants. The first two terms of
(4.16) are linear combinations of curvature tensor com-
ponents. Since (4.16) is a tensor equation, it is valid in any
system of coordinates. The requirements of general covari-
ance, a second-rank tensor, linearity in the second derivatives
of g,,, plus absence of higher derivatives, have given us the
form (4.16).
An argument of Mach (8) and Hilbert (4) is useful at
this point. Suppose the laws are in the form of a relation
B, =T, (4.17)
between symmetric tensors. Assume that a solution is
obtained, which gives the g,, as a function of the coordinates.
Coordinate transformations can be carried out by introducing
the four functions
z's = Fe(z) (4.18)

These functions may be selected in such a way that g’,,, =
g,» and the first derivatives of g,, are everywhere equal to
those of g’,, at some initial time or on a spacelike surface.}
Because of the covariance of (4.17), the transformed field
equations will have exactly the same form as the original ones.
Therefore since the equations do not have higher derivatives
of g,, than the second, it follows that g,, = g’,, everywhere.
This would be in contradiction to

, _ Oxf Ox°
= a wan o

It was therefore concluded by Hilbert that a four di-

(4.19)

t Consider for example 2° = 29, z! = a'+-a(x®)?, x'2 = 2%, 2" = a%;
then g's¥ = gm¥ everywhere at 2° = 0, and all first space and time deriva-
tives of ga¥ are the same at z° = 0.
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mensional covariant expression such as (4.17) should not be
ten independent equations, but that four identities would
have to hold such that the set consists only of six independent
equations. In this case the solutions would contain four
arbitrary functions which become uniquely specified when
the coordinate system is singled out in some noncovariant
way. A clue to the four identities which have to be satisfied
by (4.17) comes from the fact that with a Lorentz metric the
stress energy tensor which forms the right side of (4.8) satis-
fies the conservation law

Ty,=0 (4.20)

The logical extension of (4.20) for a generally covariant
theory is

Tyr,=0 (4.21)

It was shown (Eq. (8.56)) that the Bianchi identities

give
(R, — 30, R),, =0 (4.22)
These identities apply if the constants in (4.16) are suitably

chosen. From these arguments it follows that the field equa-
tions must be given by

Ry — 36,R — 26, =KT (4.28)
Here 2 and K are constants. Experience (5) and logical
simplicity have indicated that 2 may be set equal to zero.
Einstein’s original (7) formulation included the statement
that the motion of particles in a gravitational field is describ-
ed by the covariant generalization of Newton’s laws, which
gives the geodesic equation
d?xe dz# dxr
— F‘! _ ==
&= T 5
Later it was shown that the equations of motion are in
fact already contained within the field equations (4.28) and
do not need to be postulated separately. According to (4.24)
the force per unit mass on a body at rest is given by the three
components —c*["y. In the weak field approximation the

0 (4.24)
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g are very close to the Lorentz metric values, and for a
time-independent metric
Ft = —c2 My ~ 3c®V g4

By analogy with other fields, it is then natural to regard
ic*g,, as the gravitational potentials. For weak fields,
(4.28) should reduce to the Poisson equation,® (4.2). This
can be accomplished by choosing the constant K in (4.28)
equal to 8nGfct where G is the gravitational constant.
G = 6.67 X 1078 cm® gm~! sec~2. The field equations then
become

8nG
R,‘, -_— %gl“’R = —c‘— TI“, (4.25)

4.2 Variational Principle Deduction of the Field
Equations

We start with the action function 7, given by
I=I,+1p= %J’(LG + L)V —gddz  (4.26)

Here I; is the gravitational part and I is the part of the
action function due to all other fields, L; is the Lagrangian
density for the gravitational field, and L is the Lagrangian
density for all other fields. For L; we select the curvature
scalar R times a dimensional factor ¢4/162G. The principle of
stationary action then gives

(c3/162G)8 j RVZ=gdiz + 8l =0 (4.27)
For the variation of the gravitational part of the action func-
tion we have then
315 = (c3/162G) [ f 8R,,g»V —gdiz+ f R,,,,a(\/?ggﬂ")d‘a:]
(4.28)
We recall that
R;w = P“;w,a - Pﬂpa,v + Fa;wpﬂuﬂ - I‘apﬁrﬁm
First let us choose a geodesic coordinate system; then we
may (6) write
! The weak-field treatment is carried through in Chapter 7.
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6R;w = (6Papv);¢ - (6[“'““);” (4'29)

This is a tensor equation which is therefore valid in all coor-
dinate systems.
The variation of —g is needed. (3.72) gives

0(—g) = —ggrv0g,, = 88,08 (4.80)

Expressions (4.29) and (4.80) and the vanishing of the
covariant derivative of the metric tensor enable us to express
(4.28) in the form

8l = (c3/167G) [ f [gevole,, —gredl® 4],V —gdia
+ [ Ry — g R16gm V=g diz]

The first integral in (4.81) will now be shown to vanish
(8). The quantity g#*éR,, is a scalar; from (4.29) it follows
then that the quantity ge oI, — graél%,;, is a vector.
Expression (8.75) then gives

J‘[gl‘vdrﬂ‘,‘v—gl‘“ﬁrﬂﬂﬂ];a v —gd‘w
= [(V—glgmers,, — grol¥y,)) .d*a

(4.81)

(4.82)

Gauss’ theorem may be used to convert the right side
of (4.82) to a surface integral which is zero in consequence
of the vanishing of the variations on the boundary. (4.81)
becomes

03
o= (emz) | [Ruw — b0 K1V =gtz (4:83)

This result was obtained without making entirely def-
inite statements concerning what (in addition to gs¥) are
the variables. For the remainder of the action function it
will be assumed that no higher than first derivatives of the
g#” are present. For the variation of I we have

Y ([0LrV—8) s eV —8) o .\, T4 4
aIF_?f[_agTogp + R g 'a]daz (4.34)
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The second term of the integrand in (4.84) may be
written

HNLp+/—g)
(g a)

0g# 0 = [6gf'“ agr, (L V= g)]

[ag,,, (Lrv— g)] dgrr

The first term on the right of (4.85) can be transformed
into a surface integral which again is zero because the varia-
tions vanish on the boundary. This gives

s == [% (Lrv/—8) — (55— (Lev—e) |semite
* " (4.86)

(4.85)

We set the bracket of the integrand of (4.86) equal to a
second-rank tensor density $T ,,4/—g. (T, will in 2a moment
be identified as the stress energy tensor.)

(e rvee) -t -] -7
(4.87)

(4.26), (4.88), (4.86), and (4.37) then lead to
l‘" - % i‘VR = ’8_759 le (4.38)

The left side of (4.88) satisfies the Bianchi identities,
so T,, defined by (4.87) satisfies

Ty =0 (4.89)

and may therefore be identified as the stress energy tensor,
subject to the usual issues of umqueness The prescrlptlon
(4.87) for calculating T,,,, is in some respects superior to
(4.10) since a symmetric quantity always results.
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4.3 Maxwell's Equations
The Lagrangian density for electrodynamics is
Faﬂ Fa#

Ly = —
M 16x

e 4
+! 224 Ly (4.40)

Lp is the Lagrangian density of the charged particles.

4« is the four-current density. Consider first a Lorentz metric.

The field tensors F,, are obtained from a four potential 4,
with ,

Fo=4,,—4,, (4.41)

The components of the four potential are considered to be
the field variables in (4.40). The Maxwell equations are given
in terms of the field tensors and the four-current density as

Fl‘"’, = T 7F (4.42)

3F¢, oF,,
=0 4.48
+ Ba:ﬂ -+ dze ( )

Substitution of (4.41) into (4.43) shows that (4.43)
becomes an identity satisfied by any F,, obtained according
to (4.41). For a field tensor obtained from a four potential,
(4.42) is therefore the entire content of Maxwell’s equations.

If we adopt the Lorentz gauge, given by

4»,=0 (4.44)
then substitution of (4.41) into (4.42) gives
An oo = A% (4.45)
¢

as the four-potential formulation of electrodynamics.
We wish now to generalize these results for arbitrary
systems of coordinates. (4.40) is still valid and (4.42) becomes

Fav,, = (4nfc)js (4.46)
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(4.41) becomes A,,, — A,;,, which by (8.85) and the
symmetry of I'x,, in its lower indices again reduces to (4.41).
Since F# is an antisymmetric tensor we may use (8.78) to
write

1
— (Fwrs/—g), = (4fc)jr 4.47
— (Fv/—g)., = (afo)] (4.47)
The appropriate generalization of (4.48) is
(ex#74(—g)F Fop)is = 0 (4.48)

However, the quantity in the brackets is a second-rank tensor
antisymmetric in the indices ¥ and 6, so it follows, again
from (8.78), that (4.48) reduces to (4.48) in arbitrary systems
of coordinates.

The expression (4.44) becomes

Av, =0 (4.49)

A caleculation, which is most easily performed in geodesic
coordinates (noting that the Christoffel symbols, but not
their derivatives, vanish), leads to the following result for
changing the order of covariant differentiation of a vector:

A% pg — A% g p = RVag,A4®

We apply this now to (4.48), which is first written in terms of
A,
Avie,, — Ay, = (4nfc)je
Lowering the index p, writing A*,,;, in terms of Av,,
and using (4.49) gives
Ay — Ry A= = (—4=fc)j, (4.50)
as the generalization of (4.45).

4.4 Motion of a Charged Particle

The action function for a charged particle with charge e
is given by
I=—me f ds + (efe) j A, das (4.51)
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The equations of motion result from setting the varia-
tion of I equal to zero. For the first term of (4.51) we obtain
from (8.62) through (8.68)

& gn dze do#
—mcéfd.e= —mcf(F +Trp T g) g, 0mrds (4.52)

For the second term of (4.51),
(efc)s f A, dze = (ec) j 04 ,dxk + (efc) f A, dézs (4.58)
= (e/c)j [d(A,dzr) —dz#dA, + 84 ,dxs]

The first term in the integrand on the far right vanishes when
integrated because the variations are zero at the end points
of the path. For the remaining terms we note that

dA4
dA,‘ = zm—;f d:BP
while
2A
64, = 8.1:'/‘ oxv

Making use of (4.41), combining (4.52) and (4.58), setting
the result equal to zero, and raising one index on F,s then
yields

dtxs dxe dxf dzxe
5 + Ie,y e Fu, 'y (efmc?) (4.54)
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CHAPTER §

Experimental Tests of General Relativity

5.1 The Schwarzschild Solution

Up to the present time, experimental tests of general
relativity have consisted of the E6tvos experiment, the grav-
itational red shift, the advance of the perihelion of planetary
orbits, and the deflection of light by the sum. The last three
of these effects are based on the solution of the field equations
for a spherically symmetric field. We now obtain this solu-
tion, following K. Schwarzschild (1).

The starting point is the spherically symmetric squared-
line element of flat space-time:

—ds? = —cdt® 4 dr'® + r'%(d0® + sin? 0 dp?®) (5.1)
Now we introduce at the origin a mass with spherical
symmetry. (5.1) must be modified but in a way that retains
spherical symmetry and symmetry with respect to time re-
versal. This leads to
—ds® = —fo(r', t)c2dt® + [, (v, t)dr'?
+ fo7’, t)r'?3(d0® 4 sin? 6 dg?)
We choose a new coordinate r such that f,(#', t)r'? = »2. We
set fo = e¥, f, = e*, to obtain gy, = — e, g,, = e, gy, =73,
833 = r2sin? 0; then
—ds® = —evcdl® 4 erdr® 4 r3(d6® 4 sin? 0 dg®) (5.3)
For the empty space surrounding the body, T,, =0,
and the field equations become
R,, —igwR=0
Multiplying this by g#* and contracting gives R = 0. The
56

(5.2)
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gravitational field equations for vacuum become

R, =0 (5.4)

To facilitate calculations we give the nonvanishing com-
ponents of I'%,, as

P'n=%g—f I, = —sin 8 cos 6
Pa=t 2 Phom i o

R oy, = ca_a”t (5.5)
I, =1% Z% er—v I3 = cot @

Iy, = % Iy = —7rsin? 0 eA

Iy = —re2

For the vacuum case we use (5.4) or G w=R,,—}g,R
set equal to zero. The expressions for G uv 8re somewhat
more simple and may also be used when a problem other than
the vacuum with only gravitational fields is considered. The
nonvanishing components of G,* are given by straightfor-
ward calculation as

{1 1o 1
G°°=”(rz‘75)‘ﬁ
e~ 9
Gyl = — —
0 re ot
%y N2 1 /v 9A ov 94
23— 1p-a[O Y oy Bl el id W Wl i
Gz Gs &e (3rz+&(ar) +r(ar 31‘) %37' 31')

(i () -4 (@) (B) e
Grmer (L2 )1
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Setting (5.6) equal to zero leads to the independent equations

o 1 e

wtT T (5.7)
oA 1 e .
"7 + - = (5.8)
/]

—_— 5.
2 (5:9)

The sum of the equations (5.7) and (5.8) gives
a% (A+v)=0 (5.10)

(5.9) requires A to be independent of time, (5.10) then
implies that any time dependence in » must arise from a
function independent of 7. (5.8) indicates that such a time
dependence can be eliminated everywhere by a coordinate
transformation involving only the time. This is equivalent
to the statement that the assumption of spherical symmetry
guarantees the possibility of a time-independent description
of the geometry of the space. All time derivatives in (5.5)
and (5.6) can be taken to be zero. The solution of (5.7) and
(5.8) is

erA=¢ =1+ I—f—" (5.11)

The constant K, may be determined from the require-
ment that Newton’s law of gravitation be approached, at
large distances from the mass.

From the geodesic equation it follows that the accelera-
tion of a small test body at rest relative to the central

mass M is
K, K, 2K,
—021"00 = ce (2—7—2) (l + _r—) - —-2—7.-2—
Comparing this with the Newtonian value —GM|r? gives

2GM

c2

Ky = — (5.12)
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The Schwarzschild metric (5.8) now takes the form

2GM . dr?
—ds? — — {2 2 2 (cin? 2 2
ds (c : )dt +7*(sin?0 d +d0)+(1_2GM)

c2r

(5.18)
(5.18) exhibits! the “Sechwarzschild singularity” at
= 2GM/c®. This appears to limit the size of massive bodies
to r > 2GM/c% For an clectron this is 18.2 x 10-5 cm,
which is much too small to be related to present elementary
particle theories. For a charged particle at the origin, the
arguments which led to (5.8) are still valid. However, the
energy associated with the electric field of the particle is
distributed throughout space. The trace T,* of the Maxwell
stress tensor (4.15) vanishes. If we raise one index and then
contract the field equations (4.25) the result is that R = 0
for the combined Einstein-Maxwell field and we obtain

8=G
R, = — T, (5.14)
for the case of energy sources which consist entirely of the
electromagnetic field. The use of the metric (5.8), expressions
(5.6) and (4.15), and the Maxwell equations (4.47) for spheri-
cally symmetric$ 4, then give in place of (5.18) for a particle
with electric charge e

R R P
r

ca,.z
S5m0 do 1. do? dr? (5.18a)
+rH(sin? 0 dg? + H( 2CM _ &iC
1— =" 47
c2r c“r”)

! H.P.Robertson has shown that o test body takes a finite time to cross the
Schwarzschild singularity. New coordinates remove the Schwarzschild singu-
larity, but not the one at the origin, with singular Riemann tensor invariants.

Finklestein® has given an analytic extension of the Schwarzschild
solution, with no singularities except at the origin. It does not possess time
symmetry. He attributes this to the nonlinear character of general relativity.

% To evaluate the constant we may compare the invariant Fuy Fav at
large distances with the flat-space value for a charged particle.
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For a spherical uncharged body of finite extension the
metric (5.18) is valid only outside the body. An interior
solution for a fluid sphere can be written in the form

e [a-al i o

s (5.18b)
+ + 72 [sin? 0 dg® + d0%]

.r8
1 ——
Rz2
and by requiring this to properly join up with (5.18) at the
boundary r = r, we can obtain in terms of the density p,

R: = @empey A=) )] —-;—”-] B=}

5.2 The Gravitational Red Shift

We return now to the metric (5.18) to again deduce the
gravitational red-shift formula. Suppose we have an oscilla-
tor at the surface of a star, with interval between vibrations
given by the invariant 4s. Imagine that a pulse of light is
emitted at the peak of each vibration and let the time coor-
dinate at any point in the space be established by the receipt
of these pulses. First we note that the interval of coordinate
time 4¢, between successive pulses at a fixed point, is equal
everywhere in the space to the value at the surface of the
star. Each pulse is propagated along a null geodesic in the
radial direction and (5.18) gives, for ds = 0,

di = — in_(_’)d' (5.15)
8oo(7)
Integrating (5.15) for the time of the arrival of the nth pulse
at the radial distance r leads to

t(r,n) — t(rg, n) = — ;% = F(r, ry) (5.16)

tr,n + 1) — t(re, n + 1) = F(r, 7o) (5.17)
Subtracting (5.16) from (5.17) gives

tr,n 4+ 1) — tr, n) = t{ro, » + 1) — Hrp, n) = At (5.18)

Similarly,
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which is independent of r. Let the coordinate frequency be »,

1 ¢4/ —gy(distant oscillator)
At Ads
For the identical oscillator located at the position of an

observer at radius r, the locally generated frequency v, is
assumed to be given in terms of the invariant intervals As by

Y, =

(5.19)

vy = Ais v/ —gv (local oscillator) (5.20)

Comparing (5.19) and (5.20) results in

8oo (distant oscillator)
— 5'
8oo (local oscillator) 1) (5.21)

The frequency shift at radial coordinate r for a body
which has its surface at radial coordinate 1o is

1

dy =y, — v,y — Gc—jy (E — —:-) v, (5.21a)
(toward the red), in agreement with (1.15), since r and r, are
very nearly equal to the corresponding distances. The differ-
ence between (5.21) and the equivalence-principle result
(1.15) amounts to a fractional frequency shift of about
(GMc*r,)%, roughly one part in 10" for a terrestrial meas-
urement of the entire red-shift.

Measurements on the companion of Sirius give a red-
shift equivalent to the Doppler shift associated with a veloce-
ity of 19 km/see, while the calculated equivalent value is
20 km/sec. For the binary star 40 Eridani, measurements on
the white dwarf give 21 + 4 km/sec, which is to be compared
with the calculated value 17 4 8 km/sec. Line-shift measure-
ments on the sun give different results at different points on
the surface. This is not understood.

Experimental work is in progress to measure the red
shift by other methods, involving the earth’s field. One type
of experiment compares precision frequency standards of the
“atomic clock” (4) type on earth and at a different gravita-
tional potential, using rocket-launched satellites (8). A dif-

vo—v,=v;(



62 GENERAL RELATIVITY AND GRAVITATIONAL WAVES

ferent method makes use of the discovery of Mdossbauer (5)
that some of the gamma radiation (in the energy range ~ 104
ev) emitted by long-lived (greater than 10~® sec) “jsomeric”’
states of nuclei is recoil-free. The recoil momentum is taken
up by the solid as a whole, and there is no significant Doppler?

t The recoil momentum may excite the lattice vibrations or may be
transferred as linear momentum to the entire crystal. In the former case
there will be a Doppler breadth because the emitting atom recoils, The
criterion that the lattice vibrations not be excited can be stated in the
following terms. Let the gamma-ray recoil momentum be p = fwyje. Let
the mass of the atom be m. Then we may expect no appreciable Doppler
effect if (p%jm) <€ kfp where 8y is the Debye temperature and k is Bolta-
mann’s constant. This result can be understood by consideration of the
effect of the radiated momentum transfer. Suppose the lattice vibration
wavefunction is y, before emission of the gamma ray. v, is an eigenfunction
of the Hamiltonian operator. If the gamma-ray emission transfers mo-
mentum p in some way to the crystal, then the wavefunction immediately
after emission is ei¢’Ay,. Here ¢* is the harmonic oscillator coordinate and
this wavefunction is the one which has an expectation value for momentum
P units greater than the initial one. After emission we may write

a,p, = ein Ty,
y = (E'lgip‘d'lﬁlED i 6!1 +iP-Iq'|ﬂlh

The term p,|g*,s gives rise to phonon emission or absorption while the term
4,; does not. To obtain the relative probability of emission without phonon
excitation we need to evaluate

A2 3 pilel)?
modes

glys are the harmonic oscillator matrix elements.

h
(lgl-s)* = N (Npu+1)  or Npn
1

Nmw,
where Np), is the number of phonons, N is the number of atoms, mN is the
mass of the crystal, and w; is the lattice vibration frequency.
h fi
(gles? & — (Npn+1) o — Npn
Bt~ o o

Since energy is at least approximately conserved, @ will be a high lattice
vibration frequency, of the order of the Debye frequency wp = kOp/h, also
Npn ~ 1. Using these relations and requiring

(@A) B (gl <1
modes
then gives (p*/m) <K kip.
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shift, or broadening. The long lifetime is a consequence of
the fact that the angular momentum of the nuclear ground
state is different from that of the excited state. The radiation
is either magnetic dipole or of a higher multipole order. The
ratio of the frequency to line width is unusually great. Sug-
gestions that this radiation be employed for terrestrial red-
shift measurements were first published by Pound and
Rebka (8), and independently put forth by Wilkinson, by
Boyle, by Devons, and by Cranshaw (7 )-

The properties of the 14,700-ev radiation of the 10-7-sec
Fe®?, obtained from the radioactive decay of 270-day Co%7
have been reported. Pound and Rebka observed the radia-
tion with a scintillation spectrometer and arranged to move
the source toward and away from the spectrometer by ce-
menting it to a moving coil transducer. In this way they ob-
served that the radiation has a half width d» ~ 2 X 108
cycles/sec. Since the red ghift is proportional to frequency,
a shift of roughly one part in 10! would be expected for a
change in height of ~50 m in the earth’s gravitational field.
For the Fe® radiation this amounts to about 8 x 10¢ cycles/
sec, or roughly 1 percent of the line width already achieved.
This is, therefore, a feasible experiment.! Pound and Rebka

! Results of such an experiment were recently reported by Cranshaw,
Schiffer, and Whitehead (Phys. Rev. Lelters 4, 168 (1960)). They employed
Fe” and a total height difference of 12.5 m. A red shift 0.9610.45 times the
predicted value was observed. A more precise result was achieved later by
Pound and Rebka, Phys. Rev. Letters 4, 387, (1960). They obtained a red
shift 1.05 4 0.10 times the predicted value. Anomalous frequency shifts as-
sociated with particular sources and absorbers, and a temperature dependent
frequency shift had to be taken into account. The latter effect is a time dilata-
tion associated with the temperature dependent velocity. The angular fre-
quency shift is

(ot >)& BwykT

dw = oy (l T 2met

Here 7 is the absolute temperature, and the approximation on the far right
is valid at high temperatures (where equipartition occurs).

This effect was minimized by controlling source and absorber tempera-
tures. The other anomaly was corrected for by exchanging positions of source
and absorber.
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note that with a source of limited strength, statistical fluctu-
ations decrease the precision, owing to decreased counting
rates, as the distance between source and absorber is in-
creased. This just about compensates the increased red shift
as the height separation between source and observer is
changed. Larger vertical distances do not therefore give
much increase in precision, unless some means is provided to
concentrate the radiation.

5.3 Effects on Planetary Orbits

(5.5) may be employed to write the geodesic equations?
for either a massive particle or a light ray. The differential
equation for the 6 coordinate is

a0 . 2 drdb . dep\?
—_— _——— —— 0 —_— = .
7 + D cos 0 sin 0 (ds) 0 (5.22)

For the particle with nonvanishing rest mass, s is the inter-
val along the geodesic. The problem is simplified if the plane
containing the initial velocity and the central mass is taken
as 0 = xn/2. df/ds = O initially, and from (5.22) d*0/ds* = 0.
The entire orbit will then lie in the equatorial plane. The
remaining geodesic equations are

dtr | di(dr\® . (dg\? M@( dt\t
F4.,}‘17(_) re (__) S cd_s) =0 (5.28)

ds ds
‘%%’ %Z‘:% =0 (5.24)
L (5.25)
Equations (5.24) and (5.25) are readily integrated and give
r %” =K, (5.26)
% =K, e (5.27)

For these calculations the assumption is made that the coordinate
system has axes fixed with reference to the stars.
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K, and K, are constants of the orbit. Instead of integrating
(5.23) directly we obtain a first integral of it by writing the
Schwarzschild metric (5.18), for 6 = n/2, in the form

_,drz 2d(p2_v dtz—_
e (Zi-s—) +r (E) e (CE) = —1 (5.28)

(5.28) is the relation between any set of quantities dr|ds,
dp/ds, and dt/ds in the space. If, however, we restrict dolds
and dt/ds to the values given by (5.26) and (5.27), we can
climinate ds and dt and thus obtain an ordinary differential
equation in terms of the variables r and g for the orbit given
by
e (dr\*  K,?

(K,)? Y (a;) + —r;:— —er MK, = —1  (5.29)
We substitute W = 1/r and differentiate (5.29) with respect
to @, obtaining with the help of (5.11)

a:w GM 8GM
halinAds = Wwe 5.80
T (5.80)

c2
(5.30) can be solved in successive orders by an approximation
procedure. Let p = 2GM/c? be the Schwarzschild radius and
let

pW = pWM - pW@ 4 |, (5.81)

where pW ) is a first-order and pW® is a second-order quan-
tity. Substitution of (5.81) into (5.80) and setting terms of
corresponding order equal to zero separately yields the equa-
tions

dz’;" + W = (KGlj;{cz (5.82)
dz;V:) + W = BGT:W (W) (5.88)

The solution of (5.;’2) is
W = (I((';lj;/;’c? (1 + &sin (g — @) (5.84)

Here ¢ is the eccentricity of an elliptical orbit described by
(5.84). We orient the coordinate system so that g, = 0. Let
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2a be the length of the major axis of the ellipse (Fig. 4.1):

1 1
20 = (__) + (_—) 5.85
) L V7)) N (5.85)

An expression for the constant (K,)? can be written, using
(5.85), in terms of the eccentricity and semimajor axis, as

(K =2 - e (5.30)

Fig. 4.1

Employing (5.86) and (5.84) enables us to write the solution
of (5.88), and the entire solution (to second order) of (5.80)
is found to be

1 . 8GMe
V=i = [1 Tesne T an— )
GMe? GM
+ cfa(l — ) cos” ¢ + cta(l — )
In (5.87) the term
8GMepcosp
e
will cause an advance of the perihelion. The second and
third terms can be expressed in the form

@ Ccos @
(5.87)

(8 + s*)]

€ . 8GM pcosgp| ,
a—_(l ey [smcp — ——————-cza(l — 62)-] (5.88)
£ 9G2 M2g? 1t . ( -1 8GMy
a(l —&) [ t & —52)2] sinfe+tan™ — =20 —az))
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(5.88) implies that for each revolution the perihelion will
advance an amount 4 given by

_ 6aGM
T ca(l — &)

The dependence of the perihelion advance on the eccen-
tricity ¢ and semimajor axis a is evident. The quantity ¢ in
(5.89) is the velocity of propagation of gravitational inter-
actions. Thus the agreement of (5.89) with observed values
for the planet Mercury (astronomical observations give
42.6 4 0.9 sec per century and expression (5.89) predicts
48.0sec per century) indicates that general relativity provides
a good description of gravitation and that gravitational
interactions propagate with the speed of light.

It is also of interest to note that the failure of a planetary
orbit to be exactly periodic provides an especially sensitive
test of the departures from an inverse-square law, for slow-
moving bodies (v < ¢). The force on a body at rest is not
the Newtonian value but rather
GM G
A= T4 [1 - (5.40)

(5.89)

with 7 given in terms of the distance ! from the surface of the
central body as

l = J:; gutdr

5.4 Deflection of Light

To discuss the deflection of light in a gravitational field
we must again solve the geodesic equations given by (5.22),
(5.28), (5.24), and (5.25). The integrals (5.26) and (5.27) are
still valid. Instead of (5.28) we obtain a corresponding rela-
tion for null intervals. First we set the Schwarzschild squar-
ed-line element equal to zero, then we divide by ds2:

(@ (@ el -0 om

S is now a parameter other than interval. Employing (5.26)
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and (5.27) in (5.41) and letting W = 1/r leads to the equation
dW\2  [(cKj\2 2GM
—) == -2 1-— .
&) =) -"(-w) e
It is easier to deal with the equation obtained by differ-
entiating (5.42), which is
aw 8W2GM
—_— W=
de? + c?
(5.48) can be solved, to second order, using the method
employed for (5.80); the result is
W — 1 _cosg + GM
r 7o c?ry?
In (5.44) the integration constant r, is the distance of closest
approach for the unperturbed light path (see Fig. 4.2).

(5.43)

(1 +sin? ) (5.44)

Fig. 4.2
For r — o0 we obtain two values of ¢ which are solutions of
cos ¢ = — cGa——-M (1 + sin? ) (5.45)
To
Let the values be
n  dp
P = 2 + 2

(5.46)
__7_%
P2 = b) 2
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Solving (5.45) gives for the total deflection
dp = 4GM/c*r, (5.47)

For light from a star just grazing the sun’s edge, (5.47)
gives p = 1.75 sec.

A summary of the astronomical data on the red shift and
deflection of light has been given by Trumpler (2). For the
deflection as observed during eclipses, the individual meas-
ured values have a probable error of roughly 10 percent and
are usually within 10 percent of the value given by (5.47).
The average for eleven eclipses agrees with (5.47) to roughly
one part in 500.

5.5 Concluding Remarks

The four experiments discussed thus far constitute the
entire experimental verification of general relativity. This
is in marked contrast with the abundance of experimental
data which support the quantum theory. It has been a
great challenge to conceive other experiments which are
feasible. The problem is to some extent a technological one.
Techniques are usually not available to observe the very
small effects which the very weak interactions of the theory
predict. In later chapters additional experiments which were
recently proposed will be discussed.
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CHAPTER 6

The Conservation Laws

6.1 The Canonical Stress Energy Pseudotensor

In special relativity the relation T, , = 0, which is
satisfied by the stress energy tensor, is integrated over the
three space coordinates to get the conservation laws for
energy and momentum. For Ty», we have

527, J T 0 dat dztda®

_ f(ar.,l oy T

(6.1)
1 2 —_ L
i awa)da:da:da:"_ J-TodS‘

On the far right the volume integral has been transformed to
a surface integral with dS; a vector element of area of the
boundary. This result relates the change of energy in a given
volume to the flow of energy momentum into it.

The situation is different if a Lorentz metric is not em-
ployed. The stress energy tensor now satisfies T,”, = 0.
Since T,, is symmetric we may use (8.79) to write

T/Jv;v = (‘g)—b(Tp”\/_g).V'—%gaﬂ.p T=f (6.2)
If the metric is time-dependent then for 4 = 0, the second
term of (6.2) represents a time-dependent exchange of energy
and momentum between the gravitational field in each vol-
ume element, and the other fields. In order to be able al-

ways to carry out the operations which led to the integration
of (6.1), we search for a quantity ¢,” such that

("‘g)_% (t“”\/—g)., = _%gaﬂ.# Tt (6'3)
70
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Then (6.2) becomes

[(Tpv + tﬂv)\/_g].&' =0 (6'4’)
With (6.4), an integration similar to (6.1) may now in general
be carried out which would be expected to yield conservation
laws (1-5) including the gravitational field. Expression (6.8)
does not uniquely define ¢,”. Also it follows from the right
side of (6.8) that ,” is not a tensor. We shall see that ¢, be-
haves like a tensor under certain restricted groups of trans-
formations. It is called the stress energy pseudotensor. One
way of obtaining an expression for ¢,” is to follow essentially
the procedure which led to (4.10). The problem is different
from that ordinarily encountered in field theory because the
gravitational action function

Ig = (¢*(162G) [ RV —g d'x (6.5)

contains second space and time derivatives of the field vari-
ables g#. However, the part containing second derivatives
may be written as a surface integral. We have, in faect,

R\/—g = ngR;w '\/""g = [g"’rapv.a_g'wrapa.v
+ g‘“’r“,m Pﬁaﬂ - gpv['aFﬂ rﬂva]\/_g

The terms involving second derivatives are the first two on
the right of (6.6). These may be rearranged in the following

way:

(g’w-ra;w.a - g;w]‘alu’v),\/_g = (g'wra/u"\/—g).a
_(gpv[‘alm v_g)'v._]‘a"y(g;cv\/__g)'a+I‘al‘a(gpv\/_g).v
If we now use (8.78)

0
—g' = 88'“8.x,a> gl‘v;a =0; glw.a = —‘r"yag”—r"yag"";

oz
I‘ﬂ/lﬂ = %g“‘gu.p
The last two terms of (6.7) may be written

'—I‘a;w(g'w'\/'—g),a + Pa;‘a(g’w\/—g).v
= 2g‘w[rapﬂrﬁva - I'a;w Fﬂaﬁ] \/_g

(6.6)

(6.7)

(6.8)
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Using (6.6), (6.7), and (6.8), we may express (6.5) in the
form

[RV=gdtx = [gr(Ie,51%,, — I, I?,5) V _gdtz 69)
+ [ [V=g(gI g — ge%,p)), o di

Thus we see that in (6.9) the first integral on the right
is only a function of g#* and its first derivatives; the second
integral can readily be converted into a surface integral using
Gauss’s theorem. For variations of the action function which
vanish on the boundary, only the first integral on the right
side of (6.9) will be needed. We may now define

ct
%o = (fong) €T DPra = Tt Thg)  (6.10)
and a total Lagrangian density .# by
PL=% + Lp (6.11)

with Lp the Lagrangian density of fields other than the
gravitational field. Since (6.10) contains only the part of the
gravitational Lagrangian without second derivatives, and
Lp also contains only the field variables and their first deri-
vatives, we may apply the standard Lagrangian formalism
of field theory (section 4.1) to the action integral

I= %fzx/—_gdﬁn (6.12)

It therefore follows that the field equations are
0LV —g) ALV —g)
ox=  ogm, og#r

Using (6.11) and (4.87) we may write

162G I:a(.?m/-g) 0 Lo/ — g)]
ct ogrv dz=  dgw,

=0 (6.18)

(6.14)
G
(R;w_%gpvR)\/_g_(si) ;w‘\/ 8



THE CONSERVATION LAWS 73

and using (4.10) we may define a total canonical stress energy
pseudotensor 7,* by

[ L —
T“v ‘\/—g == 6#"-? V -—g —gl’ﬂll‘ %—Q] (6.15)
with a gravitational part

[~ Lo/ —
Ly vV—g= -6“".?(; vV —g—grt, -—(7;%;—"—5—)] (6.16)

with
(tpv '\/_g).v = (tilv V —§8 + T,,“\/—g)',, =0 (6'17)

The expressions (6.18) and (6.14) are especially interesting
becausc they exhibit Einstein’s field equations in the form
of Lagrange’s equations.

It is more instructive to derive (6.15) in a different way
making use of invariance of Zunder certain coordinate trans-
formations. We recall that the conservation laws of a theory
are associated with certain invariance properties. For exam-
ple, in mechanics energy conservation is related to invariance
of the Hamiltonian under time translation, angular-momen-
tum conservation is related to invariance of the Hamiltonian
under rotations.

Let us carry out the infinitesimal coordinate transforma-
tion?

't = gb 4 dx» (6.18)

making use of the transformation law for g«* gives for the
change corresponding to (6.18),

i/ /)
Sgen = gee o (92k) + ghe o (d2%) = g'<4(z') —g<(x) (6.19)

! In this chapter the & symbol always means what is expressed by (6.18)
and (6.19). Some authors employ the symbol & for the different operation

dgks = g'xp(x) — gep(x) = dxxypu + Sapyx
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og'xr(z') ogrr(x 2
dgen, = B IT)_ W) D sger)—gen 50 (0a7) (6:20)
0L Lg
8% = 3g~ﬁ dg=r + Frer 0g=s . (6.21)

This follows because Ly is a scalar, so Lp = 0.
Making use of (6.19) and (8.20) leads to

0¥ oL 0¥

o [2gge + 255 17— g ] o0,

(6.22)
+ 2 ag,f,,.mg'"(écw').p..,,

We may write

0% 1 9Ly —g)

ag‘p ag‘l. [(‘g\/ g)( g)—}] \/_g ag"‘ + %g:pg
(6.28)

Here we again made use of dg = —gg,,dg#*. We note that
4/ —g does not contain g«# ;. Employing (6.28) in (6.22) gives

L —
62y —g=[2 52 R

3 £
P (LAWY

g+ Ly —g8 0+ 2=

L/ —g)

Tgr €0 (624)

£ is invariant under linear coordinate transformations; for
these, the last term on the right of (6.24) is zero, and 6.2
must vanish. The remaining terms vanish, giving

104 I
2(ax/ g)g,,+3,\/ g6,+2( \/ g)
g %t (6.25)
UL — =8 e — 0 |
— g =

(6.25) does not contain dx#; it is an identity. It then follows
that for a general coordinate transformation, (6.24) leads to
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oAV —g%)
(0L)v —g=2 g,

For any coordinate transformation which changes noth-
ing on the boundary of the region of integration, the sur-
face terms are zero and we write

é f [(l—;:E)R+LF] V_gdiz = 6j$ngd4m (6.27)

The left side of (6.27) vanishes because the integral is a
scalar, so for the right side

af.sf\/‘—‘é diz = |62V —gdz +f.2’6(\/—gd4w) =0 (6.28)

The second integral on the right of (6.28) is zero because
v/ —g d%z is a scalar. The vanishing of the first integral on the
right together with (6.26) leads to
2LV —g
og t a
We may write (6.29) in the form

| ' ' " (6.30)

The first term in (6.80) can be converted into a surface in-
tegral which again vanishes for dz# with derivatives which
approach zero sufficiently fast on the boundary. The re-
maining integral in (6.30) may again be transformed into
a part containing a surface integral which vanishes and
a remaining integral which for arbitrary dx# gives

0LV —g

— gV J—

l: T g ]'m— 0 (6.81)

(6.81) gives us the conserved quantity

LV —
TV —Eg=(Ty+t)v—g=—2 (—@:_ggn) . (6.32)

g (0x#),, o (6.26)

g= (0z#) , od'z =0 (6.29)
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written as an ordinary divergence. (6.82) is very useful for
calculations.

We may now again obtain the forms (6.15) and (6.16) by
multiplying the field equations (6.18) by g~ and writing the
first term as the difference of two terms to obtain

[ Kvagv_g] ag\/_g (34 {44 ——_—a‘g\/_g
& g, ). ogr, & T8 g

=0 (6.88)

Employing (6.25), differentiating with respect to z*, and
making use of (6.81) leads directly to the expressions (6.15),
and (6.16) for ¢,

For convenience in carrying out calculations we give
expressions for

Lo/ — —
0L/ —¢ and 0%ev —¢
agaﬁ'y ag;w
First we evaluate
3(g;w[‘al” Fﬂaﬁ) _ »Ta arﬂaﬁ a(gpvf'aﬂv)
_—~——_3gl"’,., = gwI ‘“’—3g”_, + I8, 287, (6.84)
The use of (8.78) and (8.74) gives
oI%,,
ageo,, = —148p5 8. (6.85)

Noting that g=f,, = 0 = g*8 ,  I'=,, gb» 4 I',, g, setting
g = u, and employing (8.74) leads to

ogrrIe,,)
agpc' : = - %(6})“ 6,7 + 6,° 6,:7) + %g“" 8o0 (6.86)
With the use of these relations it follows that
o(gmI=,, I',,)
agpic‘r.v = _ig’”rvﬂvgpa (6.87)

+ I‘v;w[_'é(apﬂ 607 + 60" 6p7) + %gl‘? gpa]
Also, the method used to obtain (8.86) gives
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a(g”r’ﬂp« ravﬂ ‘\/_g) —

agp, y - = I“'pa \/_g (6'88)
From (6.10), (6.87), and (6.88) it follows that
L/ —
—(_a—Zpiv—Q = {"“ P7p1+ %(g"’rypv —gﬂ‘YI'ﬂap)g‘w
7 o (6.89)
-+ é(ap)‘rava + 60711“,)1)} (1—6;16 '\/_g)

The use of the field equation (6.14) allows us to write

3_?0\/_g _ i_ 3-?0 ‘\/_g
—agT- = (de - %gPUR) (lenG v—g) + [W].Y

(6.40)
Evaluation of (6.40) is facilitated! by the fact that the
result cannot contain derivatives such as I'=,, ; since £+/—¢g

does not contain such derivatives, so these terms will eancel
each other on the right of (6.40). We obtain

167G\ 0.L5 1/ —¢g i
( ct ) agpp' ={—P Pﬂ‘r‘ﬂda
+ 3@l —ghal? ) g I put gy Toe) (41
8nG

e ?gpa-‘('pc + Pﬂpppvdi'} \/_g

We return to a consideration of the properties of the

canonical stress energy pseudotensor z,” of (6.15). Following
(6.1) we write

%ofr,,ox/—g ddz = _J‘z,,-' V=g ds, (6.42)

For an isolated system, for which the g,, approach the
Lorentz metric sufficiently fast, and for which T, is local-
ized, the surface integral on the right of (6.42) vanishes and

$"This follows Meller; it is more simple than direct calculation. The
variables are gi” and g ,. g, may be expressed in terms of g8, but g,, o
can only be expressed in terms of g* and g~ ,.
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the integrals
1
P, = ?fr,,o V_gdz (6.48)

are independent of time. (7 is regular everywhere.) It fol-
lows from (6.82) that systems in which :

LV —8)
J og<# ,

has the same value over a closed surface will have the same
P,. Under Lorentz transformations z,° transforms as a four-
tensor. P, will transform like the energy-momentum four
vector of special relativity (18).

We now calculate — P, for a Schwarzschild particle and
show that it is Mec. To do this we first carry out the coor-
dinate transformation

GM ,_Ir(, 2GMr\i G
r=r(l+ cﬂr)’ r=§[(r— o )+r—— (6.44)

The coordinates ', 6, @, and ¢ are called isotropic coordlnates
The Schwarzschlld metric (5.18) becomes

—ds?= (1 2 ff,) (dr'® 4+ 7'2d6? 4 r'2 sin® @ do?)
(l GM ) (6.45)
o) Lo
—(: e © dt
+3a)

If we now introduce
24y +=r"
z =1’ cos ¢ sin 0
y =17"sin ¢sin 6
z=r1r"cosf
and assume that r’ is very great, (6.45) may be written

(1+ M) (da:’+dy”+dz”)—(l—2—62—r— it (6.46)
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We note that all quantities are regular everywhere since a
Schwarzschild interior solution is valid inside the body
producing the field.
The use of (6.46), (6.89), (6.48), and (6.82) then leads
to
E,
—Py=Mc= —, (Py = Py = P, = 0)

£ — Me ¢ (6.47)
o=

On the other hand, if we had used the Schwarzschild
metric (5.18) directly we would have obtained

Ey= — (6.48)
Also if a flat-space metric
—ds? = dr? 4 r3(d6? + sin? 0 dg?) — cdi? (6.49)

is employed an infinite result is again obtained for the
energy. These results are not surprising because z,” is not
a tensor.

The conservation laws (6.15) and (6.16) are seen to give
energy-momentum four vectors under quite restricted con-
ditions. The Lorentz metric must be approached sufficiently
rapidly at spatial infinity and the special metric (6.46) has to
be used. No consistent interpretation of {,® as an energy
density is possible since only the volume integral is meaning-
ful. Coordinate transformations affecting the interior of a
region will change the values of ¢® within it, but not the
volume integral as calculated in a coordinate system for
which (6.46) is appropriate. The energy is simply the coef-
ficient of 2G/r'ctin (6.46), so all systems which have the same
constants appearing in (6.46) will have the same energy
regardless of the interior description.

6.2 Other Conservation Laws

A conservation law such as (6.17) states that something
is conserved; in a given system of coordinates the conserved
quantity may not be related to the energy density in a simple
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way. The expression (6.16) is only one of a class of pseudo-
tensor densities which satisfy conservation laws. Addition of
any quantity with a vanishing ordinary divergence to
t,» +/—g will not affect (6.17). This arbitrariness in the
specification of ¢,* has been employed by Landau and Lif-
shitz (6) to obtain a conserved symmetric pseudotensor
K#v, and by Mgller (8) to obtain a quantity whose zero-zero
component transforms like a scalar under coordinate trans-
formations not involving the time. In order to obtain these
results it is convenient to introduce (7) a quantity U2,
which is antisymmetric in ¢ and ». The circumflex symbol
is often used to indicate this property. The canonical stress
energy pseudotensor may be written in terms of U %2 as (6.50).

1,0V —g=U%, (6.50)

satisfies the conservationlaw (z,”4/—g) , = 0 in consequence
of the antisymmetry of U, 2. We may search for an expres-
sion? for U, by studying (6.82) and noting that it must

differ from
A<v=e .,

—2 den .

by some quantity whose ordinary divergence vanishes. If
the quantity is written a,*% ; the vanishing of its divergence
is guaranteed. We therefore write

L/ —
(6.89) enables us to evaluate
ALV —g)
dger, &= {170 g+ 48,7 I op+8,°T2 ) gve

+ 2 (gp')' Pcp‘y - go‘ﬂ kax)gav} 16756 \/_g (6‘52)

t The U, are sometimes called the superpotentials.
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Remembering that

Tege = 8,5/28, d(gcg'*) =0 and g, .8 = —g,, 8",

rearranging terms then allows us to write (6.52) in the form
oLV —g) 1
-———.agal" i gav = [2\/_g gpa [g(gvagaﬂ_gvagvﬁ)].ﬂ

—HY g g — V8,08 | 1

Comparing (6.58) and (6.51) we see that

(6.58)
4

167G

ct
U= MT—g Bual(—g)(g2 g% — goog"?)],p (6.54)

l‘v{f 8= 16n G ( v [6 trgvﬂ_é ﬁg””]) '} (6’55)

These quantities transform like tensor densities under linear
(affine) transformations, and are called affine tensor densities.

For formulation of angular-momentum conservation
laws it is convenient (but not necessary) (4) to have a quan-
tity corresponding to v, which is symmetric in the indices «
and B. Such a quantity can be obtained from the U %2 in the
following way. Consider U ,:

UrL, e = (8P U %), = [[—glgrrger—g=rg?)],, [(—g) ).,

e
16nG

The last term in (6.56) is symmetric in x and », but the first
is not. If the factor (—g)~* in front of (6.54) is removed, the
modified quantity

+ (—g) [ —glgrrgee — g1 g*e)),p d —=  (6.56)

Cd
hwve — [—g(gvrger — gc#gvp)]'p (m) (6.57)

will have a divergence symmetric in » and u. We use ## to
indicate the Landau-Lifshitz gravitational pseudotensor and
Kwv for their combined pseudotensor density. Landau and
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Lifshitz employ (6.57) to write
Kpr = (T# + Iwv)(—g) = h*2, (6.58)

K#» then satisfies a conservation law in consequence of the
antisymmetry of A#*2 in » and p. Integration yields a quantity
P* given by

P = '27 j (—g) [T + W) dzrda®da®  (6.59)

Under linear transformations & transforms as a four-
vector density rather than as a four vector. Making use of
the field equations and the definition of 4#%, Landau and
Lifshitz give the following formula for Z#:

o
I = = (2T gy I p— T2, TPyu—Tga Iy, ) (840 g"1 —grgh?)
+ gﬂﬂg?a(P”ﬁpI’Pyrl'r"nFpﬂp—rvaprpﬂr_P"ﬁ7PP“P) (6.60)
+ gvﬂgra(_l‘ﬂhl"p,’,—{-l‘ﬁ.,,l’f’pp — It I'eg, — I'ty, Tra,)
+ girger(log, I, , — P“ﬂypvap)}

Again K# has the undesirable properties that to obtain the
required result a special coordinate system is required in
which the isotropic metric is approached at large distances.
Again no consistent interpretation of K% as localized energy
density is possible.

To remedy these defects, Mgller noted that we may add
another third-rank affine tensor density V ¢ to the right side
of (6.51) without affecting the validity of the conservation
laws, as long as V 22 is antisymmetric in » and o. Mgller sug-
gested that we define a function x,< by

E=Ux+ Ve (6.61)
Then a stress energy pseudotensor 4,” is given by
Aﬂ”'\/"g = [(Tﬂv + lpy)\/—g] = xla!g.u' (6'62)

Here {,” is the gravitational pseudotensor corresponding to
A,». The additional affine tensor density V2 is now sought
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which will give 4,” the following properties. For physical
systems for which it is possible to use the ‘“Lorentz” metric
(6.46) at large distances

fA,,“\/—-gdaa: =f'r,,°\/_——gd"w (6.68)

A, should behave like a four vector under all coordinate
transformations which do not involve the time coordinate.
This results in A,° being a scalar and 4, being a three vector
under arbitrary spatial transformations. In order to find a
V 2 satisfying these requirements Mgller investigated the
transformation properties of 7,°4/—g under arbitrary in-
finitesimal transformations which do not involve the time
coordinate. This indicates in what way 1%4/—g fails to
satisfy the requirements of a scalar density under spatial
coordinate transformations. Combinations of g,, and their
first derivatives, which for (6.46) lead to V%, which fall off
faster than

1

- for r —» o0
r

must be considered. In this manner Mgller was led to pro-
pose the function

Ve=Um—6,U2 + 8,°U2 (6.64)

Using (6.54), expressions for the functions V,2* and y,%
may be calculated.

vV —get
x“’\",’ = _875%— (gpﬁ.a - gﬂa.ﬁ)gmg”ﬂ (6'65)
In order to calculate A, we will need
L4 _g 04
20 = —g—= (8op.a — Boa,#) 88" (6.66)

We study now the behavior of (6.66) and A,* under the
group of coordinate transformations which do not involve
anywhere the time coordinate, but are otherwise arbi-
trary. g,, transforms like a four vector; recalling that for any
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vector B,, B,., — B,,, = B,,, — B, , then tells us that the
bracket i m (6 66) transforms hke a tensor. It follows then
from (8.78) that % , = 4,4/ —g transforms like a scalar
density. y,*# transforms like an antisymmetric tensor density,
so it follows that A, transforms like a three vector. Thus we
see that Mgller’s tensor, (6.62) and (6.65), does have the
transformation properties which were sought.

Now we shall consider briefly the association of conserv-
ed quantities with infinitesimal coordinate transformations,
following Peter G. Bergmann (9). Consider an infinitesimal
coordinate transformation

z'* = gp + Ozp (6.67)
The quantity M» defined by
Mer = (822U ,2),, (6.68)

satisfies M7 , = 0. Since dz= is arbitrary, it is clear that
(6.68) represents an infinite number of such laws. If we
choose dz= to be a set of constants, the Einstein formulation
is obtained. If we choose 8= = gofk;y+/—g, where k; is a
set of constants, the Landau-Lifshitz expressions result.
Angular-momentum conservation laws may be obtained by
selecting

= (g*Pzr —g72%)] 3,V —8 (6.69)
with [, again a set of constants. It is evident that any vee-
tor field may be employed in (6.68).

Komar (10) has shown how to construct a set of conser-
vation laws in tensor form. Starting with Mgller’s result he
writes

Dry/—g = (82U 08 + 622V ,£9) 4

[ncamﬁgp“g“(gﬁt, —'gﬁa.c)'\/ g]
Addition of the curl field

(6.70)

ct
Wey —g={8,,—(;~gf" 8*/[(827),. 8op—(927),5 851V —g}.a (6.71)
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to (6.70) then gives

L]
Q‘ = 8;———6 (6m';ﬂ —_— 6wﬂ;‘);ﬂ (6.72)

(6.72) is conserved from (8.75), and it is in tensor form.
A study of (6.70) and (6.71) shows that for éz* = §,¢, (6.72)
gives the result of Mgiler.

6.3 Further Remarks on the Conservation Laws

It is clear from the foregoing that in situations where
the matter-energy is sufficiently localized that a “Lorentz”
metric (6.46) may be employed at large distances, the total
energy is well defined and calculable using several of the
expressions given here. The pseudotensor proposed by
Mgller does not require the metric (6.46), and the zero-zero
component is the same in all coordinate systems which have
the same time coordinates. The Landau-Lifshitz result is a
symmetric quantity.

Many other stress energy pseudotensors may be con-
structed, and Dirac has noted the greater possible utility of
particular ones in solving the equations of motion. Other
expressions suggested by radiation problems are given later in
this tract. In the chapter on radiation we shall note some
other difficulties which lead to the conclusion that the prob-
lem of energy in general relativity has not been solved in a
completely satisfactory way.

Peter G. Bergmann makes a distinction between con-
servation laws which are identities and those which are valid
if the field equations are satisfied. The identities such as the
Bianchi identities, or U, 2 ,, = 0 are called “strong” laws.
Relations which are valid only if the field equations are satis-
fied are called “weak” laws.

It is interesting that a fourth-rank tensor, a completely
symmetric quantity, has been discovered by Bel (11). To
construct this we need first the concept of a dual tensor. If a
given tensor is 4#* its dual may be constructed by writing

*A,, = ep,,A%% A/ —g[2 (6.78)



86 GENERAL RELATIVITY AND GRAVITATIONAL WAVES

here ¢,4,, is again the Levi Civita tensor density. The dual
of the Riemann tensor is

*Raﬁya = Eapuy R’w'ﬁ '\/—g/2 (6'74‘)
Bel’s tensor is

Topys = Ropws Rp#y + *Rapys® Rotv, (6.75)

and satisfies the relations
Tabrd , =0 (6.76)
Tab,; =0 (6.77)

provided R,, satisfies the ficld equations. These properties
were established by I. Robinson in as yet unpublished work.

In addition T,;,; is symmetric in all indices. The “con-
servation” law (6.76) does not lend itself to construction of
the three-dimensional integrals used earlier. Bel’s tensor is
being studied in order to utilize its properties in the problems
of gravitational radiation.
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CHAPTER 7

Gravitational Waves

7.1 Weak-Field Solutions

One of the central issues in the general theory of relativ-
ity has always been the question of gravitational radiation.
Gravitational waves have thus far not been observed. Until
recently (18) no solutions of the exact gravitational field
equations were known which represent spherical gravitation-
al waves. For these reasons a great deal of theoretical work
has appeared on this subject during the past four decades.
We shall see later that some experimental work now appears
feasible. Some theoretical issues have been resolved in recent
years, and it has been possible for a number of physicists to
conclude that general relativity really does predict the exist-
ence of gravitational waves.

In 1916 Einstein (1) studied the weak-field solutions of
the field equations

8aG
R,, — 8., R =-E4—T,,, (7.1)

obtained by assuming

Buv =10, + h, (7.2)

6,y is the Lorentz metric and h,, is a first-order quantity.
h, and h are defined by

hA=dah,, (7.8)
h = h,a = 6\h,, (7.4)

The Ricei tensor is given in terms of the Christoffel
87
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symbols as
Ry =1T%,,4— Iy, + I?, I, — I'*)y I, (7.5)

The use of (7.2), (7.3), and (7.4) cnables us to write R, to
first order as

R/‘v = "‘%aﬁhﬁw. oA — %(h.;w - h/tﬂ. 7. hﬁvmﬂ) (7.8)
The last three terms of (7.6) can be arranged in the form
h, pv_h;cﬂ. vﬂ_hﬂv. p= (%apﬂh .'_hpﬂ), ﬂv+ (éavﬁh—hvﬁ).ﬂ[l (7‘7)

(7.7) can be made to vanish by choosing the coordinate
conditions such that

(hpﬂ - %6;/’).13 =0 (7.8)
R, will now consist only of the first term of (7.6), and
the field equations may be written as

8nG
—%6"&’2’",. or + gpv[*GVAh. m\] = —LA_ Tﬂv (7‘9)

Care must be exercised in the use of (7.9), since all compo-
nents on the right will not ordinarily be of the same order.
We now define

o =hy — 38, h (7.10)
The coordinate conditions (7.8) are written as
Pty = 0 (7‘11)
Raising the index » in (7.9) and employing (7.10) gives
167G '
D¢/‘v == — pm T,‘V (7.12)

The solutions of (7.12) are well known from electrodynamics,
as

4G (T, retarde &>z’
Pt =" || P|3 -y

(7.18)

Here |r —r’| is the distance from source point to field
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point. As we noted earlier, the relations (7.12) can be ob-
tained directly from Newton’s law of gravitation, in which
V? is replaced by []; the conservation law T, ,~ 0 then
yields (7.11).

Some years ago Pauli and Fierz (8) considered the
question, what relativistic wave equations would be appro-
priate for particles of zero rest mass and spin two. Now in a
relativistic theory for spin S, 2(25 + 1) components are
needed, so a second-rank tensor is required. They were led to
propose the equations ~

Oy, = (7.14)
with supplementary conditions
Ve, =0 (7.15)

Since these equations are the same as (7.11) and (7.12)
for vacuum it is expected that gravitons will have spin two.
Since the only available direction is the direction of motion, it
follows that the spin angular momentum must be oriented
in the direction of motion. Since the gravitational forces
have infinite range, it follows that the rest mass of the
gravitons must be zero.!

We consider now the conditions under which the ex-
pression (7.11) may be satisfied. Suppose we carry out an
infinitesimal coordinate transformation

2'* = g2 4 fa(x) (7.16)
To a first approximation this can be written
s = g'* — fa(a’) (7.17)
The transformed metric tensor is then given by
8 = Eur — 8% 4 — £pu¥*,, (7.18)
Similarly
Wy = hyy — 6,8, — Opué2, (7.19)

3 If the forces are transmitted by particles with rest mass m, a Yukawa
potential @ ~ (e—mer/Ar) g appropriate. This has infinite range only if
m — 0.
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@5 = 8[p,, — s 88, - 8pub8, + 8,087,,] (7.20)
P e =Pt a— 0776, oo (7.21)

If the coordinate conditions (7.11) are not satisfied, we
have

9400 # 0 (7.22)

(7.21) states that an infinitesimal coordinate transfor-
mation may be carried out to make

P uta=0 (7.28)
provided
Oé, = @44 (7.24)

On the other hand, if ¢, , = 0, then we may carry out
arbitrary coordinate transformations which maintain this
condition, provided that the &, functions satisfy the wave
equation, according to (7.24).

We return to consideration of (7.12). In free space these
equations represent waves with @,* given by

Oes =0 (7.25)

It is of interest to inquire how many independent components
of h,, or ¢, are needed to describe a plane-wave solution of
(7.25). We will find it convenient to discuss first the case of
a locally plane disturbance of arbitrary strength, then to
apply the result to the weak-field case.

72 Riemann Tensor for a Wave of Arbitrary Strength
Which Is Locally Plane

Suppose we have a gravitational wave which has van-
ishing space derivatives in directions normal to the direction
of propagation. Such a wave is therefore locally plane. In
this case we shall show that at any given point all compo-
nents of the Riemann tensor may be written in terms of the
derivatives of the three components of g,,, which describe
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intervals in the plane transverse to the direction of propaga-
tion. Introduce a geodesic coordinate system so that the
Christoffel symbols vanish at the given space-time point and
the metric has the Lorentz values there; the Riemann
tensor becomes

Raﬁy& = ’}(gaa. By + gﬁy,m? - gay. A3 — gﬂd’.ay) (7'26)

Let the 2! direction be the direction of propagation; then
the partial derivatives of g av and g,, . with respect to 22 and
#* vanish. A study of (7.26) indicates that we may write the
components of Rz, in the three groups

Rygeo = — 382200 Rygyy = 382210 Riga = — 38211
Ropao = — 480300 Rip30 = 3310 Ryg3 = —3an1

Ry = —383300 Rygp = Y810 Rygys = — 383311
Ryg30 = 383310

(7.27)

Rmzz =0 Rzazz =0
R1323 =0 Rzazo =0 (7-28)
R1023 =0 Rzaao =0

Rygg = — $813,00 1 $830.10 Rygeo = "%glz.oo‘f"%gzo,m
1310 = — 38301+ 381310 Rigp = —38a011+- 381200 (7.29)
Rigro = —3811.00 + 810,10 — 380011

=

In vacuum R,, = 0; at the given point the use of the
Lorentz metric in conjunction with (7.27), (7.28), and (7.29)
gives

Ry = Rypy = R
Ry = Rypp =10 Ry = Ry =0

Ry = me"Rlsw—Rlem=0 Ry = Rygnp + Rz = 0 (7.80)
Ryp = Rogzo—Rygyp = 0 Roa = Rygy9 — Ry =

Ry = Ryoso—Ryzi3 = 0 Ryy = Raoso‘i‘Rzozo‘i'Rlolo =0

13 = Rxoso =0

[
[ <]
!
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The above equations for the vanishing of Ry, Ry, Rys,
and Ry, imply the vanishing of the first four values of R,z
given in (7.29). The equations for the vanishing of Ry, Ry,
R, and Ry, can be combined to solve for the last expression,
Ryo10 in (7.29), which turns out to be zero. It follows there-
fore that the only nonvanishing components of the Riemann
tensor are the ten components (7.27), and these are given
entirely in terms of gop, g5 8nd g5 The expressions (7.30)
for Ry, R, Rss and Ry, also lead to

823,00 + 83z = 0 (7.81)

(7.81) states that the required second derivatives of the
two components gy, and gg3 are not independent. In the
weak-field approximation, (7.26) is valid everywhere. At all
points the Riemann tensor can therefore be written in terms
of hyg, hgg, and hyy, subject to (7.81). It follows then that
coordinate transformations may be carried out to “transform
away” all components of k,, except the “transverse” ones,
everywhere. This can be done in a relatively straightfor-
ward way, using infinitesimal coordinate transformations
satisfying (7.24). In the next chapter we shall show that
relative displacements of closely spaced free particles in the
path of the wave occur only in directions transverse to the
direction of propagation of the wave.

7.3 Approximate Evaluation of Source Volume In-
tegrals

We return to a consideration of the weak-field solution
integral expressions (7.18). These components may all be
written in terms of T, in a certain level of approximation.
The stress energy tensor satisfies, to a first approximation,
the conservation laws

Tor,e — To00 =0 (7.82)
Tir — Tyo0=0 (7.88)
(7.88) can be multiplied by ' and integrated (by parts) over
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all space, neglecting surface terms which vanish at infinity.
This is written in the symmetrized form

[Tz = —y [ [(Too! + Tea)dz]| | (1.84)

(7.82) can be multiplied by z'z’, integrated over all space,
again neglecting surface terms which vanish at infinity; the
result is

[f Tpoo'dz| =— [(Tow'+ Tpat)dz  (7.85)
Expressions (7.84) and (7.85) enable us to write
[ Tydte= i Toa'a!da] (7.36)

The use of (7.86) facilitates certain caleulations in which
the distribution of mass and energy is more readily dealt
with than the distribution of stress. The relation (7.86) has
neglected retardation effects and is not valid where a source
large compared to a wavelength is involved.

For a source in a region which is small compared to a
wavelength, (7.86) may be used to calculate all the space
index components of ¢ 4" in the lowest nonvanishing approx-
imation. The use of the coordinate conditions then allows
determination of the remaining components. In some cases
this is a simpler procedure than direct use of (7.18).

For a particle it is necessary to evaluate the integrals in
the limit as the volume tends to zero, taking account of the
fact that retardation effects imply that different volume
elements are taken at different times. It is more direct to
start with the result for a particle at rest, then to generalize
it for a moving particle, as in electrodynamics. A particle of
mass m which is at rest has

4Gm

Poo(T) = Fr—r]

In the linear approximation we may infer that the generali-



94 GENERAL RELATIVITY AND GRAVITATIONAL WAVES

zation for a moving particle must be

r.t)= M 7.18
‘P;w( ’ )—' czU',(r'“ __ 7,u) ( . a)

where now U’ is the four velocity of the particle, m is the
rest mass, and

e — e = (r'* —rf), c(t' —1); t=t—|r—r'|fe

(7.18a) may be written in the form

4Gmv';v',
Pulr, t) = P
djr — r'|\/1 —v'%fc? (1 _ _s___T_)
clr — r’'|
Poill> L) = élr — l"l‘\/l —v't[? (1 . M) (7.18b)
cjr—r'|
4Gm
q)OO(rs t) = ——
elr—r'|

Here v, is the ordinary velocity of the particle.

7.4 Weak-Field Approximations for Energy Flux and
Energy Density

The covariant divergence of the stress energy tensor
vanishes, in consequence of the field equations and the
Bianchi identities. This may be expressed using (3.79), in the
form

1
Tpv;v = V_Té (T[lv \/_'g).v - %guﬂ.[lTaﬂ =0 (7'87)

The stress energy pseudotensor density ¢,*4/—g is re-
lated to the stress energy tensor density by

(T;tv ‘\/—g).v + (t#v \/—g).v =0 (7'88)
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t,* may be calculated using the results of Chapter 6, but
for weak fields it is more direct to compare (7.87) and (7.88)
and write

" V=8 = —18upu T /—g ~ —}hop,, T8 (7.89)
The form of (7.89) suggests that we multiply (7.12) by hes P
to obtain
16aG

ot

haﬂ, “ D Papg = — haﬂ. B Taﬂ (7'40)

Utilizing (7.10) and (7.89) then leads to

32aG
pry

het [hogy*—30,5h 0] =

(t.uv '\/_g).v (7'41)
We may write
hat [hog, v *—§8.5h v

LTRSS LY g (7.42)
= [haﬂ',,h,ﬂ"—iép*'k“,'ph“ﬁ-P—ﬁh,,‘h'”-i— th hed, ],
Comparing (7.42) and (7.41) gives

L,/ —g =%; [2haﬁ,,‘ha,-"—h,,,k-"+6”"(§h,ph-ﬂ—h¢ﬂ,p het.p)]
(7.48)
Contraction of (7.10) results in
Pa* = —h,® (7.44)
Using (7.44) and 7.10 gives us the alternate form

cd
tﬂv\/-g =M;[2¢aﬂ.y Pap’ v_‘P.pq"v+6pv(éq’.p¢'p‘q’aﬁ.p¢aﬂ'p)]
(7.45)

7.5 Linear Mass Quadrupole Oscillator

Consider now a linear mass quadrupole oscillator at the
origin of a rectangular system of coordinates. The motion of
the masses is along the 2 axis. Let I be the peak value of the
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time-dependent part of the moment of inertia. We can use
(7.86) to write the solutions of (7.12) in the form

2w3GI )
Qa3 = —o COS (2 — 7] (7.46)

Oscillations in the z® direction can only give rise to
the components @3, @30 and gg. The coordinate conditions
¢,”,» = 0 can be employed to calculate gy and g, if we know
that the coordinate conditions have been met. If the energy
density in the vicinity of the sources is not so great that the
space is appreciable curved, the Lorentz metric conservation
law T .7, = 0 will be valid, to a good approximation. If the
sources are in a small region so that retardation effects are
unimportant, it then follows from (7.12) that the coordinate
conditions are in fact being met. We may then write

@3 + Plo =0 (7.47)
®o’3 + Poto =0 (7.48)

Let the observer be situated along a radial line making
an angle 0 with the 2® axis. (7.46), (7.48) and (7.47) give

Yoo = 05 0 @g3; Pos = —¢08 0 pyq (7.49)

We could have caleulated ¢, and g, directly from (7.12)
or (7.18a); this would have required more careful considera-
tion of retardation effects, and the energy in parts of the
oscillator which furnish restoring forces.

The radiated power can be calculated in the following
way. We need

co —

-2 04/ —

- JT(, VvV _gdz (7.50)
By use of the conservation laws, (7.50) may be written

2 [ — |
— %Jv—g Todox — cJV—g T,'dS,

o L (7.51)
= %‘J’v —g .0 d% + cJ\/—g 4,'dS,
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The second and fourth integrals are over a closed (two-
dimensional) surface. The source is assumed to be in the
vicinity of the origin, and if our bounding surface is far from
the souree, the second integral in (7.51) will vanish because
Ty is zero outside the source. The third integral will be
periodic in time while the last integral will give the steady
decrease of energy of the source. Making use of (7.46), (7.45),
and (7.49) leads (15, 17) to the formula for the time-averaged
radiated power P:

(7.52)

7.6 Radiation from a Spinning Rod

Historically the first gravitational radiation problem to
be considered was the radiation from a spinning rod (1, 2).
This will now be calculated. Assume the rod has a mass per
unit length o and spins in the 2y plane with the angular
velocity w. At t = 0 the rod lies along the 2 axis. Then again
using (7.836) and (7.18), we obtain

2G 2° 0 4G, w? 2w
=5 o ar® cos? (fc—dr=——c—4"-;_£)— cos —c—(x"—r) (7.58)
retarded
2G o2 a0 4G w? 2
P22 =5~ 7 5s ort sinzgg—dr= c‘,’,:w cos-c—w(x"—r) (7.54)
retarded
2G 9 wa® wz® 4GI 2w
=22 " | grecin( 2 sl e — 52 Sl (20 —
P2 =5 3.1:“’,[‘" sm( p )cos( ; ) r oy wsin— (2®—7)

retarded

(7.55)

In (7.58), (7.54), and (7.55) I, is the moment of inertia
of the rod. The coordinate conditions (7.11) are again em-
ployed to calculate gy, @y, and gy, and the radiated power is
calculated using (7.45); the result is
8261, w®

5¢8

(7.56)
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7.7 Further Remarks on the ‘Weak-Field Solutions

It is of interest to note that (7.56) and (7.52) can be
obtained if we assume only that gravitational effects are
propagated with the speed of light and follow the kind of
heuristic argument! which has been used to calculate - the
radiation from an accelerated charge.

Expression (7.86) states that the lowest-order multipole
radiation is quadrupole radiation. This follows also from the
fact that for an isolated oscillating system the dipole moment
vanishes in consequence of conservation of linear momentum.
For example, suppose we have a small mass which is coupled
to a large mass by a spring (Fig. 7.1) and the system is

Figure 7.1

oscillating. If z,, and zy are the displacements of the small
mass and the large mass, respectively, we have from momen-
tum conservation

ma,, + Miy =0 (7.57)
and
mi, + Miy =0 (7.58)

The left side of (7.58) would be expected to give the
dipole contribution to the (accelerated mass) radiation, but
it vanishes in consequence of (7.57).

Bonnor (17) has calculated the loss of mass energy of a
quadrupole oscillator in the second approximation and found
it equal to the radiated energy given by (7.52) in the first
approximation.

t See, for exumple, Richtmyer and Kennard, Introduction to Modern
Physics, McGraw-Hill, New York, Fourth Edition, 1947, p. 62.
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7.8 Exact Cylindrical Wave Solutions

Einstein and Rosen (4, 5) obtained some exact cylin-
drical wave solutions of the equations of general relativity.
Their metric is

—dst = ArW(dp? — *di?) + ple¥dg? + M d?  (7.59)

The functions y and v are dependent upon p and ¢ alone. The
metric defined by (7.59) can be employed in the free-space
equations

R, =0 (7.60)

to give the following (exact) equations which have to be satis-
fied by y and y:

Y.p.p + %'/’.p - 0“2?’.:.: =0 (7'61)
7.0 = PL(w.)* + (1/c*)(9,.)?] (7.62)
Ve = 2py,,p,4c (7.68)

(7.61) is a linear equation, the cylindrical coordinate
wave equation. A solution of (7.61) representing outward
traveling waves is

v = A[Jo(wp/c) cos wt + No(wpfc) sin wt]  (7.64)
Making use of (7.62) and (7.63) then gives

y = (4%wp/2e) {Jolwple)] o' (wple) + Nolwplc)Ny (wple)
+ (wpfe) [(Jolwple)® + (Jo' (wple))® + (No(wpfc))®
+ (Ny'(wpfe))’] (7.65)
+ [Jolwple) Jo' (wple) — No(wple) Ny (wpfc)] cos 2t
+ [Jolwple) Ny (wpfe) + No(wple) I (wpfe)] sin 2wt}
— (2/n)A%wt
The prime means differentiation with respect to (wp/c). The
last term of (7.65) increases linearly with time and at first it

was thought that this represented the cumulative effect on the
metric of continuous radiation of energy. Rosen argued (7)
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against this interpretation on the grounds that if the energy
is being radiated by a cylindrical system near the origin,
then the loss of energy would make it impossible for the
function ¢, given by (7.64), to remain periodic in time. The
occurrence of the function N, makes (7.65) singular on the
axis. Marder remarks that it is not possible to join the free-
space solution (7.65) to the solution for a region near the
origin containing mass in a physically acceptable way since
the sign of the density will ultimately change. He considers
the difficulties associated with (7.65) as due to the fact that
the field has been turned on for an infinitely long time.

A more interesting case is that of a pulse of radiation.
The linearity of (7.61) enables this to be treated, employing
the Fourier integral. The following discussion is a summary
of a paper by Weber and Wheeler (16). For the Fourier
transform of y we choose

p(w) = 2Be™"9 Jo(wpfc)e (7.68)

This has the virtue that the integrations required to con-
struct () and y(¢) can readily be carried out.

p= 2Bf:° e~@wld) [ (wp/c) cos wt dwfc

(7.87)
= B[([a — ict]® + p*)~¥ +([a + ict]® + p?)~3]
Integration of (7.62) and (7.68) then gives

y = 4B (o= pl(a—ictf 1 = platiet) T

—a~2(c* 24 a®— p?) [ 4 4 2c212(a? — p?) + (a2 p?)?] 1}

A study of (7.67) shows that for negative values of ¢, the
“pulse” is imploding, onto the axis. It explodes back out
again for positive values of ¢. It is a “‘time symmetric” solution
of Einstein’s field equations.

In order to calculate the ‘“‘energy density’’ we employ
the expression (6.82):

. 2gW\ a("gG '\/—g)] (7.69)

\/_g tl‘v = l: ag;u\'p
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Direct calculation using (7.59) and (6.89) leads to
HLev — Lo/ —8)
G
0tV —8 1 op 082z 9833 ( ct
_‘W— —ig goo( +gaa aw‘) m)‘\/“g

With these (7.69) becomes, for 7.°4/—g,

= 0;
(7.70)

P 2 9
70/ —g = SnGB( 1+2pa—"’—2pa"’)_o (7.71)

This calculation, (7.71), is valid for any metric of the form
(7.59) whether matter is present or not. The everywhere-
vanishing energy density, (7.17), is confirmed by use of the
Landau-Lifshitz forms (8) (6.58) and (6.60) for t,*. The use
of Mgller’s tensor, (6.62)and (6 65), gives a somewhat similar
result. Direct calculation gives for the metric (7.59)

asv—s =gz {ea - () + (@ ], o

While this expression does not vanish identically, the inte-
grated value for the energy per unit length,

dy oy I\ |
Jaov—sarar—glog—[G) + G 11
does vanish for (7.67) and (7.68). (7.72) is positive at some
places and negative at others for the pulse-wave solution.
We note that the pulse, (7.67) and (7.68), representsatt = 0
a space which is asymptotically flat at large p but which is
not “Euclidean,” since according to (7.68), y - B2a~? at
large distances. The metric is therefore ““conical” at large p,
for t = 0.

Rosen has recently (20) calculated 7,° and z,! for the
cylindrical solutions in a “cartesian” coordinate system and
finds them to be finite and reasonable. His result is not in
conflict with that given by Mgller’s value for the energy

(7.78)
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density since the passage from the cylindrical to Rosen’s
cartesian coordinate system presumably requires a trans-
formation involving the time. The Mgller value is only in-
variant under spatial coordinate transformations. In the cy-
lindrical coordinate system there is no guarantee that the
“energy” will always be positive definite. If negative values
are allowed, then the vanishing of 7,° may mean only that
absorption of energy from the wave makes the wave energy
negative. A lower bound for the energy would guarantee
stability.

7.9 Interaction of a Particle with Cylindrical Gravi-
tational Waves

Calculation of the components of the Riemann tensor for
the metric (7.59) shows that the components do not all vanish
for the cylindrical waves, so the waves must be real. In this
section we show that the cylindrical waves do carry energy,
by analyzing the motion of a particle initially at rest which
interacts with the cylindrical pulse. We write the geodesic
equation for p, and integrate it in successive orders, regarding
v as a first-order quantity and y as a second-order one. Let

p=rpw+ Pyt Py + - (7.74)
From the metric (7.59),

dt dp\?
CFS-=1—|—:p—y+1p2/2-}-...(£)/2+... (7.75)
These relations lead to the first-order equation
dpyy — a2 3_'.”
di? ap (7.76)

= — Be?p(g { [(a—ict)*+piy2]"} + [(a-+ict)2 4 pny?]” é}

and the second-order equation

d®py  dpyy (3'»" (d}' (32?’
c2dit ~ ctdt at)pm_ dp) pm+P(1) apz) R (7'77)
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In obtaining these equations we have made use of

o= (20),.,+ o (55)
ap ap Pio P 3P2 Py

Integration of (7.76) gives, for the boundary condition
dpjdt =0 at t = — oo,

dpy) icB [ a — ict a + ict
AT T po Ll(a—ict + po?t T [atict)® + P(o)ap]
(7.78)
The change in p from t = — o0 to £ = 0 may be written

0 Y /& 2B
o= [ (B)ara=22 102 +at—a]>2B (19)
—0J-o \Op Pio

for large p. The distance from the axis, at t = 0, for large p,
is

Po+dp
[eutdo =" er-vdpnpy+2B-2B1n 2pfa)  (7.80)
0

The results (7.78), (7.79), and (7.80) indicate that to first
order, the particle, initially at rest, starts to move when the
wave arrives; the change in the coordinate p at the instant of
maximum implosion of the wave is 4 2B, but at that instant
the change in distance is 2B — 2B In (2py/a). As the wave
explodes back out again these steps are reversibly retraced
in this approximation so that at { = 4 co the particle ends up
where it started and at rest. However, one could imagine the
particle to be coupled to a second, distant particle by a
mechanism giving irreversibility.! The relative motion
would then lead to absorption of energy from the wave even
in the first approximation.

To consider the second approximation we need to inte-
grate (7.77). Carrying out the indicated operations leads to

! In the next chapter we show that energy may always be absorbed from

a system for which the Fourier transform of R,,,, does not vanish, in a local
Lorentz frume propagated along a geodesic.
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twenty-two integrals. We calculate only the velocity at
t - + 0. Then all but three integrals can readily be shown
to vanish, by contour integral arguments, and the result is

()
dat /i
4 B2 o cidt
_ 2P e 22 i i
P (@ +pf) —o{[(a+ict)>+p)° ) [(a—ict)2+ p(g 2] }E
12a2 B2 J' b cliedt
Py J-cof{l(a+ict)?+pg?] [(a—ict)*+p®]}E

00 A2 — 2 2
+6P(0)sz clla — i)’ + po]idt (7.81)

- [(a@ 4 ict)® + pig?]t

These integrals may be written in terms of

/2 do P’
N S i

as

(&)
cdt] ¢ rioo

= B%F

[ —4 n Spi Spy (502+P(0)2)]
P (@ + po ) (a2 +pgt) (a®+pn?)}
n Bzifj[P4(a’—P(o»2) 12a® __8(a*—p(0)®)pioy
dz Lpioy (@ +pm?)t  por (@2 4pip®)t (@24 pig?)t
_ 9pw(5a'+6a%¢)°+pey*)  12p0)(5a%+p(0)2)(@2—P%a)
(a®+pip?)? (a®+p?)E
2 2 2\3( a2 o 2)2
— 8p(q(@? +P(o)2)‘%:| + B? % [P(m(a (-:zT)P()m(;;;g Pw)
8p(or (5a+-6a%pi)® 4 pioy! ) (@ —pi?)
(@®+py®)t
8p(5a*+p()?)(a%— pigy?)? + Pto)(az—P(o)z)]
(a®+pn?)R (a*+pg®)t

(7.88)
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This lengthy expression reduces, for the limits p.g small and
P large t—oo to:

dp(y 2nB2cp) Po
B T e (_a— < 1) (7.84)
dp(a 2B2%c ( a

a 7 & e S 1) (7.85)

(7.84) and (7.85) indicate that the particle is left with a
residual velocity?* relative to the axis after the wave has left
and the interior space is again flat. The axis has a real signif-
icance in this problem because a test particle could be placed
there; according to (7.79) it would not move at any time
thereafter. Observing a particle at radial coordinate p there-
fore amounts to observing the relative motion of a pair of
particles.

Conclusions similar to these have been reached inde-
pendently by L. Marder (18). He extends the pulse solution
to the interior of a mass eylinder which is the radiator. After
emission of the pulse he finds that the mass of the cylinder
has decreased.

7.10 Exact Plane-Wave Solutions®!

Plane gravitational waves have been considered by a
number of authors. Taub (6) and McVittie (11) showed that

! This velocity produces infinite displacement, over an infinite time.
This does not affect the validity of our series expansion, which is in powers
of Blu.

1! These waves are not plane, since for propagation in the x direction
the departures from flatness depend on y and z. Bondi ealls them plane
beeause they have as much symmetry as plane clectromagnetic waves.
These metries admit a group of motions with five parameters.

An illuminating discussion of these solutions has been given by Bonnor
(24) and is summarized below. Consider the metric

—ds? = Ad5*+ Bdy*+ Cdz® —2bdydz — Ddn?
Here A, B, C, b, and D are functions of & —z alone.

(footnote cont’d)
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there were no unpolarized plane waves. Robinson and, later,
Bondi were able to show (18, 14) that the field equations
permit “plane” wave zones of finite extent between two flat
space-time regions. They start with a metric originally given
by Rosen:

ds® = e*?(dr® — dE®) — u{e®Pdn® + e24d;%}  (7.86)
with u =7 —¢. B and 2 are functions of » alone: 22 , =

u(f,,)% This metric satisfies the vacuum field equations
R,, = 0. It represents, in general, a curved space. If the

Choose coordinates for which 4 = D; then let £ » 17—z, 5§ —» t+2,
obtaining
—ds? = —drdr+ Bdy*+ Cdz*—2bdydz
Here B, C, and b are functions of x alone.
For this metric the vacuum field equations are

p 21 (ax)a (ab)' BaC
n=gn T\ T\& T mEs

and y = BC—b% The other vacuum field equations are satisfied without
further restriction on B, C, and b. We have then three unknown functions
with only one relation which they satisfy. Two of the three may be arbitrarily
chosen. Take b = 0 and let B = p?, C = ¢*; then the ficld equation for
R,, becomes

1 3% 1 9%
p ot ¢ s
Take as a particular solution of this equation p = sin nz, ¢ = sinh nx, where

n is a rcal constant. This solution appears singular on the hypersurfaces:
® = mnfn, * = + o, wherc m is an integer.

These singularities may be removed by carrying out the following trans-
formation

a° = T-+ny? sin nx cos nz+4-nz? sinh nx cosh na
=2
x? = ysin nx
x* = zsinh nx
and when this is carricd out the metric becomes
—ds* = —d®dxt +d2t® + ded® —ntdeV (x2® ~ 237

The singularities at £ = mna/n have disappeared. The singularities at infinity
may also be removed, by choosing a new origin.
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relation '
U uu + 28 = 3B, (7.87)
is satisfied, all components of R,s,s vanish and the space is
flat. By carrying out the coordinate transformation
u = 1—§& = ct—a; e (1+£&) = ctt+ax—u(y2+22),
nueﬂ =y, ule 8 =z
for u > 0, the metric (7.86) becomes
ds? = c%dt* — da® — dy® — dz*
+ 28, [(ydy —2dz) (cdt—dz) — (y*—22) (cdt—dz)*(ct —z) ]
— (B, )% (c2t2—a?)(cdt—dx)? (7.88)
For 8, = 0 except for a finite positive range of u, there
is a curved region of space between two flat regions. The
amplitude of the waves is determined by g, which is an
arbitrary function of w.
A second wave type is described by the metric
ds? = e®?(dv®—dE?) — (v— &) [(cosh 28)(dn2+di2)
+ sinh 26 cos 20(dy2—d(?)—2 sinh 2B sin 20dnde] (89
here again 2, 8, and 0 depend on u = v — &, with
20, = (v — £)[B..2 + 0,2sink? (26)]  (7.90)
Bondi notes that at the boundaries the conditions of
Lichnerowicz on the continuity of g,, and its first derivatives

can be met. (These conditions are given later in this
chapter.)

7.11 Initial-Value Formulation of the Radiation*
Problem

A different approach to gravitational waves is to note
that the field equations may be regarded as setting up require-
ments on the initial values** of the fields,* then predicting
what the future evolution will be. A study of the acceptable

* Such investigations were first carried out by Lichnerowicz (10} and
Foures-Bruhat (27).

** This section is a partial summary of the thesis of D. Brill, Princeton
University, 1959,
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initial values then gives information concerning possible
wave solutions (22, 28).

The corresponding situation for the Maxwell equations
is well known. For no charges or currents the equations

V-E=0; V-H=0 (7.91)

constitute conditions on E and H at say ¢t = 0. The remain-
ing equations
1 oH 1 0F
=—— =—— .92
VX E P Tel VX H T (7.92)
then give the time evolution, preserving (7.91) at all stages.
For the general relativity equations we may choose the
spacelike surface 2° = 0. The equations contain second-time
derivatives, so the initial values will be the g,, and their
first-time derivatives. By use of the contracted Bianchi
identities, we write for the Einstein tensor

(G2 = ~(Gu)s (7.98)
(GM),o = —(GH),q (7.94)

No higher than second-time derivatives occur on the
right side of (7.93) and (7.94), so it follows that G#° and G ,°
cannot contain higher than first-time derivatives of the g,,.
The stress energy tensor will not contain derivatives of g,,.
It follows, therefore, that the four equations

RA — }gMR = §f§ T (7.95)

or

872G
Ry* — 48,#R = —’E—To (7.96)

may be taken as mltlal value equations, and that the six
equations

8nG
RY — }g"R = _n_ T (7.97)
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or
8nG

R, — $guR = a T, (7.98)

are the equations of time evolution.

We can now show that if the set (7.95) or (7.96) is satis-
fied at the initial time, then any solution generated by inte-
gration of (7.97) or (7.98) will continue to satisfy the initial
value equations (7.95) or (7.96). Let

8nG
X = Rov — JgwR — = Th» (7.99)

Since the covariant divergence of T#¥ vanishes, we may
write, from (7.94),
X104 = —X#, (7.100)

For x4 =k, (7.100) becomes
XM,0 = X80 - Dhop X0 + [0, X

= (X%, 4 Do xe g pr xey (1O)
and for 4 = 0 (7.100) gives
X0, = X0 I0,, X0 4 o, X0
0 yo o+ L0 X0 4 Iy (7.102)

= —[X%, 4 I'%; X*  I'',; X®)
Consider first expression (7.101). At t=0, X#* vanishes
everywhere so the space derivatives X**, also vanish. There-
fore we may conclude that X* vanishes initially. Now
consider (7.102); since X and X°' vanish everywhere at
t =0, X% also vanishes; therefore X% ; vanishes initially.
Now differentiate (7.101) partially with respect to time. It
can then be shown that initially X*® . vanishes. If we differ-
entiate (7.102) partially with respect to time, then the vanish-
ing of X%, everywhere initially guarantees the vanishing
of X%,,, which then guarantees the vanishing of X ,, at
the initial time. By continuing this process it then becomes
clear that X#° and all its time derivatives vanish initially.
The Taylor expansion of X#® therefore guarantees that X#°
vanishes for all time.



110 GENERAL RELATIVITY AND GRAVITATIONAL WAVES

7.12 Time-Symmetric Solution with Positive Energy

A tensor T is called time-symmetric if

Tofl@® ) = (1) T 00 (—af &) (7.108)
where # is the number of times that zero occurs amongst
afyd . .. ‘

We shall see that introduction of this element of sym-
metry substantially simplifies the problem of solving the set
(7.95) and (7.96). A time-symmetric solution should give
the same value for ds® for a pair of events with the same coor-
dinate differentials, at 42 and —a?®, so g,, = 0; also all
tensors in the problem must have the same kind of symmetry.
It follows, therefore, that the equations R% — (})g%R =
8aGT%[ct are automatically satisfied since R, g%, and 79!
vanish. The initial-value relations reduce to the one equation

RP—}R = (%) T (7.104)

(7.104) may be written in the forms

R—3(Re® + R/) = IRy — (Ry® 4+ Ry*)]

. (8aG (7.105)

= —}Ru* = (‘F) T

In a time-orthogonal system of coordinates R,* reduces to
(3R, the curvature scalar computed from the three-dimen-
sional metric. This is because R,* = R,,.;g*g*. Since ¢
and k are space indices and g® = 0, it follows that only

sums of space derivatives of the space index g,, enter into
R, ™. The initial-value equations become

16aG
R+ ( pei ) Te=0 (7.106)
In vacuum, for “pure’” gravitational waves, (7.106) is
MR =0 (7.107)

Consider the solutions of (7.107). These allowed initial
values should show the essential characteristics of the com-
plete solution. Brill obtains information about the solutions
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in the following way. Let the required metric be g’,,, satis-
fying @R’ = 0. Let ds'® be obtained from another metric
ds?, according to

ds'? = e*fds? (7.108)

The unprimed g, is called the base metric. P is a function
of the coordinates. The transformation (7.108) is a new kind
of operation, for unlike the coordinate transformations used
thus far, intervals do change. At a particular point all differ-
ential intervals are changed by a factor e?. It follows that
the shape of a small triangle or any small figure will not
change. Transformations (7.108) are therefore called con-
formal. It can be shown that the value of R’ in terms of (the
base metric) R may be written (25)

R' = e *P[R + (n —1)(2V2P + (n —2)(VP)?)] (7.109)
In (7.109), n is the number of dimensions of the space
VEP = giP,; (VP =g"P, P,
In our case we are concerned with R’ for the three space,
so n = 8. It is convenient to make the substitution
Y = elin-2/aP (7.110)
(7.109) and (7.108) become, for R’ =0,
ds'? = Wids?; V3P 4 JBRY =0 (7.111)

A careful study of (7.111) by Brill has led him to the
conclusion that solutions of (7.111) exist with ¥ well behaved
and not vanishing anywhere,? corresponding to a metric
with the asymptotic behavior

a5t =~ (‘ + 27;) (dr® + 1%dQ%) + gopcdt®  (7.112)

The function ¥ may be expanded asymptotically in a
series A 4 B;r~%, wherc ¢ =1,2,8,... A study of (7.111)

! The second equation of (7.111) has the form of the curved space
Schroedinger equation, for which such solutions are known.
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shows that the first nonvanishing term in the expansion of R
goes as r~%. (7.112) provides an unambiguous way to specify
the mass energy of any wave for which the expansion in
negative powers of r is appropriate, so that (7.112) applies.
Brill finds that this “Schwarzschild” mass is a positive
definite quantity for fields having axial symmetry?. To
show this, the second equation in (7.111) is divided by ¥
and integrated to obtain

Y Jorvast[ G
¥ g @By = *¥is XY /g @By
J v \/ gar surface ¥ + o\ ¥ ‘/ 8

(7.118)
= ~§j‘3’RV‘3’gd3w
Since
C 1 2Gm d 1 f;ﬂ
14 c3r an Y= +2c2r
\Y
f —;wds — —2a6Gm/c? (7.114)
From (7.118) and (7.114) we have
22Gm

- =J(%)~\/‘3’gd”m + &J.(S)R\/mg Bz (7.115)

For the axially symmetric case the metric may be
written

ds'® = y'[e?(dp® + dz®) - pPdyp?] = ypids® (7.116)

Here g falls off asymptotically at least as fast as
1/r% r* = p? + 2% ¢, 9, and ¢, vanish on the z axis.

For the base metric (within the bracket of (7.116)) the

integral [R4/®gd% may be evaluated directly and ap-

proaches zero as the radius of a large sphere centered at the

origin approaches infinity. It follows then that the mass
(7.115) can be written

c? Vy\2
= X 81y 3
m= g (w)‘/ g &z (7.117)

¢ Araki (28) has shown that the energy is positive definite, in the weak
ficld approximation, without the assumption of axial symmetry.
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Since ¥ has no zeros anywhere, the “Schwarzschildian”
mass given by (7.117) is well defined and is a positive definite
quantity for a localized disturbance with axial symmetry
which implodes for negative ¢ and explodes for positive .
The conservation laws guarantee the invariance of m before
and after the moment of time symmetry. Furthermore it is
apparent from (7.117) and (7.112) that the massis zero only
if the space is flat.

7.13 Conditions on the Differentiability and Continu-
ity of Manifolds

Until comparatively recently it was customary to re-
quire that the entire space-time continuum be covered by one
nonsingular coordinate system. This has turned out to be
unnecessarily restrictive. More than one coordinate system
may be employed, provided that certain conditions can be
met in the region where they overlap. A region in which a
particular coordinate system is employed is sometimes called
a coordinate patch.

Lichnerowicz (10) has carefully studied the conditions
which have to be met in order to ensure that the gravitational
field equations have unique solutions for the case T,, = 0.
He requires that at the intersection of two coordinate patches
the local coordinates of a point in one of the coordinate
systems be fourfold-differentiable with respect to the coor-
dinates in the other system and have nonvanishing Jacobian.
The first and second partial derivatives must be continuous;
the third and fourth partial derivatives must be at least
piecewise-continuous. The metric tensor must be continuous,
and is required to have continuous first partial derivatives;
the second and third partial derivatives must be at least
piecewise-continuous. These conditions on the metric tensor
are required everywhere.

7.14 Six-Dimensional Treatment of Gravitational
Radiation

Pirani (12) has given an interesting discussion of gravi-
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tational radiation. This is based on the work of Petrov (9)
and the generalization of ideas familiar in the treatment of
electromagnetic radiation. For the vacuum case,

R, =0 (7.118)

First consider a gravitational wave characterized by a dis-
continuity of the Riemann tensor across the wavefront.
The Lichnerowicz continuity conditions on the metric tensor
and its partial derivatives ensure uniqueness. Suppose we
have a given point in a coordinate system such that g,, is a
Lorentz metric at the point, the Christoffel symbols vanish,
and the wavefront discontinuity there is moving in the a!
direction. Let the new coordinates & and { be defined by

&= (2 — a')/+/2 (7.119)
L= (a® + a')/v/2 (7.120)

The line element at the point becomes
ds? = 2dtdl — dz®* — do™° (7.121)

The surface of discontinuity is d§ = 0. Then g,, and its
first derivatives must be continuous, so it follows that
0%g,,/060, must also be continuous. However,

0%,y

og®

will not necessarily be continuous. A study of the expression
for the covariant Riemann tensor R,s,s; in the manner of
Section 7.2 shows that in this special coordinate system the
discontinuity in the Riemann tensor can be written in terms
of 92g,,[0E3, 02g,,/{08%, and §%g,;/08% alone. Only two variables,
¢ and ¢, with

_ 0% . 0*as - g
T o2
are needed to describe it. The terms in ¢ may be made to

vanish by an appropriate choice of axes in the 28 plane.
A six-dimensional formalism proves convenient for the

(7.122)

(7.128)
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classification of the discontinuities in the Riemann tensor and
for other purposes. Coordinates are again chosen such that
the six-dimensional space has a pseudo-Euclidean metric at
the point, given by 8,5 = (1,1, 1, —1, —1, —1). The
physical components of a given tensor at a point are defined
to be those measured by an observer in a locally Lorentz
frame. If H,; are the physical components of an antisym-
metric tensor, the corresponding six vector is obtained by
relabeling the suffixes in accordance with the rule

«f 28 81 12 10 20 30
A1 2 38 4 5 6

The physical components of the Riemann tensor R4, are
related to the symmetric six tensor R 3, also according to the
above prescription, taking pairs «f and y4. The discontinuity
of the Riemann tensor may then be written

(7.124)

0 0 0 0 0 0
0 —0 —¢p 0 —¢ o
10 —@ o 0 c @
AR p= 0 0 0 0 0 0 (7.125)
0 —¢ o 0 c @
0 c @ 0 ¢ —c

This result followed from the Lichnerowicz conditions.
Comparison of (7.125) with Section 7.2 shows what was to
be expected, namely, that if we have a wave which is a dis-
continuity over a plane propagating in the z! direction, the
nonvanishing components of the discontinuity in R,z,s are
just those of (7.27).

Some aspects of energy flow in electrodynamics are now
reviewed for the purpose of generalizing them for the gravita-
tional field. An observer at rest in a Lorentz frame has a
Poynting vector T,,, where T ,, is the electromagnctic stress
tensor. Let a Poynting-like vector be given by P,. Then a
covariant expression for P,, valid for an observer with four
velocity U, may be written in the form

P, = (8,4 — U, U¥T,U (7.126)
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Observers who move with the wave velocity observe no

energy flux, so for them (7.126) vanishes. This leads to

T,Ur=(T,UsUnU, (7.127)
(7.127) states that an observer who measures no energy flux
has velocity U», which is an eigenvector of the electromagnetic
stress tensor T ,,. If the electromagnetic field is a radiation
field, the field tensor satisfies the relations F,, F#* =0 and
€apys F2# FY? = 0. Such a field is called a null field. A study
of the electromagnetic stress tensor indicates that if the field
is a null field, T, has one null eigenvector £¢ corresponding
to the eigenvalue zero. A radiation field, in electrodynamics,
is, therefore, a field whose corresponding stress energy tensor
has a vanishing eigenvalue. Since all four velocity vectors
are unit vectors, it follows that the Poynting vector cannot
be transformed away.

To consider somewhat similar ideas for the gravitational
case, the eigenbivectors P,, of the Riemann tensor are de-
fined by

R0 PP? = AP,

RABPB = APA

P,, is antisymmetric and is written as a,b, — a,b,.
The unit vectors a, and b, define a two dimensional space. A
second two space which is completely orthogonal to the first
is also defined by P,,. The term completely orthogonal
means that every vector in the first two space is orthogonal
to every vector in the second two space. The pairs of two
spaces associated with different eigenbivectors may intersect
each other to define at each intersection point a four vector
tangent to the intersection curve. These four vectors are
called Riemann principal vectors. If the Riemann principal
vector is a null vector, the gravitational field is said, by
Pirani, to be a radiation field.

Petrov (9) has shown that by suitable orientation of the
coordinate system in which the metric has the Lorentz form
at a given point, the Riemann tensor may be reduced to a
canonical form of one of the following kinds:

(7.128)
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Type I:
al 0 0 ﬁl O 0 k=3
0 « O 0 B, O > =0
_|10 0 a 0 0 By| *?
Rap= B, © 0 —a 0 0 | . (7.129)
0 B 0 0 —a O 3 B,=0
0 0 ﬂa 0 0 _aa k=1
Type II:
—2¢ 0 0 —28 0 0O
0 a—0c O 0 B a
10 0 ato O o B
Ris=] 98 0 0 2« o0 o (7.130)
0 B g 0 o—a O
0 o B 0 0 —a—c
Type III:
0 —06 O 0 0 o
—c 0 0 0 0 0
0 0 0 c 0 0
RAB= 0 0 o 0 o 0 (7.131)
0 0 0 c 0 0
c 0 0 0 0 0

The « and g are scalar invariants of the Riemann tensor.
The value of o depends on the orientation of axes in the 10
plane. !

A study of these types shows that type I has one time-
like, and the three spacelike, principal vectors; type II has
one null principal vector and two spacelike ones. Type III
has only one principal vector and it is null. Pirani’s criterion
is, therefore, that gravitational radiation is present if the
Riemann tensor is of type II (null) or III, but not if it is
type L

+ 8 x 8 matrices can also be used, in consequence of the obvious sym-
metry. If the upperleft 8 x 8 is called M and the upper right 3 x 8 is called
N, the matrices M + iN give the essential features,
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If at each point in a space in which the metric has the
Schwarzschild value we introduce a Lorentz frame with axes
parallel to the coordinate axes, the Ricmann tensor turns out
to be of type I above with

—da, = ay = a3 = GM[c?r?; Br=0
For the Einstein-Rosen metric a similar procedure leads to
type II with

o= [9p0+ 59,9+ v — 39,74l

It must be emphasized that the components of R,z
must be calculated in a locally Lorentz frame at any given
point, in order to make use of the classification scheme of
Petrov.

A special coordinate system which has a Lorentz metric
in the vicinity of one point, vanishing first derivatives of
. and specified second derivatives of g,, is the “normal”
coordinate system. At the pole the following conditions are
met:

zt =0

Bav = 6;"1
ey = guv,p =0
Euv, pae = é(Rppvo' + va;ur)
Pirani has calculated the average value of the canonical
stress energy pseudotensor density
HZLeV —8)

tl‘l"\/_g = 6pl‘$c‘\/_g — 8po.p agpo' ,

about a point in a frame described by (7.182). The average is
defined by

(W =gty = (dar') [t/ —g d2S (7.188)
lim r—0

This is done to provide support for the definition of radiation
given here. ¢,” can be written in terms of g,4 ., so it vanishes
at the pole of any geodesic coordinate system. The average
defined above will not vanish since the second derivatives of
g.» can contribute. Unfortunately this average does not

(7.182)
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have the dimensions of energy density. It is an energy like
object which gives (section 8.2) a measure of the energy
which may be abstracted by an observer with four velocity
Uv, for whom (7.182) isappropriate. The average is calculated
to be

<‘\/—g t;t”) \
-—c

= (-2}7) (0,7 8, —28,#8,)(UUA+g=A )(R”ﬁx'*‘R'ﬂ“x)RpaﬁA (lGnG)
(7.134)

For an observer at rest with type I Riemann tensor this
gives (summations over x)

3
Vgt = (37) [2{§a,ﬂ(6,.° 8" + 26,58,

3 —ct
+ 36"K+16K+ll‘ + 86/“+2 6(-}-2”)} - 96“7 g axa] (16756)

(7.185)

and for type II,
V=8> = () [«?(—426,7+ 166, 8," + 226,2 8,7
+ 2263 85*) + 4a0(d,2 8, —6,365") (7.136)

—pl
+ 8220, + 0,00~ 0] (7o)

7.15 Other Petrov Class II Wave Solutions

The tetrad (sometimes called quadruped, tetrapod, vier-
bein, or four nuple) is a set of four unit vectors which may be
introduced at any point to define a locally Lorentz frame.}
Three of the vectors are spacelike and normal to each other

t The transformation to a locally Lorentz frame with coordinates z'®
may be obtained by writing

da'® = A(q), dzp
for
ox'® 9z'8

Boh = o o 8P = da) Ay = 024
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and to the time direction which specifies the fourth one. The
tetrad vectors are usually written A,#, where y is the vector
index and («) labels a particular one.

Peres has obtained another class of wave solutions of
R,, = 0, which have less symmetry than the plane and
cylindrical waves. His metric is

—ds?=dx?+dy*+dz*+2F (2, y, z-+1)(dz 4 dv)®*—d<® (7.187)

The field equations become R, =R,, =R, , =F ., +F ,=0
and are therefore satisfied if F is a harmonic function.
A tetrad of orthonormal vectors is introduced by

Ag? = (1 + F, 0,0, —F)
Agy# = (0, cos a, sin a, 0)
Ag# = (0, —sin a, cos a, 0)
Agy# = (F,0,0,1—F)

with tan 2a = F, (F ;.. The components of R,s,s which
do not vanish are (in a frame defined by the reference tetrad)

0= R, = —Rupe = (F .2 + F 20 (7.189)

for £ and » equal to 8 and 0 only. This class of metrics there-
fore falls in Petrov’s class II.
For

F=(@®—y*)sin(z+7); o=2sin(z+ 1) (7.140)

we have a plane wave. A wave packet solution is
F = ay(a®+y?) 2007 for |2 + 1| < b
F=0, for |z4+ 1 >0

We now show that all wave solutions of R,, =0 of
physical interest approach type II. Any physically interesting
wave solution is likely to be generated by localized distribu-
tions of matter, and will therefore be plane at large distances
(not cosmologically large distances). It follows that our
analysis of Section 7.2 describes it. We emphasize that our
definition of a locally plane wave is one which has g, ., =

(7.188)

(7.141)
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8uv,a5 = 0, where 7 and § are the two tetrad directions normal
to the direction of propagation of the wave. The ten com-
ponents of expression (7.27) are arranged in the canonical
form following the prescription (7.124) with the result

0 0 0 0 0 0
0 —igun $gamn 0 —1ig 2300 — 38310
Ryp= g %%23.11 - %gzdo.,u (()) %(g;zz.lo %(g)za.m (7.142)
0 —3guy0 o0 0 — 38e200 — 322300
0 —3g310 38310 O — 382300 — 383300

§23,10 80d gy5,00 May be eliminated by suitably orienting the
reference tetrad. A study of (7.142) shows that it is of type
II with « = 8 = 0. It follows therefore that all physically
interesting gravitational waves approach Petrov type II
(null) with « = 8 = 0, at large distances. Since (7.142) is
valid without approximation, we have shown rigorously
that the Riemann tensor is Petrov type I (null) at all points
where a gravitational wave is locally plane (31).

Robinson and Trautman (30) have given some exact
spherical solutions representing waves, with a Riemann
tensor which again approaches Petrov type II (null) at large
distances. Their metric is

ds* = 2dpdo + (K — 2Hp — 2m/p)do?
— P*p~{[d¢ + ¢,,d0]® + [dn + ¢ (do)%

Here m is a function of & alone, p and ¢ are functions of
o, &£ and 7,

H=p"p . +plp7g) ¢, — Pe(P™) gy

K is the Gaussian curvature (chapter 8) of the surface
p = 1, ¢ = constant.

K = p*[(inp) & + (np) ,,]
For this metric, R,, = 0 reduces to

q.£€ + q,f]') = 0; K.ef + K'vv == 4])—2(771’, - 3Hm)
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The Riemann tensor may be written

R;waﬁ = P—aDyvaﬂ + P-allI;waﬂ + P_leraﬂ

D, III, N are tensors of type I (degenerate), type III, and
type II (null), respectively. They are covariantly constant
on any ray of constant o, &, 7

The solutions are degenerate type I if m 7 0 and Kis
independent of £,  and are reducibletom =1, p = cosh ué&,
q = 0. pis areal or purely imaginary constant. If u is real
and = 0, the Schwarzschild solution results.

If (K )2+ (K42 #0 and R,, =0, the solutions
correspond to type II non null or type III, with type III
resulting when m = 0. If m =0 and K is independent of
£, 7 the solutions are type II null or flat, with

()i )0

the condition for flatness.

Solutions periodic in o can be constructed. For source
velocity < ¢, there is at least one singularity on any wave-
front where fields do not vanish.
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CHAPTER 8

Detection and Generation of Gravitational Waves?

8.1 Detection

Suppose that we have a system of masses which may
interact with each other. We start with the action principle

8 =0 (8.1)

The action function I may be written
= —mjds + W (8.2)

Here m is the rest mass and W is the part of the action func-
tion associated with nongravitational forces arising from the
motion of the mass relative to other masses with which it
interacts. The principle of virtual work suggests that for
W we assume a function given by

oW = —%—IF,,&w#ds (8.3)

(8.8) identifies F, as the four force. The Euler-Lagrange
equations resulting from (8.1) are arranged using the method
of Section 8.6 to obtain

2ph dx>dxf? F&#
AR i i (8.4)
ds® ds ds  mc?

% The results of this section appeared in the author’s Gravity Research
Foundation prize essays, April, 1958, and April, 1959. This chapter follows
the paper Phys. Rev. 117, 806, (1960). We thank the Physical Review
for permitting its publication here.
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(8.4) may be expressed in terms of the four velocity
U# = darlds as

és \'ds ds  mc? (8.5)
The symbol 8/és means the covariant derivative with
respect to s.

Following essentially the methods of Synge and Schild,
we introduce a parameter v such that the world line of each
mass element corresponds to a given value of v. Taking the
covariant derivative of (8.5) with respect to v gives

o] (dw#) . oUs Fa

02Us  6Feim
Svds  clov (8.6)
Direct calculation leads to
82Usr U= dxy

—_— al]f ——
dsdby ~ dvds + Rbapy UU v

Employing this commutation law for covariant differ-

entiation enables us to express (8.6) in the form

2Us  §U» oxr 6Fulm

— e e aljf— — ' .

ovds  dsdv Rttapy U=U dv c2ov (8.7)
In (8.7) d27/8v is a unit vector normal to the world lines, and
the four velocity U#is a unit vector tangent to the world lines.
The vector n¥, defined by

ox
Y = — .

n P dv (8.8)
is an infinitesimal vector joining points with the same value
of s on neighboring world lines with values of v differing by
dv. The covariant derivative of dz7/dv with respect to s can
be written in the forms

i(@w? _6(3::37)___6U7 8.0
3s %)—5 %) = o (8.9)
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Employing (8.8), (8.7), (8.8), and (8.9) then gives
&ns 8Fulm
Br T R Ui Ur =5,
If the particles do not interact, the right side of (8.10)
is zero and

dv (8.10)

d*nep
ds?
For (8.10a) the particles move along geodesics. (8.10a)
is called the equation of geodesic deviation.

+ Rigg, UsnfUr =0 (8.10a)

8.2 Mass Quadrupole Detector

In order to discuss the detector? of Fig. 8.1, we imagine

Figure 8.1

the two world lines are those of the two masses. Let nr be
given by

ny =717 4 & (8.11)
with 7 defined by
orr
— =0, (for all s)
ds (8.12)
rT =>n?

in the limit of large internal damping and all components

t An arrangement somewhat similur to this was independently sug-
gested by H. Bondi at the Royaumont conference in June, 1959.
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of R#,py = 0. (8.10) becomes

62
—6.9—? +Regp, UeUY[rf + £8] = m/_; (8.18)

In (8.18) we have denoted by f# the differences in (non- .
gravitational) forces at the two masses. For f# we assume
a restoring force —k#,£* and a damping force —cDa,(662/8s).
k¢, and Da, are tensors associated with the spring. (8.18)
then becomes

6%s  D», okz  [a, ke
ds? cm s mcd

= —Rl‘;ﬁy UaU‘,Y[rﬂ + fﬂ] (8’14’)

We now let time run in the direction of the tangent to
the world line of the center of mass. The oscillator is in free
fall. We use coordinates in which the Christoffel symbols
vanish and write (8.14) in the approximate form? (assuming
§Lr),

d?ts D, dEz ks, ke
dar U Tm ar

In (8.15) we see that the driving force for the harmonic
oscillator is the Riemann tensor. Measurement of displace-
ment amplitude or power absorbed enables one to calculate
certain components of the Riemann tensor.tt

= —c*R#y 1> (8.15)

$ If the particles are free, the second and third terms of (8.15) vanish,
In Section 7.2 we showed that a locally plane gravitational wave traveling in
the z! direction has R, equal to zero. It therefore follows from (8.15) that
if the vector which joins two closely spaced free particles is in the direction
of propagation of the wave, no relative displacements occur. For free par-
ticles the maximum relative displacements occur if the particles are in the
transverse plane. This result has appeared in the work of Pirani.

31 Measurement of the Riemann tensor by comparing accelerations of
free test particles has been considered by F, A. E. Pirani.2,3 The results of
this chapter indicate that interacting particles must be used, in practice.

The correspondence between voltage in a piezoelectric crystal and
Ry940, which is discussed in Section 8.2, may provide a basis for consideration
of measurement problems in quantized general relativity. A very small
volume of crystal is needed in consequence of the fact that the wavelength
of the acoustic resonance vibrations is five orders smaller than the wave-
length of the gravitational waves.
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From (8.15) we may conclude that energy may always
be absorbed from any gravitational field for which the Fou-
rier transform of R,y does not vanish in a locally Lorentz
frame which is propagated along a geodesic line. This geo-
desic is then the world line of the center of mass of our har-
monic oscillator.

Suppose now that sinusoidal (weak-f ield-approximation)
gravitational waves are incident. An orthogonal comoving
coordinate system is employed, with the oscillator oriented
in the direction of the x! axis. k#, and D#, are imagined to
have one component only, k!, = k and D!, = D. Taking the
Fourier transform of (8.15) leads to

me2RAg0(w)r®
Eﬂ(w) = -

(8.18) is a maximum at resonance, —w*m+ k=0,
The total dissipation D = D, + D;, where D,, is the ex-
ternal dissipation and Dj, is the internal dissipation associat-
ed with irreversible processes within the antenna. The power
.vhich can be delivered to auxiliary apparatus with D, is
m2cd(Rp0aora)2Dex

2(Dex + Din)2

(8.17) is a maximum when D, = D,,, and the maxi-
mum power Py is given by

(8.16)

3w?D,, &2 =

(8.17)

24 Rp « )2
Py = M(_@_’_)_ (8.18)

The sinusoidal gravitational waves are now assumed to
be radiated by a linear mass quadrupole oscillator. The
transformation laws indicate that to a good approximation,
Ry, as scen in a frame fixed in the center of mass of the
radiator, is the same as that seen in a frame fixed in the
center of mass of the detector, for small velocities. Using the
solution for the linear mass quadrupole oscillator of Section
7.5, the mean-squared value of R#g,,r= is calculated and aver-
aged over all possible orientations of the receiver. Let i, be
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the radiated power per unit area averaged over a sphere, for
the lincar mass quadrupole oscillator. The total radiated
power P is given by

P = dartty, = (8.19)

where I, is the amplitude of the quadrupole moment. (8.19)
and the known expressions for the fields then give, for the
mean-squared value of R#y 47 in a direction normal to the
axis of the radiator

4nf? |r|2G

cb

[( R"an re )2] av —

In (8.20) g is the propagation vector of the gravitational
wave. Employing (8.18) and (8.20) gives

_am?BEr*G
- 20Din

The influence of the internal dissipation D;, will now be con-
sidered. First we assume that no irreversible processes take
place within the antenna itself and that D, is due entirely to
radiation damping of the detector. The known solution for
a linear mass quadrupole oscillator enables us to calculate the
radiation resistance of the detector D,, as

tor (8.20)

PM tor (8'21)

4.2 2
D, = 26“;5+m (8.22)
(8.21) and (8.22) give
P M (radiation damping only}) — %;.2 tor (8'23)
n

The implication of (8.28) is that the average absorption cross
section S, for a detector which is damped only by its own
reradiation is

1542
= 16z

Sa (8.24)
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We see from (8.24) that under these conditions the
average absorption cross section is roughly a wavelength
squared, and is independent of the constant of gravitation.
Unfortunately the condition that the internal damping be
only due to radiation cannot be attained in practice because
other irreversible phenomena within the antenna are many
orders greater than the radiation damping. In order to make
this clear, we calculate the quality factor, denoted by the
symbol Q, which is defined by

w (maximhm stored energy)
power dissipated

0=

The Q associated with radiation damping, denoted by Qg, is

15¢c5
Or = Cwtm e

For an antenna at w = 2% X 107, a reasonable value of
mr? = 10 g em? and (25) gives Qg ~ 10%. A practical an-
tenna might be expected to have a Q ~ 10°.

We therefore must deal with systems limited by internal
damping orders larger than gravitational radiation damping,
and under these conditions the average absorbed power will
not be independent of the kind of antenna. For an antenna
orientation arranged for maximum response,

157G B2 |r|2
cﬁ

(8.25)

[(RFOGO 72)2 ]y = o (8.26)

(8.28) and (8.18) lead to power absorbed P4, given by
P — 15aGm*f|rl® 15nGQOﬂ2|r|2t

4= 8¢D,, bor = Swc or

In (8.27) Qi is the Q associated with internal irrever-

sible processes, Qi, = wm/D;,. The cross section S, implied
by (8.27), is

(8.27)

_ 152GmQy, f2|r®
o 8we

S

(8.28)
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For a continuous spectrum the absorbed power is

P —lf"’z o0 mzcdD"ww'RFO’O(w)R"Oﬂo(w')r“rﬂei(w—u')g
TV on Jow 2(—0'mIiwD+E) (—w m—i’ D+E)

~ n2Gme B2 r 2 Lo () (8.29)

In (8.29) #,(w,) is the power spectrum of &, in the vicinity
of the resonant frequency w,,.

In order to further discuss these results we must consider
the excitation of a continuous medium by a gravitational
wave. This is necessary in order to be able to account for the
interaction of the mass of the spring with the wave and to
account for the effects of the finite velocity of propagation of
the elastic forces of the spring.

dwdw'dt

8.3 Interaction of a Crystal with a Gravitational Wave

The starting point for our discussion is expression (8.10).
The infinitesimal vector n# is from a reference point in the
crystal to a neighboring point. The mass m is imagined to
belong to an infinitesimal volume surrounding the neighbor-
ing point. On the right side of (8.10) we must now include
both elastic forces and dissipative forces. We write n# as

ne = rb 4 O pre (8.80)
r# is defined by the conditions
or =0, (for all s)
os (8.81)
ré = nk

in the limit of large internal damping and flat space. We
may now express Eq. (8.10) in the form

80, 80 50
st 7T froy

I"’+ Y"ﬁ

+R,,,,,ﬂ[rl‘+9 brrUelUi=0
(8.82)

Here we are assuming an isotropic crystal. The second
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term accounts for internal damping and the third term aec-
counts for the elastic forces. B and Y24 are normalized to
unit mass density. Again U= is a unit vector tangent to the

world lines. Since r# can be arbitrarily specified, it follows
that

a 0, 00, 8%, ‘
—= +B-=2 " +Y ﬂ pyoe ‘,+Ry,,,,U UB+R,,,,U=U%0,7=0

(8.88)

In (8.88) the fourth term is clearly symmetric in the
indices » and x. The last term in (8.88) may ordinarily be
dropped because it is many orders smaller than the fourth
one. For the strain tensor which is the symmetric part of
0,, we may therefore write

é 0“, (sym)

60 v (sym) 60v(sm)
—az T B + Yl R s — R, UU?

ds Oxa dah
(8.33a)

We now consider a special case of (8.83a), namely ex-
citation of longitudinal acoustic waves. An approximate
form, for waves in the direction 2! of an orthogonal coor-
dinate system (with the time direction tangent to the world
line of the observer) is

0%0 0%0 20
Y@yE  PMaE b= = cou Ry (8.84)

In (8.84) py is the density, y is an appropriate modulus, and
b is a damping constant. We assume that R, has its origin
in incident sinusoidal gravitational waves so that

*Rlgg = —felet=-he (8.35)

In (8.85) the index k runs from 1 to 8. Let v, be the
sound velocity 1/[y/pa], 4, be the wavelength of sound, &, =
2nfa,, «=b[2psv,, and y=a+ik,. Then to a good approxima-
tion the solution of (8.34) is

0 = [Ay cosh yat — fw=2 e ihz"]givt (8.86)
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The displacement of points relative to the center of mass of
the crystal, which we denote by &, may be calculated by
integration of (8.36) with respect to 2! as

&= [A sinh ya! — (1- e“”l")] e (8.86a)

ifw?
Making use of the boundary condition that 8 vanishes at
the ends leads to

f cos 8,1
A~ Gl sink,l 4 cos )

In (8.87) I is half the length of the crystal. The first
term of (8.86) gives the contribution of the acoustic waves?
and the second term gives the strains which would be set up
if there were no internal forces at all. (8.87) must be modified
if the crystal is piezoelectric.

(8.87) has maxima when k,l is an odd multiple of »/2; how-
ever it is clear from the denominator that the largest maxi-
mum is the first one for which the total length is half an
acoustic wavelength. The system composed of the two
masses and spring (Fig. 8.1) must be described by an equa-
tion such as (8.84), when the spacing of the masses approaches
half an acoustic wavelength. It is clear that the largest
value we can expect from (8.28) will oceur when 7 is half an

(8.87)

t A study of (8.36a) indicates that the apparatus located on the carth’s
surface will behave as though it were in free fall. For consider the effect
of gravitational waves on the internal motions of the earth, applying (8.36a)
to the normal modes of the earth itself. The first term on the right represents
the acoustic waves, the remaining terms represent the motion if there were
no interactions. The ratio of the terms is, using (8.87),

B4 A, v,
T S ad T e(d)
The ratio of the velocity of sound to the velocity of light is about 10-8,
much smaller than the product of length and absorption coefficient for

sound ¢ in the earth. This argument is only valid for gravitational wave-
lengths comparable with or shorter than the earth’s radius.
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acoustic wavelength in the spring. This is an important
limitation because the velocity of acoustic waves is about
five orders smaller than the velocity of light, so the cross
sections implied by (8.28) are ten orders smaller than would
be the case if the elastic forces of the spring were propagated
with the velocity of light. Such a limitation could be over-
come in a number of ways. One might employ restoring
forces transmitted by electric and magnetic fields, with the
velocity of light. The piezoelectric effect may be employed,
in which case the polarization charges on the crystal faces
may give rise to some stress components which do not change
sign every half acoustic wavelength.

In a piezoelectric crystal a strain results in an electric
polarization P, given by

P“ = Eaﬁgaﬂ"

Here &%, is the piezoelectric stress tensor. The electric
polarization gives rise to an electric field over the crystal.
Its integrated value may give a terminal voltage large enough
to be observed with a low-noise radio receiver. Measurement
.of this voltage measures components Ry, of the Riemann
tensor if a crystal with suitable constants is employed.

The system of stresses in the crystal is modified in a
significant way if it is piezoelectric. Additional terms in-
volving the piezoclectric constants need to be added to
Eq. (8.88). We consider a very simple example. Suppose a
single longitudinal mode is excited, with sound velocity in
the ! direction. Let the thickness in the z? direction be
small and assume that the crystal faces normal to the 2®
direction are plated with a conductor. The piezoelectric
relations (5) are

—T =0Y, + DH|4n; E = DJK + HO (8.88)

In (8.88) T is the stress, K is the diclectric constant, 8
is the strain, Y, is the elastic modulus, E is the electric field
intensity, and D is the electric displacement. Both D and E
are assumed to have components in the z? direction only.
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H is the piezoelectric constant relating open-circuit voltage
to strain. A study of (8.88) and the equations of motion of
mass elements of the crystal indicates that a wave equation
similar to (8.84) results with

y = Y,— HK|dn

Since the crystal surface normal to the 2? direction is
plated with a conductor, dE[dz! = 0. At the free ends of the
crystal T = 0. If the crystal is coupled to an external im-
pedance Z we may write

0
—JEda:2= (4n)—lla fde‘da:"
These boundary conditions and the wave equation (8.84)
then lead to the result
0 = [A,y cosh yz! — fw—2e /=] el (8.86a)

where y, 8, and f are as defined earlier. This has the same
form as (8.86), but now the constant 4, is given in terms of
the length /, in the z! direction and lengths [, and I, in direc-
tions 2% and a3, and the “clamped” capacitance C as

= (5)

8728, ly(1+iwC Z)(Y y— HUK [4m) cos By [2 + i HK L wZ sin f,1,/2
[Snzlz(Yo—HzK/ILn)(ycosh 71,/2)(1 +iwCZ)+inH2K213sinhyz,/2]

(8.89)

and the voltage which appears at the crystal terminals when
coupled to an impedance Z is

1 iwZHKI, . )
V= (52) (F250cy) (s sinh yhf2 — (f1B?) sin fibj2)  (8.40)

The electrical network theorems now permit straightfor-
ward calculation of the power which can be delivered by the
detector to a radio receiver. For a crystal with constants
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similar to ordinary crystalline quartz on which sinusoidal
gravitational waves are incident, the power which can be
transferred is roughly

Py~ 1078w 1V Q,t, ergs/sec (8.41)

In (8.41) w is again the angular frequency and ¢, is the
incident gravitational power flow in ergs per square centi-
meter per second. @, is the Q of the erystal and associated
electric circuit. A cubic meter of crystal at w ~ 10° gives a
cross section for absorption ~ 10~ em?. This is for perfect
crystals driving amplifiers without positive feedback. Im-
perfect crystals may have cross sections three orders smaller.
For a continuous spectrum with a power spectrum function
tu(w), the power absorbed is

P, ~ 1072 Vi, (w,) ergs/sec (8.42)

(8.41) and (8.42) provide a basis for discussion of sensi-
tivity. In microwave spectroscopy it has been found that all
spurious effects other than random fluctuations can be re-
cognized. A similar assumption will be made here. The ran-
dom fluctuations are partly thermal in origin, partly the
result of spontaneous emission processes. For synchronous
detection of sinusoidal waves, the power output of the de-
tector must exceed the noise power (6) Py, given by

Niw

P = gy oo —13

k is Boltzmann’s constant, T is the gravitational antenna
temperature, N is the noise factor of the receiver (expected
to be less than 25 and more than 1), and 14 is the averaging
time. A different expression is required if radiation with a
continuous spectrum is being studied. In this case the power
delivered by the detector must exceed

p _( 7w )&[ Niw
M \641,0, e“‘“’”—l]
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Experiments are being planned to search for interstellar?
gravitational radiation?! using methods described here. For
the first method the earth itself is the block of material
constituting the antenna. The normal modes of the earth
(about 1 cycle per hour) are excited by incident gravitational

PIEZOELECTRICH RADIO :REWRDER
CRYSTAL RECEIVER

Figure 8.2

waves. This procedure is limited by the relatively low Q of
the earth and the high noise background of its core. The
apparatus of Fig. 8.2 is employed in the second method, in
which the strains induced in the crysal are employed. Search

1 J. A. Whecler hus noted (onzieme Conseil de I'Institut International de
Physique Solvay, La Structure el I'évolution de 'universe, Editions Stoops,
Brussels, 1958, p. 112) that the density of gravitational radiation could be as
high as 10-% to 10~ g/em?® (~ 10? ergs/em? sec) and still be consistent with
present information about the rate of expansion of the universe. He and
M. Schwarzschild (private communication) have subsequently noted that if
this radiation were set free by the same process which caused the inhomo-
geneous collection of matter into galaxies, it would be characterized at that
time, and therefore also now by the same scale of lengths, of the order of 102¢
cm today (10° years vibration period).

agtyph:al)8 pu G
( ox c?

dftypical ~ 0.5 X 10~ cm~! X 10* em ~ 104

This would appear to be not too small, but too slow to measure, by these
methods.

1 Experimental work along this line is now being carried out by David
Zipoy and Robert L. Forward, in collaboration with the author. The piezo-
electric effect gives enhanced sensitivity when a mass which is many acoustic
wavelengths on a side is used. At low frequencies this is not important be-
cause a mass which is one-half acoustic wavelength long is already quite large
and may not be obtainable as a single crystal. Excitation of resonant
acoustic vibrations in a large block of metal, by the gravitational wave, is
being considered, along with the arrangements of Figs. 8.2 and 8.8.
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at frequencies ~ 103 cycles/sec is planned. The earth rotates
the apparatus. If radiation is incident from some given direc-
tion it may be observed from the diurnal change in amplifier
noise output. The arrangement of Fig. 8.8 should not require

PIEZOELECTRICH RADIO
CRYSTAL RECEIVER

CROSS
CORRELATOR

PIEZOELECTRICH] RADIO
CRYSTAL RECEIWVER

Figure 8.8

rotation. If radiation is incident it will cause correlated out-
puts. All sources of internal fluctuations will be uncorrelated.
Low-noise amplifiers such as masers (7) may be employed.

The apparatus must not respond to earth vibrations.
Dr. Zipoy has proposed ingenious acoustic filters with am-
plifiers to sense, then drive the mounts to cancel the effects.

8.4 Rotations Induced by Gravitational Radiation.

Dirac (private communication) has suggested that as-
tronomical anomalies might be correlated with effects of
gravitational radiation. To discuss this and to consider
detection by observing rotations we return to expression
(8.5). Let a group of masses be situated near the space
origin of a coordinate system and let the infinitesimal vector
r# be the position vector of one of the masses. Let ¢,,4, be
the Levi Civita tensor density. Multiply (8.5) by ,,4.7# to
obtain

6 dee d

da=
8mﬂ,¢rﬂg E ='E'8 €uafx rﬂE +e,,aﬁxrﬂl’“.,3 UrUs = Euape ’l"’.F“/ﬂ'w2

(8.48)
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Here again U¢ is a unit vector tangent to the world lines
and in the second term of (8.43) we have used the identity
€4apcU2U# = 0. Let the world line of the origin be a path for
which the Christoffel symbols vanish. Then it follows that
(8.48) can be written

ddxx d dz= or=_,
Epapx Tﬁs;'d? = ae,upxrﬂa + €uapct? TJUVU’W (8.44)
In these coordinates Re,,, = 0I'*,;/0x%, so (8.44) becomes

édxr d dx=
€uapx Tﬂ'('s; a’ = Es'epaﬂx ré E — €papc Rﬂ7w3 UrUsrape (8.45)
If we now use (8.43) and (8.45) and sum over all masses we
obtain

d dx=
D o Euape?? 5
masses s % ds . aps (8.48)
© napfx

(8.46) is a generalization of the relation between torque and
change of angular momentum. If there are no nongravita-
tional forces acting and if we take the time direction tangent
to the world line of the center of mass, (8.46) becomes

S ot = 3 g RS (8.47)
—— &g TP —— = € rayw .
masses ds # ﬁx ds masses I‘“p" 900

We may apply (8.47) to the calculation of the irregular
fluctuations in the period of rotation of the earth caused by
incident gravitational radiation with a continuous spectrum.
Under these conditions a straightforward calculation leads to
the result

(AL),, 257G

[ g

Here (4AL)%,, is the mean-square fluctuation in the
earth’s angular momentum, L is the angular momentum of

(8.48)
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rotation, and #, is the total gravitational wave flux in ergs
per square centimeter per second, assuming its Fourier trans-
form is concentrated near zero frequency. If we arbitrarily
assume that all the earth’s rotational anomalies are due to
incident gravitational waves, {,, is calculated to be 5 X 108
ergs/em®sec. It is clear from this that the earth’s rotation is
not a useful detector unless the size of the anomaly can be
reduced. The other astronomical anomalies lead to larger

figures.

8.5 Generation of Gravitational Waves

It would be very desirable to be able to generate gravi-
tational waves with sufficient energy to be detected in the
laboratory. A number of important experiments could be
done.

For a spinning rod, (7.56) gave the formula for the
radiated power Pp as

Pr=1.78 X 10757 2% w® ergs/sec (8.49)

For a given moment of inertia I,,, the angular frequency
can be increased until the rod ultimately breaks. If we write
the maximum value of w in terms of the tensile strength and
express the result in terms of the elastic modulus and strain,
we obtain for the length ! the formula

= 4,1/[28)/n (8.50)

In (8.50) 6 is the maximum allowed strain for the ma-
terial and 2, is the wavelength of sound in the rod at the
angular frequency of rupture. The implication of (8.50) is
that the wavelength of the gravitational waves which can
be radiated by a rod is at least 1,000,000 times the length of
the rod. Also the moment of inertia is limited to values less
than about

1073 pyy 4,5 6%
1278
In (8.51) py is again the density, and we are considering a

(8.51)
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fairly slender rod, for which the length is an order larger than
the lateral dimensions. Employing (8.51) in (8.49) leads to

Pp < 4X1078py%7 10854 (8.52)

(8.52) shows that contrary to the appearance of (8.49)
low-frequency operation with large rods gives more radiation
than high-frequency spinning of small rods. About 1030
ergs/sec can be radiated by such a 1-m rod.

A new method for generation of gravitational waves is
suggested by the field equations. The source of the gravita-
tional field is the stress energy tensor. Time-dependent
stresses can be produced electrically in a piezoelectric crystal,
and these give rise to radiation. The weak-field solutions are
entirely adequate for this kind of discussion since the metric
is expected to differ from the Lorentz metric by perhaps one
part in 103, Recall the weak-field solutions

v ’ ’ 4G [Ty )retaraea &2’
¢ =hy — ¥ h~— Ty (8.58)

In order to apply (8.58) to the problem of radiation by
a crystal we first assume that acoustic resonance is employed
and that one-dimensional compressional waves are set up.
The components of T,” are then given by

To s —pMc”[l — %’ cos wt cos k,m"] [1—-U(2x®—1—A,cos wt)
—U(—a®—1—Aycos wt)] (8.54)
T rmpyV,yesinwtsink,2®[1 — U(a® — 1 — A, cos wt)
—U(—a® — 1 — A, cos wt)] (8.55)
Tl —pyV,v,cos wtcos k,23[1 —U(x® — 1 — A, cos wt)
—U(—a®* — 1 — Ajcos wt)] (8.56)

In these expressions it is assumed that the waves travel
in the direction a?, V, is the particle velocity, v, is the sound
velocity, and U is a step function defined by U(x) = 0 for
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z < 0and U(z) = 1 forz > 0. 4, is the vibration amplitude
of the free end. Making use of these expressions in (8.46) and
employing the Einstein form of the stress energy pseudoten-
sor enables the total radiated power to be calculated. The
maximum value of 4, is determined by the maximum strain
which is allowed before rupture takes place.

For quartz the result for acoustic resonance is

5
P< [‘}%Gp,.,2 S2y, (—vi) X 10-“]
¢ e (8.57)

5
+ [{‘nguassnfv,(%) X 10"12]
Sw

In (8 57) S is the cross-sectional area, the term with subseript
o gives the radiated power at the fundamental frequency, and
the second term gives the power radiated at twice the funda-
mental frequency. The resonator must be a multiple , of a
half acoustic wavelength long. The first term of (8.57) is
seen to be independent of n,. This is because for n, > 1 the
crystal is essentially an assemblage of electric quadrupoles
with a given quadrupole driven out of phase with respect to
its nearest neighbors. The resulting fundamental frequency
radiation is approximately that of a single quadrupole. Each
half wave section has an equivalent moment MA,4,/2x,
where M is the mass of a single half wave resonator; 4, and
4, are defined by (8.54), (8.55), and (8.58). If a large number
of separate resonators are located within a region of linear
dimensions less than a gravitational-wave half wavelength,
the radiated power will be proportional to the square of the
total number of crystals. In order to radiate 1015 ergs/sec
at the fundamental frequency, 10° crystals would be needed,
each one half an acoustic wavelength thick and with a cross-
sectional area of 50 cm2. A complex phasing arrangement
would be needed in order to properly drive the array.

It appears better to suppress the acoustic resonance
vibrations and create, by the piezoelectric effect or by electro-
striction, mechanical stress components which do not reverse
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sign every half acoustic wavelength. In order to see that this
is possible it is only necessary to study the solution given (8)
in the literature for the component T, of the stress in a longi-
tudinally vibrating crystal with 2® as the thickness direction,
with a conducting plating on the faces normal to 3. The
thickness is assumed small, for simplicity, and an externally
applied electric field parallel to 2® drives the crystal. The
component T, is then

o(L—z) . r . L
sin 2 <+ sin e sin -
Tll = d31E3 2 L 2 L Sin wt (8-58)
w
sin —
vl

In (8.58) d,, is the tensor relating stress to electric field,
E, is the electric field in the direction of 23, and L is the total
length. At resonance, Lw/v, = =, and losses would have to
be taken into account in (8.58) by a hyperbolic function in
the denominator. However, off resonance, for example at
Lwfv, = =n[2, (8.58) becomes

Wl wl

(8.59) is seen to have a component —d,, E, sin wt, which
does not reverse sign every half acoustic wavelength. A
single large crystal, driven in this manner, will then give
volume-integrated stress components which are large. The
radiated power would be expected to be

GP2  Atm?
120c3

In (8.60) P, is the effective tensile strength in dynes
per square centimeter and 2 is again the gravitational-wave
wavelength. The alternative method is to use electrostric-
tion, either in a solid or a liquid. For a liquid a region com-
parable to a half gravitational wavelength on a side would
have to be used. The space derivatives of the driving electric

Pp &~ (8.60)
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field would give rise to electrostriction stresses. A result
similar to (8.60) gives the radiated power.

Waves 1 m long could be radiated by a crystal with di-
mensions 50 cm on a side. If it is driven just below the
breaking point, each cyrstal would radiate 10~13 ergs/sec,
assuming P, is its static published value. This amounts to
100,000 gravitons/sec. Single crystal detectors of the type
considered earlier may detect a power of about 10-3 ergs/sec
at these wavelengths. A large gap therefore still exists be-
tween what can be generated and what can be detected in a
small laboratory. Complex detection and generation arrays
can narrow this gap. Large amounts of electrical power
would have to be dissipated in crystals driven to the fracture
point — perhaps 108 watts in a crystal 50 cm on a side. This
might well be substantially reduced if low-temperature opera-
tion can be achieved. Also one might hope that low-tem-
perature high-frequency operation might raise the effective
tensile strengths. All these issues need careful experimental
investigation, If the numbers employed earlier cannot be
improved upon, it would require a crystal roughly 100 m
on a side, and a large detection system, to generate and de-
tect the gravitational radiation.

8.6 Other Radiation Experiments

The foregoing discussion was limited to very low energy
gravitons. A large number of calculations were carried out
by the author for the purpose of studying the feasibility of
radiation experiments at higher energies. The results in-
dicate that the situation is probably hopeless at intermediate
energies corresponding to atomic, molecular, and nuclear
transitions. As we have seen, the equations of general rela-
tivity have solutions in the weak field approximation which
are very similar to those of electrodynamics. The lowest-
order radiation processes in electrodynamics give radiation
proportional to €3, where e is the electronic charge. An
electronic transition for which the selection rules permit
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graviton radiation would in lowest order be calculable by
expressions similar to those of electrodynamics except that
for € we need to substitute Gm?, where m is the mass of the
electron. There are other, less important modifications.
Another factor of the order of the square of the ratio of the
Bohr radius to the wavelength would have to be included
because quadrupole radiation is the lowest nonvanishing
order. Now, Gm?[e? ~ 1074, so it follows that graviton
emission will be at least forty-three orders smaller than
photon emission. At extremely high energies the situation
will improve because the mass increases while the charge
does not. For Gm?/e? a 1, energies of the order of 10% ev
are needed. Since even 102 ev is beyond the range of present-
ly conceived machines the outlook for such experiments is
not promising.
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CHAPTER 9

Selected Topics in General Relativity

There are reasons for thinking that the elementary formations
which go to make up the atom are held together by gravitational
Jorces. A. Einstein

9.1 Unified Field Theories

In this concluding chapter we give a brief account of
some important aspects of general relativity which are very
significant, from 4 philosophical point of view, and may lead
to developments in elementary particle theory.

The success in geometrization of the gravitational field
led Einstein and others to search for a way to geometrize
electromagnetism. The desirable elimination of forces by
having particles move along geodesics ceases as soon as
electrical forces are introduced. This is indicated by Eq.
(4.54), which has the Lorentz force included in it.

When the general theory of relativity was formulated it
was believed that the only forces in nature were those of
gravity and electromagnetism, and that by geometrization of
electromagnetism a unified treatment covering all of physics
would result. The field equations relate a geometrical object
on the left to a physical object on the right. Einstein felt
that this was undesirable and that the use of the electromag-
netic stress tensor in this way was at best a provisional solu-
tion. Also Einstein never accepted the postulates of the quan-
tum mechanics. He hoped that a completely deterministic
description of elementary particle and quantum phenomena
would emerge from a search for the unified field (4, 5).

No complete geometrization of electrodynamics was

146
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achieved. Indeed the search for a unified field theory would
seem now to be a much more formidable task since nuclear
forces and the phenomena of high-energy physics would have
to be included.

It is interesting that the 1916 general theory of relativity
and classical electromagnetism can be expressed in terms of
the geometrical quantity R, alone, without ordinarily alter-
ing the physical content. This partial geometrizationt was
accomplished by Rainich (1) in 1927 and has recently been
enlarged by Wheeler (2, 8) and Misner. Suppose we have
only gravitation and electromagnetism, without charges.
The Maxwell stress tensor (4.15) satisfies the relations?

1 No geometrical interpretation is given to the Maxwell tensor. It is
eliminated from the equations by expressing the Maxwell stress tensor in
terms of R,.

¥ (9.1) and (9.2) follow directly from (4.15). To deduce (9.8) and for
proof of other equations in this section, the following relations are very
helpful. A generalized kronecker delta may be defined in terms of the Levi-
Civita tensor density by writing
Oab Ogh Oyb O,k
8% 3p% 8y OxY

Eafyx EFVPT = vpo _
2P 8P ByP 8P

afyx

027 847 647 6,7
This indicates that the generalized kronecker delta changes sign on inter-
change of any pair of upper or lower indices, and that it vanishes if the same
index appears more than once in either the upper or lower groups.
Most authors take g535 = 1 and £ = 1, Care is required when

employing both ezgys and ¢287% in the same calculation. If we take the
dual of Fy;, as

*Fay = epvap(—g)iFab|2
then
*Fav = gisgvke copg(—g)iFad|2
A straightforward reduction shows that to employ £2#7% and remain consist-
ent with the above expressions we must write:
*Fpv = — epraB(—g)-1F, 52

These expressions may be employed to establish the folowing identity,

valid for any two antisymmetric tensors in a four dimensional space:
Ava Bﬂ“ — ‘Al“l *pra — Mﬂ"*‘aﬂ Bap

{ footnote cont’d)
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=0 (9.1)
Toy>0 (9.2)
ToTy =HT,5T8)6,» (9.8)
If the gravitational field equations are written in the form
8aG
Ry —}6,/R =~ Ty
then contraction on the indices and the use of (9.1) leads to
R=0 (9.4)
so the field equations are
8nG

R, =7T“ (9.5)

The use of (9.8) and (9.5) lead to
RARy* = }8,'R,, R°" (9.6)

The geometrical relations (9.4) and (9.8) apply to any
gravitational field whose sources are a divergence-free Max-
well field. Another relation is needed to guarantee that the
antisymmetrie tensor out of which T,, (and R,,) are con-
structed really satisfies Maxwell’s equations. This additional
relation is

[eﬂ:\pv RMiER, V—g] — l:“’u\ﬂv RAMi& R \/—g] (9.7)
R,.r RUT N Rdf Rﬂ'f ] |

(9.4), (9.6), and (9.7) are the formulation for gravity and
electromagnetism, in the absence of charges. The expression
(9.7) requires a somewhat lengthy proof which we outline,
following Misner and Wheeler.

If we set -4 = B and let A be the electromagnetic field tensor, the Maxwell
stress tensor may be written

1
Y -

Multiplying this by Tz as given by (4.15) then gives (9.8).
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We shall require the dual of the electromagnetic field
tensor F#v, defined here by

*va = ('\/-g)sﬂvaﬂF‘m/2 (9'8)
An operation e** is defined by
e**F,, = F,,cosa + *F,, sin « (9.9)

We say that (9.9) constitutes a duality rotation on F,,.} The
tensor £,, is defined by

E/w = e_*aF/w (9‘10)

corresponding to a duality rotation —a.
By an appropriate choice of « we may obtain a tensor
which is more simple then F,,. Consider the invariants

38,p828 = }(F,pcos & — *F,psin a)?
= }F, g Faf cos 20 —}4F 5% Ff sin 2a
3E,*E8 = }F, 3 Fob sin 2a + 3F 4*Fo# cos 2o (9.11b)

We recall that (9.11a) is H2 — E? and (9.11b)is2E - Hin a
Lorentz frame, with E and H the electric and magnetic fields
associated with £,;. Select the angle « such that (9.11b)
vanishes; the other invariant then becomes

Fapbe? = £[(FFog F2) -+ (Fof FOP = & o (R R0
(9.12)

(9.11a)

The angle « is further restricted as to quadrant by requiring
the sign in the right expressions of (9.12) to be negative. A
field £,; for which these requirements have been met is called
an extremal field; it is a pure electric field, in the appropriate

t The dual of the dual of a tensor is the negative of the original tensor,
in consequence of the fact that g is negative. The dual opcration corresponds
to a duality rotation angle of z/2. It is important to note that

*(e*a Fpy) = e*a% Fy,
Also, from the identity of the previous footnote,
Fyg Fal = —*F,p% Fab
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Lorentz frame. The extremal field is a convenient quantity
to manipulate. For the remainder of this section &,; will
denote the extremal field. An arbitrary ficld may be ob-
tained from &,4 by a duality rotation and a scale factor. It
may be verified, using the formula (4.15) for the Maxwell
stress tensor that all the components of T, are unchanged by
a duality rotation. Given an R, which originates in a Max-
well field, we cannot uniquely specify the Maxwell field, but
we can determine it up to a constant times a duality rotation.
It will be convenient to write the Maxwell equations in terms
of £,,, then to write another expression quadratic in &,,, in
terms of R,,, which then leads to (9.7). The Maxwell equa-
tions are expressed as

o

9 ) (* v gpv _31 H
o cos « + | *&wv,, — 3:0") sin a
(9.13a)

0= Fw,, = (fﬂv;,+*§ﬂv

du oot
—% v o= —fpy _kEpv___ Y} ®Euy __ Epv
0= F";.,—( Env,, En awv)sma-}-( En v En amy)cosm

(9.18b)
These are rearranged to give
Em, + *5#9% =0 (9.14a)
sew g% o (9.14b)
W ozv
The Maxwell field tensors satisfy the identity
F o Fva —*F *Fva = }5,» Fop Fof (9.15)

Multiplying (9.14a) by *&,, and (9.14b) by &,, and employ-
ing (9.15) gives
.e_a_ __ _2(*6[3‘; 6’"’;1} + éef*éﬂv;v)
awﬂ - 578 678
The problem now is to express the Maxwell field tensor

in terms of the Ricci tensor so that (9.16) can be written in
terms of geometrical objects.

(9.16)
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For convenience a fourth-rank tensor is introduced
which is constructed out of the Ricei tensor so as to have the
symmetry of the Riemann tensor. Such a tensor is E
given by
Eral‘v = %(—"LI‘Ra’v + 60'”R1V - 6cerl‘ + 6rchp) (9.17&)
and

»
Tﬂl‘ ’

Evs#r = L(R%:v — Rrkis) (9.17b)

By considering the extremal Maxwell tensor in a Lorentz
frame it may be verified that
C‘
E Eaﬂr& = - £aﬂ678 - *gaﬁ *678 (9'183)
This is a tensor equation; therefore, it is valid in general.
It may also be shown that
ct
E Eaﬂy& EY"I", = (Ra-r R‘”)i (_faﬂslw + *faﬁ*f;w) (9.18b)
By solving (9.18a) and (9.18b) for é.é.r we obtain

G
0—4‘ ‘Epv gdf = _iEpl’d‘f - %(Raﬂ Raﬂ)_i E;wys E‘"‘ya (9’19)
Now define the tensor F,z,; by

Faﬂy‘ = ‘}(_g)is‘yapv Eaﬂ’w = é‘(_gﬁ eyaﬂv(‘savRﬂ"_ 5,"R¢l‘)

(9.20)
and caleculate F,.4, 4 EY%7  as

F“ﬂﬂ Eﬂﬁf"’ = _5#" ‘Eﬂv(*faﬂ fpfzf + Eaﬂ *gﬂf;r) (%)2

= %873”,(64"]2”‘ - 6ﬂv Rap) RBﬂ;y '\/_g (9’21)
= Yearyu R¥TRS v/ —g
(9.5) and the relation for T,, in terms of F,, led to the rela-

tion (9.12); —(G/et) £,5428 = (R,, R#*)t. Comparing (9.21)
and (9.16) we see that (9.16), which is obtained from Max-
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well’s equations, can be written in terms of the Ricei tensor
as
P} £ RMisR v o/ —
o o EARY y Vg (9.22)
oxh R, R°"
Since (9.22) is the gradient of a scalar, its curl vanishes, so
we obtain expression (9.7),

Xp = &, 8 (9.7)

Given the Ricci tensor we may determine the Maxwell

field (up to a duality rotation) in the following way. Use
(9.22). Select some reference point and calculate

z
a(@) = [ o udos + g
Since the curl of « , vanishes, this is independent of the path.
oo is arbitrary. This value of « may be used to obtain
F,,=e¢e*£,,, since (9.19) may be used for the purpose of
calculating £,,, at each point. (9.22) does not exist for a null
field. Another fundamental difficulty is that allowed geomet-
ric data on an initial hypersurface may correspond to more
than one Maxwell tensor (45). This non-uniqueness exists,
for example, when the initial Maxwell fields are localized in
two separated regions. Duality rotation in one of the regions

gives different physics but may not alter the geometric data
for a finite time.

Figure 9.1

Wheeler notes that charges may be described by
admitting regions with non-Euclidean topologies which
are multiply connected. A schematic diagram of a
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pair of charges formed in this way is shown in Fig. 9.1. Such
a theory is equivalent to a theory with charge and a Eu-
clidean topology. Misner has noted that the total number
of lines which thread such a “handle” is a constant of the
motion.

Wheeler has also discussed stable solutions of the com-
bined Maxwell-Einstein equations. His ““geons” (gravitation-
al electromagnetic entity) are objects endowed with mass
which are made up of fields, held together by gravitation
(84).

9.2 Equations of Motion

It was noted by Einstein and Grommer (6) in 1927 that
the equations of motion of a system of masses are contained
within the gravitational field equations and therefore do not
need to be postulated separately, as in clectrodynamics.
Bergmann has remarked that constraints on the possible
motions appear as a result of relations such as the Bianchi
identities; the nonlinearity then leads to laws of motion such
as Newton’s laws. An extensive literature exists on the de-
duction of the equations of motion and their connection with
the problem of radiation and the conservation laws. We
should like to stress that the proposed methods for detection
and generation of gravitational radiation, given earlier, in-
volve electrical as well as gravitational forces. Any conclu-
sions derived from consideration of the equations of motion
and the radiation problem for gravitation alone may not
apply to the results of Chapter 8.

The following discussion of the equations of motion is
due to V. Fock (7). In the zeroth approximation, space is
considered to be flat, and a Lorentz metric is used. The stress
energy tensor is then taken to be (Latin space indices)

700 oy pMcz 70 ~y pMCU'. (9.23)
In this approximation, 7%, ~ 7% ,, and
oTee 970



154 GENERAL RELATIVITY AND GRAVITATIONAL WAVES

The weak-field solutions (7.18) are

‘_"E (T'oo)remrdeddaw _ E J‘ (T’ 04)retardea &
Poo = P lr I y Pot = 'r _ rII

(9.25)

26 & J’(T'w),eww"'m"d"a:'
P = "8 o2 [r — |
For low velocities v/c < 1, and in this approximation

only @q, and gy, need be retained. Using (7.2) and (7.10) it
then follows that

8oo & —1 + §@go; gt~ 0" 9.26
)

8o: & Pos (9.27)

In the next approximation we must consider 7'#%, = 0; this
gives, using (8.88),

T
a ay Tav + I""" TI“ =0 (9'28)
which we write as
oT%® 970!
ot + ozt + Iy, Tav + I'v,,, T = (9.29)
oT#*®  aT" '
S+ 55 + Dw T + 7, T =0 (9.80)

The last expressmn, (9.80), will now be seen to be the
equations of motion in the Newtonian approximation. Again,
at low velocities, Ty > T,,. Using this and retaining only
first-order terms then leads to

oT* GPM (" 00 Jretarded &Pz’
at (PMv)+ ox* I lr_rll

=0 (9.81)

ps is the matter densxty when measured in the local rest
frame of the matter. The first term on the left is the inertial
term, the second is a force per unit volume due to the space
derivatives of the pressure, and the last term is the gradient
of the gravitational potential.
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We may deduce the geodesic equation for a particle,
following Papapetrou (85). First integrate the relation
Twr,, = 0 over the entire three space, employing the form
(8.76). Surface integrals may be dropped because the particle
is localized, and we obtain

;«,%J‘T"“ (—g)d’z = —fF/‘aﬂT af(—g)idiz (9.28A)

Now integrate the product 27T#»,, = 0 over the three space,
again dropping surface integrals, with the result

%fw’/Tﬂ"(—g)‘dam =J.T/47(—g)*d3a: —fm?PﬂaﬁTaﬂ( —g)idsz
(9.28B)

Since these integrands are zero except for a small region
it is appropriate to represent I'*,; by the series

Pl‘aﬂ = 01"'/‘,‘9 + oI‘l‘ap,,éw" N

The prefix zero refers to the value at the point which is
taken as the position of the particle. Account must now be
taken of the structure of the particle. Papapetrou defines a
single pole particle as one which has only some of the inte-
grals [ T#*(—g)'d*r not equal to zero. A pole-dipole particle
has at least some of the integrals [ Trézes(—g)id3z and
J T#(—g)d® not equal to zero. Extension to higher order
multipoles is evident. For a pole particle only the first term
in the series for I'#,; is needed and the relations (9.28A),
(9.28B) give

d
d-;ofrw(—g)*daw + oI, [Tor(—g)id*z =0  (9.28C)

f Teb(—g)dz = ‘%J'Tﬂo(—g)*dam (9.28D)

In (9.28D) let B = 0, this gives in terms of the four velocity
U= = Udz>[da®,

dx=
‘[TQO( _g)3d3x =m ‘-i?o = man (9.28E)
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The rest mass m, has been set equal to (U%)-1 [ T9(—g)td3z.
Substituting (9.28E) back into (9.28D) leads to

_[ Ta8(—gPddz = maU=USJU, (9.28F)

We may now employ (9.28F) in (9.28C). The result
after using (9.28E) is

aUus
—5 + TrUsUs =0 (9.81A)

which is the geodesnc equation.
Extension of this procedure gives equations of motion
for a pole-dipole particle. The spin I# is defined by

Ies = [6a=To0(—g)idz — [ 8aPTa0(—g)id%
and the equations of motion for I+# are

I s1¢0
2 v, 22 _yeu, 2 _ o (9.81B)

5 TV 5
Again, as in chapter 8, §/6s denotes covariant differentiation
with respect to s.

Schiff (86) has employed (9.81B) to study the precession
of a gyroscope which has a non gravitational constraining
force F, in the earth’s gravitational field. His result to lowest
order is that the spin vector I° measured by a co-moving
observer satisfies the equation

a1
dt

[F X v[2mc? 4 (8GM [2¢%r3)r X v

+ (GJ|er)(3[@ - Tirjrt — (o)] x Io (9.81C)

In (9.81C) v is the velocity of the gyroscope, J is the moment
of inertia of the earth, w is the angular velocity of the earth,
r is the radial coordinate. The first term on the right gives
the special relativity Thomas precession, the second and
third terms are effects of general relativity. For a spinning
top on earth, a precession of ~ 1078 radians per day would
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be expected. Observation of such effects on earth or in a
satellite experiment would provide a test of general relativity.
Somewhat similar suggestions were put forth (unpublished)
by R. A. Ferrell (Gravity Research Foundation Essay, New
Boston, New Hampshire, April 1, 1959) and later by R. A.
Pugh (Weapons Systems Evaluation Group Memorandum
11, November 12, 1959).

It is possible to deduce the equations of motion of isolat-
ed masses in a purely geometrical way (8, 9) using the left
side of the field equations alone. Higher approximations to
the equations of motion including effects of radiation have
been obtained by a number of authors (10, 25, 27).

9.3 Mach’s Principle

The Mach principle states that inertia is due entirely to
the mutual action of matter. Thus a particle is considered to
require force to accelerate it relative to the other matter in
the universe. At least part of the centrifugal force appears as
a mutual effect, in general relativity. Consider the geo-
desic equation for the space indices, keeping terms up to

(vfe)2:
d2zt da® da! d2® v vk
X e
ds® (ds) +2P’°dsds+P’k c?

Here v is the ordinary velocity of the particle. To first order
in h,, the Christoffel symbols are

Iy =~ —3ho, ¢ + hoio
Iy~ $(hij0 + hio s — hy,:)

Iy~ 3higse + hiy — by s)
With these substitutions the geodesic equation becomes

P ‘?;‘ =(%)2 [V(czh,,o/z) — 3“;:“‘)]

d.z"’ da’ dz? da°
+ = ds (R0, s — Rio, 5] — Cahu.o’g s

(9.32)
— I, vk
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We employ (9.82) to study the motion of a particle inside
a hollow spherical shell of radius R and rest mass M. First
let the shell rotate with angular velocity  with respect to an
observer within the shell. Let Rg, 6, and @ be the spherical
coordinates of an element of the shell and let a, 6, and g,
be the spherical coordinates of the point within the shell at
which the field components are calculated. U# will denote
the four velocity of an element of the shell as seen by an ob-
server within. The rectangular components are

wRssinfsing . Ut wRg sin 0 cos ¢
" eca/[1—w®Rs®sin®0/ct]’ = c4/[l—wiRs%sin26/c?
1 (9.88)
4/[1 —w?Rg? sin? 8/c?)

The mechanical stresses in the shell are assumed to be small,
so the stress energy tensor is approximately pyc2UsU>. The
expressions (7.18) are then

& _ 4G [pu U, U”d%
BT et |r —r'|
We are using @, for the quantity 4,, — §d,, A, reserving ¢
for a coordinate. ‘
jr—r’|=[a%4 Rg®—2a Rg[cos 0 cos 0,+sinf sin O, cos(p—p,)11¢
(9.85)

U=

U8=0; U =

(9.84)

fr — r’|"! may be expanded in the series

a® a

1
r—r/|-l=— [1 —_—
|r—r’| 2Rt T Rs

Rs (cos 0 cos 8,+sin 0 sin 0, cos [¢p—q,] )

8a® . .
+ EYE (sin 8 sin 04 cos [¢ — @o] + cos @ cos 6y)2 + . . :I (9.86)
s
Now py is the density in the rest frame of an element of
the shell, while d&®z’ is a three-dimensional volume element in
the rest frame of the observer. In order to express the result
in terms of the rest mass of the shell we note that a volume
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element d3z" in the shell rest frame covers a region d32’ such
that
3z’
Bz = ———— 9.87
Vi ®37)
Utilizing (9.88) through (9.87) and carrying out the integra-
tions then gives to order v%/c? the values

b — 4GM w?Rs® 2w?a® w®a®sin?é,
0™ e2R¢ 8¢2 ~ 15¢° + 5¢2
b — 4GM [w®Rs®* w?a®sin®f,sin?p, wia
117 g2Rs | 8c? 5c2 T 15¢2
b — 4GM [w?Rs®  w?a?sin? 6, cos?® g, _ wia
27 2Rs | 8¢ 5c? 15¢2
b — 4GM w?a?® sin® 0, cos @, sin @,
127 5cRg (9.38)
b — 4GMwa sin B, sin ¢,
10— 8c®Rg
b — 4GMuwa sin 6, cos ¢,
2 8c*Rg
4'GM szsz
(p:qj"”:-cst[ T 8¢t ]
From these k,, may be calculated as

huy = Dy — 36, P (9.89)

A study of (9.88) and (9.89) indicates that the last two

terms on the right of (9.82) are of an order higher than (v/c)?

and the factor dz®/ds may be omitted from some of the re-

maining terms. For this case the geodesic equation then
takes the form

d*x da®\2 0A
= _(E)5[+VXVXA (9.40)
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where V = ¢%hy/2 and 4; = chy;. If we now set a! = z,
x? =y, 23 = z and write (9.40) in component form, the
equations of motion for a particle inside the shell are

d? GM d
c? &z _ [‘*w r — 8w _3{]

ds® ~ 8¢®Rg dt
dzy GM da
¢ TF = goRe Rs [%wzy + 8w E] (9.40a)
. ﬁz _ 8GMw*z
¢ ds? - 1562Rs

It is clear from (9.40a) that we are observing centrifugal
force on a body at rest inside the spinning shell. The effect
is, in general, a small one — a factor ~ GM [c2Rg times the
value resulting from rotation relative to the other mass in
the universe. This result was given long ago by Thirring.

If the shell does not spin but is given a translational
acceleration in the 2* direction relative to a test particle in-
side, we have, from (9.34) and (9.87),

4GAMUS
T 3Rs(1 — vg?le)
Here vs is the velocity of the shell. (9.40) then gives for a
particle momentarily at rest inside
dzx 4GM VsVs
ar = c2Rg(1—vg?/c?)d (1 + (1 — vs2/c"’-)) as (9.40b)
In (9.40b) a5 is the acceleration of the shell.

Consider a solid mass M instead of the shell and accel-
erate M relative to a small mass m. If m is momentarily at
rest its acceleration may be calculated using (9.82) and em-
ploying the potentials of (7.18a). If we retain terms only up
to v/c the acceleration of m is
dex GM ( \A RM) 4GM( v RM)

dsi—V Ry 1+ cR 2Ry,

hlo = ¢10 = CAI == (9.4‘1)
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v and a are the velocity and acceleration, respectively,
of M, and Ry, is the radius vector from m to M. (9.40c¢) con-
tains terms which depend on the direction of the acceleration
relative to the radius vector from m to M. These are roughly
vfc times the isotropic effect of the acccleration.

From a consideration of (9.40) we may conclude that the
term VV includes the centrifugal force associated with rel-
ative rotation, and the term (d2%/ds)*dA /ot represents forces
due to relative velocity and relative acceleration. The term
v X V X A leads to Coriolis acceleration. For the rotating
shell V x A gives an internal field similar to the magnetic
field inside a spinning charged sphere. These considerations
indicate that for the universe as a whole GM[c*R ~ 1 if
Mach’s principle is a valid one.

This treatment shows that inertial effects depend at least
in some degree on the mutual action of matter, according to
general relativity. This does not satisfy the requirements
of Mach’s principle because with no matter present other than
a test particle, inertial effects still appear. Special relativity
is a limiting class of solutions, if no boundary conditions are
imposed. We may always choose coordinates such that in-
ertia appears as a local property of space and all terms on the
right side of (9.40) are transformed away. It is evident from
an equation such as (8.18) that inertia will be unequivocally
isotropic? in consequence of the form of the stress tensor for

{ Cocconi and Salpeter (29, 80) have considered the effect of anisotropy of
inertia on the structure of spectral lines. For the gamma radiation of nuclei
in crystals, the atomic magnetic field leads to (2J +1) equally spaced com-
ponents of the nuclear energy level. With the anisotropy of inertia 4M, each
component is shifted by an amount (AM[M)TP,, where T is the average
kinetic energy of the nucleon and P, is a coefficient whose value depends on
J, on the magnetic quantum number, and on the orientation of the magnetic
field relative to the direction toward the galactic center. In the Méssbauer
effect observations, the transition frequencies in absorber and emitter are
compared. Relative motion is produced and the counting rate is observed
as a function of the relative velocity of emitter and source. Resonance occurs
successively as lines overlap, provided the selection rules permit excitation
by the shifted lines. The number of peaks observed will then change if the
relative spacing of the Zeeman components is altered and if the atomic fields

{footnote cont'd)
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a particle with scalar type rest mass. For these reasons the
experiment of Hughes, Robinson and Beltran-Lopez (89)
must be regarded as providing strong support for the present
formulation of the general theory of relativity, and no sup-
port for a strong form of Mach’s principle.

Einstein (11) and more recently Wheeler have explored
the possibility that Mach’s principle is not a consequence of
the field equations, but is a boundary condition. If we have
an ““isolated’ system we should require that at large distances
the metric join in the proper way to the metric of the remain-
der of the universe. Satisfying this boundary condition
would represent the mutual action of the matter in the uni-
verse on the mass in the “isolated” system. Carrying through
such a program might lead to relations between inertial
properties and the far-distant nature of the universe.

Other points of view on Mach’s principle have been
presented by Dicke and by Sciama (87).

9.4 Remarks on Cosmology

The equations of general relativity have solutions which
appear capable of giving a description of the universe and its
evolution. Long ago Einstein considered the problem and
concluded that the equations do not admit a static solution
for the universe unless an additional ‘“cosmological’” term
g, is introduced into the field equations. Later it was shown
by Friedman that nonstatic solutions exist, without addi-

are aligned. If the atomic magnetic fields are randomly oriented in emitter
and absorber then the anisotropy of inertia broadens the lines. A Mossbauer
effect experiment gave a negutive result (88).

An elegant and much more sensitive test of anisotropy of inertia was
recently carried out by Hughes, Robinson, and Beltran-Lopez (89). They
observed the nuclear magnetic resonance frequency of the Li? nucleus in a
solution of LiCl over a twelve hour pericd. The earth’s rotation changes
the orientation of the apparatus relative to our galaxy. This method is un-
usually sensitive because of the large kinetic energy which arises from a Py
proton in the nuclear potential, and the great accuracy with which the abso-
lute value of u nuclear magnetic resonance frequency can be measured.
Their negative result establishes AM/M < 10-%,
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tion of a cosmological term. The discovery of a red shift of
spectral lines, increasing with distance, suggests that the
universe is indeed nonstatic, in an expansion phase at the
present time.

A universe with positive curvature would be closed,
finite, and unbounded. This is a very attractive idea. Other
cosmologies have been constructed, notably by Bondi, Gold,
and Hoyle. We limit our discussion to Friedman’s solution
(12).

The assumption is made that the universe is spatially
isotropic. This is supported by the observation that the
density of stars appears to be the same in all directions. An
appropriate metric is

—ds?t = dI* — dz* (9.42)
d? = g, dz*dz! = Y2ad(dx"’ + d2®* 4 dr¥')  (9.48)

In consequence of symmetry we can expect g, to have
the same kind of space dependence at all times, so g,; should
be the product of a function ¢ of a2 alone and a function a of
z1* + 22* 4 2% = 72, Here the coordinates 2%, 22, 23, and 7?
are dimensionless numbers. We need expressions for the g,,
in terms of the curvature invariant of the space. Suppose
we have a curved space and we introduce at a given point a
pair of vectors A# and B*; the quantity R4, A*AYBAB? is
a scalar. Another scalar is (g,,8s0 — gz285,)A2AY BFB?, and
the tensor g.,gss — gas85, has been constructed to have the
same symmetry as R.z,;. The quantity Ky, given by

Ko — R,pys A2A7BSBS
B = (€ay8ss — 8as8sy)A=AYBFB?

is also a scalar. Straightforward calculation shows that Kp is
unchanged if 4 and B are replaced by any linear combination
of A and B. Ky is called the Riemannian curvature. For an
isotropic space, Ky will also be independent of the directions
of A# and B#, so at a given point Kp has the same value for
arbitrary A# and B#; therefore the Riemann tensor in iso-

(9.44)
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tropic space is given from (9.44) as

Rapys = Kn(gay8ps — Eat8sy) (9.45)
We employ (9.45) for the three space. The component Rigns
is given by both (9.45) and (8.48). (9.45) gives zero for it
and we write

Ripg = —€u1,23/2 + (8/4) 8" [gas,2811,3] =0 (9.48)

We have made use of the fact that
0 or 0
g11= o2 =gz Now 22 ot or

(9.48) and (9.46) give

da\® a da d*a
2 (a‘) Tar %
Expressions for components Ryys;, Rjgq, and Ry, may also
be obtained by comparison of (8.48) and (9.45). These are

combined and the term d2a/dr? is eliminated using (9.47).
The result is

=0 (9.47)

1 {da\? 2 da
2 2 — i — - =
Y*Kpa® + a? (dr) +ar dr
(9.47) and (9.48) express the requirements on ¢ and ¢ which

are imposed by the isotropy of the space.
Solutions of these equations are of the form

¢ . _ 4ca0g
¢y + c3r®’ BR™= g2ep2
An adequate description will result if the constants are
chosen so that

(9.48)

a= (9.49)

1 4o

“=iyer T (9:50)
The metric therefore assumes the form
g2
12 23 _
[1 r2]2 [dx 4+ dx® + dz®] (9.51)
g? 2 2 2202 ¢
—ds? = ——————= [dr? 4 r%sin? 0 dg® + r?d6?] —da® (9.52)

Tt e
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we again note that & has the dimensions of length, r is
dimensionless. The “radius” is given by 2, with

® dr
For «a >0
n%
A = o (9.54)

From (9.54) we see that « is a factor related to our unit of
length. Coordinates may be used in which « = 1, when
(9.54) applies. The use of (9.45) to calculate the curvature
scalar 3R gives

3R, =2Kgrg, (9.55)
3R = 6Kp = 24a%~2 (9.56)

We see from (9.54) and (9.56) that for « = 1 we have a
finite, unbounded universe with positive curvature. With
« = 0 we have a “Euclidean’ open space and with « nega-
tive we have a curved open space with negative curvature.
The assumption is now made that the stress energy tensor
can be assumed, to a good approximation, to have only the
one component Ty = pyc?, all others vanishing. The field
equations are then

dé\2\ 1 8nG
Ry — 3goR =38 (4a+ (@) )@ =_c#! (9.57)

dg\2 a*y
Ry — dguR = (4“ + (@) +2gw) g*=0 (9.58)

with identical expressions for Ry, — }g,,R and Ry, — 38, R.
From subtraction of these equations there results
B*Y  4AnGpu G

Ttz =0 (9.59)

Since both pyr and ¢ are positive, (9.59) indicates that ¢
cannot have minima, cannot have inflection points, and can-
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not be time independent. For “Euclidean” space, a = 0;

(9.57) gives
1 49 8 Gpyy
(g w) =8 (9.60)
For « # 0 (9.58) and (9.59) give
Su@”pMG
( d::) —gi— — 4 (0.61)

(9.58) has assumed the pressure to be zero. The total
mass M at any time is given by

o0 @ 3 )
M= py J; (1 s ”,) ridrsin0dodp  (9.62)

If the total mass is conserved, ¥py is independent of
time. We may therefore set 821G %3py[8¢c® = ¥, where F,isa

t
Figure 9.2

positive constant, and obtain

2 G,— 4a¥
(3—;) =-—2"—g—a— (9.68)
For « = 41 we have a closed universe with the time de-
pendence of ¥ as shown in Fig. 9.2. If « = —1, ¢ increases

monotonically.
The most attractive possibility, « = 41, can be tested
by using Eqgs. (9.60) and (9.61).
1 dg
G da®

can be calculated from astronomical data on the expansion
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rate, and py may also be estimated from observations. If
( 1 d?)ﬁ 8rGpp

9 da° 8¢t

then a positive value for « is allowed. Present observational
astronomy data give too small a value of py, to give positive «.
Wheeler and Ivanenko have both remarked that the idea of
a closed positively curved universe should not be discarded
before we are certain that our knowledge of pa is sufficiently
good to rule it out. Other presently unknown sources of
energy may give values of matter energy density consider-
ably in excess of what is indicated by observations using
visible light alone.

9.5 Hamiltonian Formulation (14-17, 19-22, 26)

The theory which has been presented thus far is in
Lagrangian form. The functions (6.5) and (6.10) were shown
to lead to the field equations, and (6.10) permitted us to
write the Lagrange equations (6.14).

In quantum theory the Hamiltonian form is the one
which has been employed most successfully. In mechanies
the Lagrangian L is a function of the coordinates ¢, and veloc-
ities ¢,. The Hamiltonian is a function of the coordinates
and momenta and is defined as

H=p4q,— L (9.64)
The momenta p; are given by
oL
P = 5&: (9.65)
The equations of motion are
oH | oH .
5%’ =45 3—% = =P (9.66)

For any other dynamical variable, say b,

ob 0q, 9b dp, ob OH b oH
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In (9.67) [b, H] is the Poisson ‘bracket, defined by
ou dv ou v
09: Opy  Opy 9q,

In order for this ““canonical” formalism to be applicable
the p’s and ¢’s must be independent variables in the following
sense. No constraints, that is no a priori relations should
exist to relate them.! We have seen that several kinds of con-
straints do exist in general relativity. Expression (7.96) ex-
presses some of them as a set of equations which must be
satisfied by the initial values of the fields, and also at all
subsequent times. The term constraint is used also to express
the fact that there is some arbitrariness in the theory — for
example the gauge group in electrodynamics or some aspects
of covariance. Here we are following very closely the dis-
cussion of Dirac (16, 22).

When the Hamiltonian form is considered, the con-
straints may appear as soon as the momenta are defined by
(9.65). We may find that the p’s are not independent funec-
tions of the ¢’s. Suppose there are a number of independent
relations which appear as a consequence of (9.65), which we
write

Pm(p,q) =0 (9.68)

Dirac calls all equations of constraint and equations which
are valid in consequence of constraints weak equations and
writes them as f,.(p, ¢) ~ 0.

The method of “Lagrangian’ multipliers will be employ-

1 Such a requirement corresponds, in the Lagrangian formalism, to
being able to solve for the ¢, in terms of g, and ¢,. The Lagrange equations

d L 9L
dt 3,
may be written in the form
. oL éL
Qs — A =
9,94, o,

The latter set of equations may be solved for §, only if the determinant with
elements 92L/3§,84, does not vanish. If it does vanish, some procedure
essentially equivalent to the one given here must be used.
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ed. When the action principle 6/ = 0 is written to obtain
equations of motion, we obtain first

) . OH oH
ol = f(SL dt =J[6p,qi +p; 94, ~ %, op; — 70 6q,.] dt (9.69)
Now let the Lagrange multipliers be u,. We add

0P 0P ]
- u'm(5 m = —Uy [ o i 0 i 9.70
4 2g, 9 T 3p, P (9.70)

to the integrand of (9.69) and then set the result equal to
zero. For variations which vanish at the end points, the
equations of motion,

. 0H " OP
9 =55 T Unp”
pi pc (9.71)
_ _9H pm
Pi= "2, T ¥m 3,

then follow. The u,, are functions of p’s and ¢’s. The time
derivative of any dynamical variable, say A, is given® by

04 o4 ‘
A= a—q;q‘ -+ 517‘})‘ = [A, H] + um[A7 (Pm] (9‘72)

Some of the functions ¢,, represent real arbitrariness in
the problem. For these, different choices of the arbitrary
functions correspond to the same physics. Such “constraints”
are called first class by Dirac and he provides a systematic
procedure for singling them out. Other types of constraint
may represent real restrictions, for example on the allowed
initial values, and these are also taken properly into account
by Dirac’s procedure. Since g,, vanishes for all time it follows
from (9.72) that (letting 4 = ¢,,)

[‘pm" H] + um[(pm" (Pm] =0 (9'73)

! ‘The constraint relations must not be employed anywhere in the eal-
culation of Poisson brackets; that is, the p and ¢ are considered independent
in this instance.
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If (9.78) can be solved for the u,,, the problem is finished, if
not the equations (9.78) may give additional relations be-
tween the p;’s and g¢,’s such as

in(@yP) ~ 0 (9.74)

We may again write
[tes H] + Unltx> pm] =0 (8.75)
These expressions may be employed to solve for u,, obtaining
U = Unlg, D) (9.76)

A study of (9.78) and (9.75) indicates that any
solution of

Vol@mis @ul 0 Valti, @ul 0 (9.77)
may be added to (9.76). The general solution is therefore
U, =Up+1v.V,m (9.78)

V.. is a set of independent solutions of (9.77 )

Here the v, are arbitrary coefficients, functions of time.
By use of (9.78) we may eliminate the u,, introducing the v,
as variables. These plus the independent p, and ¢; may be
less than the initial number of p and g variables. (9.78) and
(9.72) give for the general equations of motion

A =[A4,H] + v,[4, @] (9.79)
with

H =H + Um‘pm; P = VemPm (9'80)

Formally a constraint is said to be first class if its
Poisson bracket with the Hamiltonian and all y, and ¢,
vanishes. The other constraints are called second class.
Other authors have called the g,, equations primary con-
straints and the y, equations secondary constraints.

(9.78) indicates that the Poisson bracket of ¢, with H’
vanishes. Also

(H', H] ~ Up[pw, Hl 80 (9.81)
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(9.81) is seen to vanish in consequence of (9.77) and (9.78),
after multiplying (9.78) by U, Also (9.78), (9.75), and
(9.78) show that the Poisson brackets of H’ with xand @,
vanish. H’ is therefore first class. The Poisson brackets of
@, With @, and g, vanish in consequence of (9.77). The
Poisson bracket of ¢, with H vanishes because of the vanish-
ing of its Poisson bracket with H’. g, is therefore first class.
Equation (9.79) is seen to be made up of the first-class
functions H' and ¢,. The v, are arbitrary, not restricted by
cquations of motion. The number of arbitrary functions of
the time v, in the general solutions is seen to be the number
of independent first class ¢’s. Dirac remarks that in practice
we know what arbitrary functions there are in the general
solution, in consequence of the invariance properties of the
action function. This allows us to identify the first-class func-
tions without calculating Poisson brackets. As we shall see
later one may need to do this before the Hamiltonian is known.
For a field we may imagine all space to be divided into
cells. (9.65) is still valid, but 4 is being varied only in a
particular cell of volume Ar. The Hamiltonian is

oL
H=73 (a—’ g — LF) dr (9.64A)
cells i
The momentum density z; is given by
oLp .
T o= 3—q, (9.65A)
We may write (¢ is summed over all variables)
H = [(n4; — Ly)d% (9.64B)
and introduce the Hamiltonian density o#, by
H = a,; — Lg (9.64C)
From (9.64B) we have (j is summed from 1 to 3)

oL oL, 3Ly )
= 0, 4+ d.0m, — —= e — L— . . 3.
oH f(n,éq‘ ! qtévi aq ‘5‘1- aq’ ‘5‘1. aq._’j aql.! dx

. oLy 0 éLg s
—J.(q‘én,- — 5q-‘- oq; + 3 m 6q,-) d*x  (9.64D)
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On the far right of (9.64D) we have omitted a surface integral.
Employing the field equations (4.8) reduces (9.64D) to

oH = [ (dbm, — 709,)d% (9.64E)

From (9.64E) it is apparent that 5# is a function of
g; and m, so we may Wwrite

o k4 o o
o8 = [ (52 a0, + g 800+ o 07 5 70

on,,;

3 j[(w A (a.# AP (9.64F)
N 3%_3‘”’39:.:) %+ 377:&—3‘73’ 37‘(.1) 7:,] m

Again surface integrals have been omitted on the far right
of (9.64F). Comparing coefficients of dq;, d; in (9.64E) and
(9.64F) then leads to the field equations

o 3 ot

(9.66A)
e - (B 22
e oq; 0z’ 0q,
To obtain the time derivative of some quantity E, given
as the three volume integral of a density & we write

E—J.(E_’f- 28 L 9 e (eerA
= 3q‘qi + aqi,jqf,!"l— 3nin‘+ 3::‘,,""’) z (9. )

If & and 5 depend on higher derivatives of ¢, and =, these
would also have to beincluded in (9.67A), (9.64F)and (9.66A).
We now make use of (9.66A) in (9.67A), omitting surface
integral terms, and obtain

b [ -2 252
- 99, ] ALY — ozt o, s
& 8 A& \(o# 0 00X
(96 _ 9 96 (L _ 9 T\ g
(an‘ oz’ om,, ,)( aq; ox 3q.-',)] d’x (9.67B)

dEAH OQE S 3
= [E, H] —J[395 o, - On, Bg, &=
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This expression defines the Poisson brackets for fields. The
functional derivative notation on the extreme right is em-
ployed by some authors. If E is not available as a volume
integrated density, it may readily be converted into one by
simply using a delta function.

If there are constraints relating the ¢, and =,, we may
proceed as in the deduction of (9.71). The result is that the
term

is added to the right side of the expression for ¢, and the term

(3& iai’m_)
T ¥%m\3q, ~ 3 g, ,

is added to the right side of the expression for z,, in (9.66A).
The equation of motion (9.67B) becomes

i [(w ] w)(m A um[% 2 3%.])

0, o, )\ G " wion on, 3 o,

_af i o€ (3‘3? _3_ 0 [3q)m 0 op,, ) &
- (ant "~ oal 3":.;) oq, T o 39{.5+ U og; —3—@"39;.:} ] v

(9.67C)

and the result corresponding to (9.79) is
E = [E, H'] + [[E, p,)d% (9.79A)

In general relativity the field variables are those needed
to describe the geometry of the three space at any given time.
The field history is then a succession of curved three spaces.
It is therefore reasonable to search for a canonical formalism
which will end up with only six g;; and their canonical mo-
menta as the required variables.

Consider now the gravitational Lagrangian density?

¢ In this section we are using units for which 16aGfct = 1.
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-?G ‘\/_g = g’w(F"pp Ppw - I'va I'”pc) \/—g
= (1/4)8 v, Bas.o{ (g g*F —gra g )gee (9.82)
+ 2(gregfr —grog*)g} V-8
The Lagrangian is [ #g[4/ —g] d*. The field variables are the
8uvi Bav,0 are the velocities. The g,, , are functions of g,,

alone, independent of the g,, . The momenta =#*, canonical-
ly conjugate to g,,, are defined by the statement

[82olv—g] = [nmdg,, (9.88)

A study of # g4/ —g shows that it does not contain any
terms which are quadratic in g,o,o. It follows therefore that
##° will be a function of g,, and g,,,;, which we denote by f&.

7"‘0 R /P(gavs gav.i) (9'84')

The f# functions are constraint relations. It can now be
shown that the equations of motion in no way restrict g,,,¢
and that the constraints (9.84) therefore are ‘first class.”
If the infinitesimal coordinate transformation

xr — ap 4 be
is carried out,

gpv(m) - g’pv(wl) = ‘sg;w = gppbp.v + 8vp bp.p (9-85)

Let b = }(a® — c)®p°(z'), where f7(z*) is an arbitrary func-
tion. Then on the hyperplane z° = ¢ we have

08, = 0; 08uvo = (84p0.° + £.,6,°)8°

8840 = 0; 08u0,0 = Bu + 8,280

Since 8 is arbitrary it follows that an arbitrary change in
8u0,0 does not affect g,, or g,

It is convenient (following remarks of V. Bargmann) to
note that some variables of the four-dimensional manifold
will not change their values on the given spacelike surface
for coordinate transformations which do not affect the coor-
dinates on the spacelike surface. Such variables are called
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intrinsic. More precisely, if we carry out the coordinate
transformations

z'# = FA(a®, 2!, 22, 27)
and F*# satisfies the conditions
Fo(c, 2, 22, 2%) = ¢’
Fi{(c, 2!, 2%, 2%) = a*,
the variables which are intrinsic do not change their values.
Thus the g, are intrinsic. The g, and g,; are not intrinsic
and may be varied arbitrarily by choice of F° or particular
coordinates.
We may expect that the intrinsic field variables will play
the central role in the Hamiltonian formulation of general
relativity.

The Poisson bracket relations to be employed here are
(9.67B).

[g'aﬂ’ nl‘”] = %(6¢” 65” + 6ﬂl‘ aa”)as(w, - {B)

g ap is the value of g, at 2® = ¢, 2, 2, 2”.

Dirac notes that a study of .#; indicates that it ean be
modified to make f2(g,,, g,,,;) vanish, without affecting the
equations of motion. This can be done by adding the ex-
pression

ALev—g={(V—gg™),g"g"}) .. — {(V—=2g"),g°/e"} ,
(9.86)

to Lo/ —g. [ALeV —gdix can be written as a surface in-
tegral, so it will not affect the equations of motion. The new
Lagrangian density function #g*+/—g is obtained after a
somewhat tedious reduction as

-g’G*‘\/_g —_— & l:(eraesb _ eraeab) (_4]‘0" Foab
+ {grs.u guo - (gfa, s +gsa, r )gaO} {gab.v gm - (gaﬁ, b +gbﬂ. a )gﬂO} )/goo
T 8o, iBan s {(g#7g*F — gragr?)g"+2(grgh —grig=t)g"} 1/ —g
(9.87)
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with
er = gmr — g0 g[gh (9.88)
Carrying out the operations listed in (9.88) with £* instead
of & gives _
0LG* v —g = (€€ — e )0 Ogys,0(v/ —8) (9.89)
So the momenta =" are

A = (e%e® — eme®®) 0,4/ —§ (9.90)
which may also be written -
I v/ —8 = (€rales — $8rsBar) @™ (9-91)

Suppose that we have the hyperplane #* = ¢ and some
intrinsic field variable # such that 5 depends on the g,; and
on the field variables for other than gravitational fields
which may be present. Displace the surface 2° = ¢ so that
each point a# goes into z# + a#, with a# small and a function
of z' alone.

on = Iépaﬂ d’z (9.92)
with £, a function of z':
a%no = fgodam (9.98)
Let I# be a unit normal to 2° = ¢:
I, =1lg, =0; rl,=—1 (9.94)
An expression for l# with these requirements is
e = gro(— o)t (9.95)
Let &; be defined by the relation
— Ep =g, = gh(— g0)HE, (9.96)
o= (— &) ey — g% [e (9.97)
Recalling (9.88) enables us to write
€8, = et 8pa = 6. — gm 6a0/g00 (9'98)
€?g,. = 0, (9.99)

g0 = —g"/g" (9.100)
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Using these relations (9.97) becomes
fo=(—g")ytéL + goems, (9.101)
and (9.93) becomes
0
=l + gemtlde (0202)

We want to have 99/dz® = [5, H] and this is accom-
plished by writing for the Hamiltonian

H =J[(—g"°)"* Ky + goeH,dz  (9.108)
provided
[, L] = &L; [, e H#,] = em¢,

1, and 5, will have both matter and gravitational parts
and depend only on the intrinsic variables. The standard
definition of the Hamiltonian gives for the gravitational one,

denoted by Hg
Hg =f(n"gn,o — ZLe*y/ —g)d%x (9.104)

using (9.87) and (9.90) this is expressed as

Ho = [4(guo + [V Jg)% + } [ (g (e — reen)

* {grs.uguo - (grz.s+ gu.f)gao} {gvo Eab,0 — (gnﬂ,b +’ gbﬁ.a)gﬁo} /goo
— Buv,i Bap,s { (817 gaF —gragrh) g —2(gh goh — guaghi )} ] diz
(9.105)

Using (9.91), (8.29) and (9.100) the first integral on the right of
(9.105) is written

J‘nn(g's.o.;.]“o"/goomax = f{( _gOO)-l(_ g)"& (gra s — %gngab)nnnab
+ guo e [n"gp,0 — 2(n"g,,),)} P2 (9.106)

Dirac gives a procedure for eliminating the velocities and
reducing the remainder of (9.105) to the canoniecal form
(9.103). A study of the second integrand of (9.105) indicates
that no term of the form ge™5#,, with 5, only a function
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of g, 8,5 can originate there. It is therefore necessary to
calculate only the contribution to (—g®)-1;,. Since s#,
also depends only on the intrinsic variables g,,, g,, ; it may
be calculated assuming g;, = 0. The determinant g may be
written in terms of 3g, the determinant of g,,, as gg® = 3g
After omitting a surface integral the result is

H = [[(—g) H{Ce) H Bt — $880)a"2®

+ *(Sg)} g"." gab.v{(em e — 8"6“? )euu + 2(8"‘ 9% — pra gbu ) ew}
+{Cel guulee™ — e™e)),, + Hur}

+ Emo €™ [ g0 — 2(7" o), +H u0 1] P (9.107)

with 3£ and 5, the parts of the matter Hamiltonian cor-
responding to the parts 5#; and 5#, of (9.108). There are
thus only six degrees of freedom corresponding to the g,, left,
since z#% vanish in consequence of the modification of %,
which arranged for (9.84) to vanish. Also the relations (9.108)
plus the requirement [#*°, H] = 0 leads to 3¢ and ¢, van-
ishing in consequence of the constraints.

In the weak-field approximation the Hamiltonian which
includes terms up to (k,,) is given by

H = [[a"a™ — " 2% 4 1800 8rsu — Hriu Busn
+ 38re,r Buvs — 38rs,u Bru,e T F MLl
— [ ([—ool ™ —1) (Grn.rs— Gorsss — H11) B2
— [go(2n7, — Hrgy) d

For a particle of rest mass m the action is

dy* d
1_—m_[ds=—mf( g,,,ddeyT) dT

where y» are the coordinates of the particle.

(9.107a)

dy# dyv\}
L=~ ( 8w 4T dT)
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dy?[dT = 1 and is not a dynamical variable. The momentum
P, is given by

di"( dy= dyn =4
dT \ " 8«# 3T 4T
The particle contributes a term

Hy = P,§" — Ly

to the Hamiltonian,
This may be written in the form

Hy = —g,o¢"P, + (—g®) ¥ (m? + P, P,)}
From (9.108) it follows that
Ky = (m? + e P, P é5(x — y)
Hur = — P,oy(z — y)

A different approach to the Hamiltonian formulation of
general relativity has been given by Arnowitt, Deser, and
Misner. Their results are as follows.}

A canonical form for general relativity involving only
two pairs of unconstrained conjugate variables has been
obtained. The action

I=[[—g'Rdz

P, = mg,

expressed in first-order form is
(—8R = —gn" o+ (—%gg®°) (8 R+ In® — =¥ 7,)

+2goi7‘“u—2{(88)‘(["goo]—‘})."H“u‘%gﬂ”)gmem’}u (9.108)
Here
A = (—gW (IO — Gom T0pe €*]eHe™
e is the matrix inverse to g, 3R is constructed only of g,,,
! With minor alterations this section is essentially a reprint of the

letter to the editor of Nuovo cimenio by Arnowitt, Deser, and Misner (28).
Reprinted by permission of the authors and Nuovo cimento.
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n is the trace of =/, and the bar notation is used for the
covariant derivative with respect to the g,, metric. Variation
of this action gives rise to all the usual Einstein field equa-
tions in Palatini form. End-point variations give the generator

G = [ [—gubn* + 0, 8a#) Pz

where the stress tensor terms, [ d32T°,’ éz#, vanish as a conse-
quence of the constraint equations G¢# = Ry* — 46, R = 0
(obtained from varying Eq. (9.108) with respect to

(—&%)7%, gos)-
Now make use of an orthogonal decomposition of g,; and
n'! according to the general scheme

fu = fuTT + %(‘Ml‘r - ‘Vl‘a/T.u) + /l.! +/;.i (9.109)

where 1/V? is the inverse of the flat-space Laplacian operator
with appropriate boundary conditions,

ff=tfu— (Viz) fosoas (9.109a)

fi= % [fu.; - {f(‘v}‘z) llcl.kﬁ] (9.109b)

and the transverse traceless part of f,; i.e., f,, 7T is the re-
mainder.

[T =0;  fTT=0
Such a decomposition is meaningful only when a set of

coordinate conditions are imposed. The following are
selected:

gll.i = 0; nﬁ,u —_ nU'“ =0 (9.110)

General covariance is maintained, since imposition of these
coordinate conditions is equivalent to using certain invariant
functionals of the metric as independent variables in place of



SELECTED TOPICS IN GENERAL RELATIVITY 181

coordinates.! Conditions (9.110) imply that the functionals #

1
f = — ('2—V-2) ﬂT; T = g (9.111)

are chosen. These ensure an asymptotically flat metric.
Inserting the orthogonal decomposition into the genera-
tor we find after some partial integrations that

1 3
G =J-{n"TT 88, TT+ g7 ;6 [(_ 2—V3) nT] — 2nii',6g,-]d “ (9.112)

since both the variation 4 and the time derivative in the ac-
tion commute with the decomposition. Here g7, and ¥ ;
may be expressed in terms of g, 77 and n'/TT by solving the
four constraint equations' G," = 0 for them. We see, there-
fore, that the generator (9.112) is in standard canonical form
G = pdq — Hot with the additional momentum terms T2
characteristic of a field theory:

G = f (2977 6g, 7T —#81 + TO82'|d%%  (9.112a)

Since z* and t do not appear explicitly in the expressions for
g:;; and n¥, they do not appear explicitly in the equations
G,® = 0. Detailed calculation shows that they also do not

! Thus, as is well known, the apparently noncovariant DeDonder con-
ditions, ([ —g] g#*),,=0 are equivalent to the covariant statement that four
linearly independent scalar functions h% are to be used as the coordinates x=,
where h%.# = 0. Such an equivalence between coordinate conditions and
covariant statements holds for this case and indeed for any other choice of
coordinates which does not depend on the a# of some initial frame.

13 Appropriate boundary conditions have, of course, been imposed on
the operator (1/V?) in order to relate (9.110) and (9.111). A simple proce-
dure making this operator manifestly nonsingular consists in rewriting (8.111)
as te"xT= —(1/2V%)xn7, afe-ar =g, and subsequently taking the limit c—0
at the end of the analysis.

t That G,%= 0 has at least perturbation series solutions for g7 ;; and
niid 4 can easily be checked, as can the fact that these coordinate conditions are
maintained in such an expansion. The Hamiltonian can thus be exhibited as

an infinite series in powers of the canonical variables beginning with the
linearized theory's J¢.
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appear in the solutions for g7 ,, and =*,. Thus the quanti-
ties
H = —g% (8T, 2TT)
%T‘O — _nijd(gNTT, nrsTT)
do not depend explicitly on the coordinates. This coordinate
independence allows us to derive the standard conservation

laws. From (9.112a) and the fact that the action of Eq.
(9.108) reduces to

I= I {nt T (g, TT) o — (8%, o177} d'2 (9.108a)

it follows that the two independent pairs of canonical vari-
ables are g, 77 and a*TT. These, therefore, obey simple
Poisson bracket relations

[gmnTT(r)’ n“TT(r,)] = 6“mn(rr')TT (9'114')
where the transverse traceless 8 function, 4,,,"77, is defined
as in linearized theory and is, of course, independent of the
metric (81).

The energy E of the field is defined to be the numerical
value of the Hamiltonian for the given solution of the equa-
tions of motion. Thus, in the evaluation of

E=— g b (9.115)

gT ;; need not be expressed in terms of the canonical vari-
ables and so E can be evaluated as a surface integral (even
though the Hamiltonian cannot be reduced to this form).
From Eq. (9.109a) we obtain

E=- J'gT,idS‘ == I(gii,i — 8i3,3) 45, (9.116)

here dS; = }¢,,dx'dz* is the two-dimensional surface
element at infinity in rectangular coordinates. We have
assumed that the metric becomes asymptotically flat and
the coordinates rectangular at spatial infinity. Coordinate
transformations preserving these boundary conditions can
there be rigorously treated by the linearized theory where g7
is a coordinate scalar (81). Thus, it is not necessary to express
the metric in the canonical coordinate system to evaluate

(9.118)
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the energy; neither is it necessary to use rectangular coordi-
nates provided we make the usual flat space tensor trans-
formations to the desired (e.g., spherical) coordinates. This
definition effectively states that the energy of a closed sys-
tem may be obtained from the coefficient of 1/r in the asymp-
totic expansion of gT. It is also the gravitational mass of.
the system as seen by a distant test particle (due to the
boundary conditions). The constancy of the energy ensures
that this coefficient is time-independent. Equation (9.116)
holds without modification when a point particle is coupled
to the gravitational field; E now represents the total energy
of the coupled system. For the simple case of the Schwarz-
schild metric one of course finds that the energy is the mass
parameter.

It is a desirable criterion for the energy and momentum
of a closed system that they involve only those quantities
required to specify the state of the system at a given time.
For general relativity these variables are g,; and x* when no
coordinate conditions are employed but do not include g,
which serve to describe how the coordinates will be chosen at
a later time. The expression (9.115) for the energy satisfies
this condition. Analogous considerations to the above hoid
for the total momentum of the gravitational system where
again = is a coordinate scalar in the asymptotic region. An
example of an initial value problem where g,, is not deter-
mined is the “many body’’ spatial metric of Lichnerowicz
(33):

8 = 0yl + 3 a,f2ir —a,|}¢ (9.117a)
n = (9.117b)
Here Eq. (9.116) yields unambiguously the value > «, for

the energy.

This formalism also allows us to establish criteria for
the existence of gravitational radiation; these are in exact
correspondence to those of electromagnetic theory. Thus,
the condition for radiation escaping to infinity is stated in
terms of the Poynting vector there. The energy flux across
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a surface element dS, at infinity is
T0dS; = — 2a%,dS, (9.118)

where, again, the right-hand side may be evaluated in any
asymptotically rectangular coordinate system. More gener-
ally, the criterion for the existence of gravitational waves at
any point is the presence (in the canonical coordinate frame)
of a nonvanishing g,7T or 2*TT there. Alternately, such a
situation means that there exists an excitation of the gravi-
tational field in one of its canonical variables (which are in-
dependent of the source variables). Thisis identical with the
electromagnetic definition of a wave, which requires the
existence of 4,7 or E,T, the canonical variables of the
electromagnetic field. In the obvious case where no waves
are expected to exist, namely, the Schwarzschild solution,
one can verify that g,T7T and #n/T7 vanish everywhere in the
canonical frame, which justifies its being regarded as a
‘“one-particle” solution. This has not been established for
the “many body” initial conditions treated above.

9.6 Remarks on Quantization of General Relativity

It has been noted by Landau, by Klein, and by Pauli
that quantized general relativity would have to be considered
in elementary particle theory, at high energies. A cutoff
momentum P for quantum electrodynamies is suggested,
with

In P¥/m?%? ~ 1]« (9.119)
Here « is the fine-structure constant and m is the electron
rest mass. The result (9.119) was given by Killén and by
Pauli as a consequence of the requirement of mathematical
consistency. Landau noted that for energies corresponding
to the cutoff momentum, the gravitational interaction is
already of the same order of magnitude as the Coulomb
interaction. In other words, as the energy increases the mass
and gravitational interaction increase. The charge, however,
does not change.

The quantum principles are very well established. They
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take into account the ‘“‘granular” structure of nature and the
interaction between measuring devices and the system being
measured. As P. G. Bergmann has remarked, unquantized
general relativity cannot peacefully coexist with quantum
theory. The gravitational field is the metric tensor; in this
sense it is the most fundamental field in physies. Its quanti-
zation may affect, in a profound way, our notions of space
and time, particularly in the realm of small dimensions (high
energy ).

It is interesting that it is possible to construct a quantity
having the dimensions of length, out of %, G, and ¢, it is

L = /(5G/c3) ~ 10-3 cm (9.120)

This is much too small to be directly related to elemen-
tary particle dimensions now known. If! we consider quanti-
zation using Feynman’s formulation we should write for the
wave function for' the field

Prater = JKE(Cv ") Peartiec(¢") dc’
where the kernel is given by
Kg =3 ¢! (9.121)
H

with H meaning a sum over all field histories. For the gravi-
tational field,

¢ = exp [%f(ca/mnc)ze\/—g d‘a:] (9.122)

H
The Feynman sum should in principle include all possible
metrics and topologies as acceptable histories, consistent
with the Lorentz signature. Since
9gu\*
R~ ( ox )

it follows from (9.122) that if we consider a region of four-
dimensional space-time, L units on a side, the quantum

t This discussion follows the comments of J. A. Wheeler.
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fluctuations would be expected -to be of the order

iG
<( Ag}w)z> ~ 03—1.3 (9'123)

Also we might expect perhaps amelioration of the difficulties
of quantum field theory (18). There are a number of func-
tions employed there which are singular on the light cone.
Consider two points which lie on a light cone in flat space.
If the space is now curved the second point will no longer
be on the light cone. If a Feynman sum is carried out, over
all metrics, the difficulties associated with the light cone may
turn out to have measure zero. This indicates, unfortunately,
that any quantization scheme which starts with a flat-space
linear approximation will immediately have all the diver-
gences. To remove them, it may be necessary to quantize
the nonlinear theory from the very beginning.

9.7 Spinors in General Relativity

We discuss briefly the formalism used by B.al‘gmannt to
discuss spinor fields in general relativity. A field of y ma-
trices is introduced which satisfy the anticommutation law

YuVs T Po¥s = 2841 (9.124)

I is the unit matrix. The components of y are assumed to be
continuous functions of the coordinates, and to transform
like a vector under coordinate transformations. Under a
spinor transformation

(Spinor),., = S~ (Spinor).4 (9.125)
the y transform like
(Ya)new = S_l(ya)olds (9.126)

It is more simple to deal only with real representations of the
y together with spinor transformations S whose matrix ele-
ments are real.

The following formalism is arranged to guarantee that

! As discussed by D. Brill and J. A. Wheeler, Revs. Modern Phys. 29,
465 (1957). See also references 42, 43, 44.
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tensors will transform like tensors, that the effect of a spinor
transformation will be as given by (9.125), and that the effect
of a spinor transformation on a spinor tensor will be

(Tpv)new = S—I(T;w)olds (9'127)
For covariant differentiation additional 4 X 4 matrices

T, are introduced. These I"’s are determined from (9.124) up
to a multiple of the unit matrix by the relation

Yuyr — TV — Dyy + v, I, =0 (9.128)
The covariant derivative of an object with spinor transfor-

mation properties with respect to z# is written V, and has
the properties

V(AB) = (V,A)B + B(V,4)
V,(A%) = (V,A)* (9.129)
V., =0
This * means transpose of the complex conjugate. Linear
combinations of the y matrices used in special relativity can
be employed. These are written 7, and satisfy
i’pi’v + i’v')‘;p = 26,“,; ?i* = 7.’:‘; ‘}70"= = _?0 (9'130')
A system of Vierbein is often used. A locally Lorentz metric
is introduced at each point by writing
dar = a#,dE"; dzr = byrdaf (9.181)

Here the #¥ are the Lorentz metric coordinates and a¥ are the
general coordinates.
A set of y’s satisfying (9.124) is

Yu=0bs%, (9.132)

An expression for the I', which is a solution of (9.128) is

o,
F/l =%gxa [(—5.;‘) a%g — I'a,w] 5% 4 allI (9.133)

Here a, is arbitrary and S#* = §(y#y* — y*y#). If the Vier-
bein formalism is used, a similarity transformation of the

spinors corresponds to a Lorentz transformation of the Vier-
bein.
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The covariant derivative of a spinor y is given by

dyp
Vep= zs 1 sY (9.184)

The covariant derivative of a spinor tensor F,, is
VoFu=Fpo+ Foul, — I, F, (9.185)
The Pauli conjugate of y is written ' and defined by

v =y*B (9.186)
with § a matrix which is Hermitian and which is selected so
that Bi y» is also Hermitian. In the Vierbein formalism
f = i7°. Real quantities such as current density can be
written

JE=vytiyry (9.187)
The Dirac equation in general relativity is
Y*Vap + pp =0 (9.188)

with the arbitrary traces of the I', arranged to include the
effect of the four potential. (9.188) may be obtained from
the variational principle.

6f [w'y2(Vay) + uy'y]ly/ —gdiz =0 (9.189)

with ¢' and ¢ varied independently.

The assumption that the atom is a natural clock may be
justified from these relations. We may introduce a Lorentz
frame along the world line of the atom. The flat space (9.188)
is valid since the atomic dimensions are too small for the
Riemann tensor to affect the internal motion. To compare
the radiation with that of a distant atom, a coordinate trans-
formation is carried out so that only the time coordinate is
changed, and the same time coordinates are employed for
atoms in different places. From (9.124), y° = 5°(—g®)i.
The energy is associated with 93/3z° so the energy levels
become E" = E™(—gy)}, in agreement with the red shift
formula.
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Exercises

10.
11.

Just do the exercises diligently; then you will find out what
you have understood and what you have not.
A. Sommerfeld (to W. Heisenberg)

Discuss the covariant and contravariant components of

a vector in a plane in which oblique coordinates are
employed.

. Deduce expressions (8.80) and (8.81), the transforma-

tion laws for the Christoffel symbols of the first and
second kinds.

. Show that the number of independent components of

Rgpye in a space of N dimensions is (N?/12)(N2 —1).
Discuss the embedding of a curved space of N dimen-
sions in a flat space of a greater number of dimensions.

. Derive expression (3.49) for R,z,,.

Set up a coordinate system on a torus; calculate all
components of g,,, I'k,s, and R,p,s.

. Evaluate ¢,4,4 2974,

A contravariant vector is being parallel displaced along
a small circle of a sphere. It has components A? = 0
and A% = 2 at the point 0 = =f4, ¢ = 0. The path
along which it is being displaced is 6 = constant. Cal-

culate the values of 49 and A® as a function of ¢ along
the small circle.

. An observer in a uniformly accelerated frame measures

time using the synchronized clocks fixed in an inertial
frame with respect to which he is being accelerated.
Calculate g,, for the accelerated observer.

Carry out the operations leading to (4.15).

Derive the expression (5.6).

101
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12.

13.

14,
15.

16.

17.

18.

19.

EXERCISES

Derive (5.18a) by starting with a four potential with
A=A, = A3 =0 and 4, = f(r).

Write the exact red-shift formula given in expression
(5.21) as a series expansion, compare it with a series
obtained using the relativistic Doppler effect in the
equivalence-principle deduction of Chapter 1. To what
order in the change in gravitational potential do they
agree? Does this mean that general relativity is in dis-
agreement with the equivalence principle?

Derive expressions (9.1), (9.2), and (9.8).

Show that (9.44) gives a value of K which is the same for
any linear combination of 4 and B.

Given that the Lagrangian is

L = gg* — qo® + bygy, + bads + bsgs + ds

with b,, by, and b, functions of g, g, ¢,, and ¢,. Solve for
the equations of motion.

Carry out the reductions leading to (9.87), (9.91), (9.95),
(9.106), (9.107).

A satellite is equipped with a natural clock which is to
be compared with an identical clock at rest on the
earth’s surface. If we compare elapsed intervals at the

end of a given coordinate time, show that (Singer, Phys.
Rev. 104, 11, (1956)).

ds, —ds, GM (1 —2hjr 3w? )
ds, 2 \1+ hjr 4nGpy

s, is the interval for the earth clock, s, is the interval for
the satellite clock, 4 is the height of the assumed circular
orbit above the surface of the earth, M is the mass of the
earth, p is the mean density of the earth, » and w refer
to the radius and angular velocity, respectively, of the
earth.

Identify the terms in (9.107) which are the three dimen-
sional scalar curvature.
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20. Discuss theories of gravitation based on particles of spin
0, and spin 1 (Gupta, Revs. Mod. Phys. 29, 8384, {1957),
and explain why they are unsatisfactory.
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Gravitational potential, 8, 50

Gravitational radiation, by a crystal,
141

by spinning rod, 97, 140
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tion problem, 107

Interaction of particle with cylindri-
cal gravitational waves, 102

Interior solution, Schwarzschild, 60

Interval, 12

Intrinsic variables, 175

Isotropic coordinates, 78

Ivanenko, D., 167, 180

J

Jacobian determinant, 20
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gravitational, 1
inertial, 1
inertial of positron, 5
negative, 5
of graviton, 89
of virtual pairs, 6
passive gravitational, 4
Mass quadrupole detector, 126
Maxwell field, Lagrangian density,
58
Maxwell stress temsor, 47, 147
Maxwell’s equations, 53
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Quadrupole oscillator, 95
radiation from, 97

R

Radiation, gravitational, by crystal,
141
by spinning red, 97, 140
initial value formulation, 107
Radioactive materials, mass energy,
4
Rainich, G. Y., 147, 189
Rebka, G. A., Jr., 63
Red shift, due to expansion, 163
gravitational, 8, 60
of spectral lines, 8, 60
Relativity, Special Theory, 11
Ricci tensor, 83, 150
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VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A. 1. Borisenko
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cians covers classical differential equations as well as topological dynamics and
ergodic theory. Bibliographies. 523pp. 5% x 8%, 65954-2

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, nonsingu-
larity and inverses in connection with the development of canonical matrices under
the relation of equivalence, and without the intervention of determinants. Includes
exercises. 237pp. 5% x 8%, 66810-X

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, accessi-
ble coverage of set theory, real number system, metric spaces, continuous functions,
Riemann integration, multiple integrals, more. Wide range of problems. Under-
graduate level. Bibliography. 254pp. 5% x 84. 65038-3

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; cavers seven types of equations. *. . . a welcome contribution
to the existing literature. . . . ~Math Reviews. 490pp. 5% x 8%, 64232-1

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip
Barker. Basic textbook covers theory of matrices and its applications to systems of lin-
ear equations and related topics such as determinants, eigenvalues, and differential
equations. Numerous exercises. 432pp. 5% x 8%, 66014-1

MATHEMATICS APPLIED TO CONTINUUM MECHANICS, Lee A. Segel.
Analyzes models of fluid flow and solid deformation. For upper-level math, science,
and engineering students. 608pp. 5% x 8%. 63369-2

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers funda-
mental concepts, real number system, point sets, functions of a real variable, Fourier
series, much more. Over 500 exercises. 352pp. 5% x 8%. 65385-4

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to unified theory
of mathematical concepts. Set theory and logic seen as tools for conceptual under-
standing of real number system. 496pp. 5% x 8%. 63829-4
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TENSOR CALCULUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 84, 63612-7

ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 84%. 64940-7

INTEGRAL EQUATIONS, F. G. Tricomi. Authoritative, well-written treatment of
extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8%. 64828-1

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition 1o the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 54 x 8%. 63317-9

INTRODUCTION TO MATHEMATICAL THINKING, Friedrich Waismann.
Examinations of arithmetic, geometry, and theory of integers; rational and natural num-
bers; complete induction; limit and point of accumulation; remarkable curves; complex
and hypercomplex numbers, more. 1959 ed. 27 figures. xii+260pp. 5% x 8%. 42804-4

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted logi-
cian’s lucid treatment of historical developments, set theory, model theory, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 ed.
ix+283pp. 5% x 8%. 67632-3

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8% 63069-2

THE CONTINUUM: A Critical Examination of the Foundation of Analysis,
Hermann Weyl. Classic of 20th-century foundational research deals with the con-
ceptual problem posed by the continuum. 156pp. 5% x 8%. 67982-9

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A. M. Yaglom and [. M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 5% x 8%. Two-vol. set.

Vol. I: 65336-9  Vol. I1: 655377

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E. C. Zachmanoglou and Dale W. Thoe. Essentials of partial dif-
ferential equations applied to common problems in engineering and the physical sci-
ences. Problems and answers. 416pp. 5% x 8%. 65251-3

THE THEORY OF GROUPS, Hans J. Zassenhaus. Well-written graduate-level text
acquaints reader with group-theoretic methods and demonstrates their usefulness in
mathematics. Axioms, the calculus of complexes, homomorphic mapping, p-group
theory, more. 276pp. 5% x 8%. 409228
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Math-Decision Theory, Statistics, Probability

ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E.
Moses. Clear introduction to statistics and statistical theory covers data process-
ing, probability and random variables, testing hypotheses, much more. Exercises.
364pp. 5% x 8%. 65218-1

STATISTICS MANUAL, Edwin L. Crow et al. Comprehensive, practical collection
of classical and modern metheds prepared by U.S. Naval Ordnance Test Station.
Stress on use. Basics of statistics assumed. 288pp. 5% x 8%. 60599-X

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
problems, theory, and design of sampling techniques for social scientists, industrial
managers, and others who find statistics important at work. 61 tables. 90 figures. xvii
+602pp. 5% x 8%. 64684-X

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Paul A. Samuelson and Rebert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modern welfare eco-
nomics, Leontief input-output, more. 525pp. 5% x 8%. 65491-5

PROBABILITY: An Introduction, Samuel Goldberg. Excellent basic text covers set
theory, probability theory for finite sample spaces, binomial theorem, much more.
360 problems. Bibliographies. 322pp. 5% x 8%. 65252-1

GAMES AND DECISIONS: Introduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical intreduction to game theory, primarily
applied to social sciences. Utility theory, zero-sum games, n-person games, decision-
making, much more. Bibliography. 509pp. 5% x 8%. 65943-7

INTRODUCTION TO THE THEORY OF GAMES, J. C. C. McKinsey. This com-
prehensive overview of the mathematical theory of games illustrates applications to
situations involving conflicts of interest, including economic, social, political, and
military contexts. Appropriate for advanced undergraduate and graduate courses;
advanced caleulus a prerequisite. 1952 ed. x+372pp. 5% x 8Y%. 428117

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate elementary
and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8% (5355-2

PROBABILITY THEORY: A Concise Course, Y. A. Rozanov. Highly readable,
self-contained introduction covers combination of events, dependent events,
Bernoulli trials, etc. 148pp. 5% x 8%. 63544-9

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulation of variables, uses of
statistical control to achieve quality control in industry, agriculture, other areas.
192pp. 5% x 8Y. 652327



CATALOG OF DOVER BOOKS

Math-Geometry and Topology

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant, intu-
itive approach 1o topology from set-theoretic topology to Betti groups; how concepts
of topology are useful in math and physics. 25 figures. 57pp. 5% x 84%. 60747.X

COMBINATORIAL TOPOLOGY, P. S. Alexandrov. Clearly written, well-orga-
nized, three-part text begins by dealing with certain classic problems without using
the formal techniques of homology theory and advances to the central concept, the
Betti groups. Numerous detailed examples. 654pp. 3% x 8%. 40179-0

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of one
of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map
coloring, problem of the Koenigsberg bridges, much more, described with clarity
and wit. 43 figures. 210pp. 5% x 8%. 25933-1

CONFORMAL MAPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid,
insightful book presents ideal coverage of subject. 334 exercises make book perfect
for self-study. 55 figures. 352pp. 5% x 84. 64025-6

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’s own diagrams,
together with definitive Smith-Latham translation. 244pp. 5% x 8Y%. 60068-8

PRACTICAL CONIC SECTIONS: The Geometric Properties of Ellipses,
Parabolas and Hyperbolas, J. W. Downs. This text shows how to create ellipses,
parabolas, and hyperbolas. It also presents historical background on their ancient
origins and describes the reflective properties and roles of curves in design applica-
tions. 1993 ed. 98 figures. xii+100pp. 6% x 9%. 42876-1

THE THIRTEEN BOOKS OF EUCLID’S ELEMENTS, translated with introduc-
tion and commentary by Thomas L. Heath. Definitive edition. Textual and linguistic
notes, mathematical analysis. 2,500 years of critical commentary. Unabridged. 1,414pp.
5% x 8%. Three-vol. set. Vol. I: 60088-2  Vol. I1: 66089-0 Vol. I11: 60090-4

GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdteger. Hluminating,
widely praised book on analytic geomeltry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 5% x 8%. 63830-8

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential
geometry as an application of advanced calculus and linear algebra. Curvature, trans-
formation groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8%. 634337

CURVATURE AND HOMOLOGY: Enlarged Edition, Samuel [. Goldberg.
Revised edition examines topology of differentiable manifolds; curvature, homology
of Riemannian manifolds; compact Lie groups; complex manifolds; curvature,
homology of Kaehler manifolds. New Preface. Four new appendixes. 416pp. 5% x 8%,

40207-X
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History of Math

THE WORKS OF ARCHIMEDES, Archimedes (T. L. Heath, ed.). Topics include
the famous problems of the ratio of the areas of a cylinder and an inscribed sphere;
the measurement of a circle; the properties of conoids, spheroids, and spirals; and the
quadrature of the parabola. Informative introduction. chxxxvi+326pp; supplement,
52pp. 5% x B%. 42084-1

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoenicians
through 19th-century figures such as Grassman, Galois, Riemann. Fourth edition.
522pp. 5% x 8% 20630-0

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-
MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of Newton,
Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8%. 60509-4

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas N. H.
Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of medern
arithmetic, algebra, geometry, and number systems derived from ancient civiliza-
tions. 320pp. 5% x 8%. 25563-8

A HISTORY OF MATHEMATICAL NOTATIONS, Florian Cajori. This classic
study notes the first appearance of a mathematical symbol and its origin, the com-
petition it encountered, its spread among writers in different countries, its rise to pop-
ularity, its eventual decline or ultimate survival. Original 1929 two-volume edition
presented here in one volume. xxviii+820pp. 5% x 8%. 67766-4

GAMES, GODS & GAMBLING: A History of Probability and Statistical Ideas, F. N.
David. Episodes from the lives of Galileo, Fermat, Pascal, and others illustrate this
fascinating account of the roots of mathematics. Features thought-proveking refer-
ences to classics, archaeology, biography, poetry. 1962 edition. 304pp. 5% x 8%
(Available in U.S. only.) 40023-9

OF MEN AND NUMBERS: The Story of the Great Mathematicians, Jane Muir.
Fascinating accounts of the lives and accomplishments of history’s greatest mathe-
matical minds—Pythagoras, Descartes, Euler, Pascal, Cantor, many more. Anecdotal,
illuminating. 30 diagrams. Bibliography. 256pp. 5% x 8%. 28973-7

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
3% x 8%. Two-vol. set. Vol. I: 20429-4  Vol. II: 20430-8

A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief his-
tory of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. 60255-9
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Physics

OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J. H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum optical
resonance phenomena. 53 illustrations. Preface. Index. 236pp. 5% x 8%, 65533-4

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of qualitative and imaginative concepts, followed
by specific applications worked out in mathematical detail. Preface. Index. 655pp.
5% x 8%, 65969-0

ATOMIC PHYSICS: 8th edition, Max Born. Nobel laureate's lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 8Y%. 65984-4

A SOPHISTICATE'S PRIMER OF RELATIVITY, P. W. Bridgman. Geared
toward readers already acquainted with special relativity, this book transcends the
view of theory as a working tool to answer natural questions: What is a frame of ref-
erence? What is a “law of nature™? What is the role of the “observer”? Extensive
treatment, written in terms accessible to those without a scientific background. 1983
ed. xlviii+172pp. 5% x 8%, 42549-5

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv+360pp. 5% x 8% 675971

PRIMER OF QUANTUM MECHANICS, Marvin Chester. Intreductory text
examines the classical quantum bead on a track: its state and representations; opera-
tor eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and
bead in a spherical shell. Other topics include spin, matrices, and the structure of
quantum mechanics; the simplest atom; indistinguishable particles; and stationary-
state perturbation theory. 1992 ed. xiv+314pp. 6% x 9. 42878-8

LECTURES ON QUANTUM MECHANICS, Paul A. M. Dirac. Four concise, bril-
liant lectures on mathematical methods in quantum mechanics from Nobel
Prize-winning quantum pioneer build on idea of visualizing quantum theory through
the use of classical mechanics. 96pp. 5% x 84%. 41713-1

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr's model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 84%. 24895-X

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The Physics
of the Chemical Bond, Walter A. Harrison. Innovative text offers basic understanding
of the electronic structure of covalent and ionic solids, simple metals, transition metals
and their compounds. Problems. 1980 edition. 582pp. 6% x 94, 66021-4
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HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 84. 64071-X

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8% 60304-0

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation, more.
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8. 64926-1

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg.
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8% 60113-7

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
best introductions; especially for specialist in other fields. Treatment is physical
rather than mathematical. 80 illustrations. 257pp. 5% x 8%. 60115-3

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L. Hill.
Excellent basic text offers wide-ranging coverage of quantum statistical mechanics,
systems of interacting molecules, quantum statistics, more. 523pp. 5% x 8%. 65242-4

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. xxiii+885pp. 5% x 8%. 65227-0

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems,
detailed solutions in coverage of quantum mechanics, wave mechanics, angular
momentum, molecular spectroscopy, more. 280 problems, 139 supplementary exer-
cises. 430pp. 6% x 9% 65236-X

THEORETICAL SOLID STATE PHYSICS, Vol. I: Perfect Lattices in
Equilibrium; Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equilibrium properties, defects and dis-
ordered systems. Total of 1,301pp. 5% x 8%. Vol. I: 65015-4  Vol. II: 65016-2

WHAT IS RELATIVITY? L. D. Landau and G. B. Rumer. Written by a Nobel Prize
physicist and his distinguished colleague, this compelling book explains the special
theory of relativity to readers with no scientific background, using such familiar
objects as trains, rulers, and clocks. 1960 ed. vi+72pp. 23 b/w illustrations. 5% x 8%.

42806-0 $6.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of medern physics. Brings to final form Maxwell’s theo-
ry of electromagnetism and rigorously derives his general equations of field theory.
1,084pp. 5% x 8Y%. Two-vol. set. Vol. I: 60636-8 Vol. II: 60637-6
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QUANTUM MECHANICS: Principles and Formalism, Roy McWeeny. Graduate
student-oriented volume develops subject as fundamental discipline, opening with
review of origins of Schrédinger's equations and vector spaces. Focusing on main
principles of quantum mechanics and their immediate consequences, it concludes
with final generalizations covering alternative “languages™ or representations. 1972
ed. 15 figures. xi+155pp. 5% x 84%. 42829-X

INTRODUCTION TO QUANTUM MECHANICS WITH APPLICATIONS TO
CHEMISTRY, Linus Pauling & E. Bright Wilson, Jr. Classic undergraduate text by
Nobel Prize winner applies quantum mechanics to chemical and physical problems.
Numerous tables and figures enhance the text. Chapter bibliographies. Appendices.
Index. 468pp. 5% x 8%. 64871-0

METHODS OF THERMODYNAMICS, Howard Reiss. Outstanding text fecuses
on physical technique of thermodynamics, typical problem areas of understanding,
and significance and use of thermodynamic potential. 1965 edition. 238pp. 5% x 8%.

69445-3

TENSOR ANALYSIS FOR PHYSICISTS, J- A. Schouten. Concise exposition of
the mathematical basis of tensor analysis, integrated with well-chosen physical exam-
ples of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%, 65582-2

THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of electric and magnetic fields, builds up to electromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x 8%. 65660-8

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, Morris H. Shamos (ed.). 25 crucial discoveries: Newton’s laws of maotion,
Chadwick’s study of the neutron, Hertz on electromagnetic waves, more, Original
accounts clearly annotated. 370pp. 5% x 84, 25346-5

RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C.
Tolman. Landmark study extends thermodynamics to special, general relativity; also
applications of relativistic mechanics, thermodynamics to cosmological models.
501pp. 5% x 8%. 65383-8

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermody-
namics, statistical mechanics, and kinetic theory in one unified presentation of ther-
mal physics. Problems with solutions. Bibliography. 532pp. 5% x 8% 65401-X

Paperbound unless otherwise indicated. Available at your book dealer, online at
www.doverpublications.com, or by writing to Dept. GI, Dover Publications,
Inc.,, 31 East 2nd Street, Mineola, NY 11501. For current price information or for free
catalogs (please indicate field of interest), write to Dover Publications or log on to
www.doverpublications.com and see every Dover book in print. Dover pub-
lishes more than 500 books each year on science, elementary and advanced mathe-
matics, biology, music, art, literary history, social sciences, and other areas.
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