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PREFACE

In this book on the Einstein Theory of Relativity

the attempt is made
to introduce just enough
mathematics

to HELP
and NOT to HINDER
the lay reader/

"lay" can of course apply to

various domains of knowledge
perhaps then we should say:

the layman in Relativity.

Many "popular" discussions of

Relativity,

without any mathematics at all,

have been written.

But we doubt whether

even the best of these

can possibly give to a novice

an adequate idea of

what it is all about.

What is very clear when expressed
in mathematical language
sounds "mystical" in

ordinary language.

On the other hand,
there are many discussions,

including Einstein's own papers,
which are accessible to the

experts only.
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We believe that

there is a class of readers

who can get very little out of

either of these two kinds of

discussion

readers who know enough about
mathematics
to follow a simple mathematical presentation
of a domain new to them,
built from the ground up,
with sufficient details to

bridge the gaps that exist

FOR THEM
in both
the popular and the expert

presentations.

This book is an attempt
to satisfy the needs of

this kind of reader.
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I. INTRODUCTION.

In order to appreciate

the fundamental importance

of Relativity,

it is necessary to know
how it arose.

Whenever a "revolution
11

takes place,

in any domain,
it is always preceded by
some maladjustment producing a tension,

which ultimately causes a break,

followed by a greater stability

at least for the time being.

What was the maladjustment in Physics

in the latter part of the 19th century,

which led to the creation of

the "revolutionary
11

Relativity Theory?

Let us summarize it briefly:

It has been assumed that

all space is filled with ether,*

through which radio waves and light waves

are transmitted

any modern child talks quite glibly

*This ether is of course NOT the chemical ether

which surgeons use!

ft is not a liquid, solid, or gas,

it has never been seen by anybody,
its presence is only conjectured
because of the need for some medium
to transmit radio and light waves.
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about "wave-lengths
11

in connection with the radio.

Now, if there is an ether,

does it surround the earth

and travel with it,

or does it remain stationary

while the earth travels through it?

Various known (acts* indicate that

the ether does NOT travel with the earth.

If, then, the earth is moving THROUGH the ether,

there must be an "ether wind/'

just as a person riding on a bicycle

through still air,

feels an air wind blowing in his face.

And so an experiment was performed

by Michelson and Morley (see p. 8)

in 1887,
to detect this ether wind/-

and much to the surprise of everyone,
no ether wind was observed.

This unexpected result was explained by
a Dutch physicist, Lorentz, in 1 895,
in a way which will be described

in Chapter II.

The search for the ether wind

was then resumed

by means of other kinds of experiments.!

*See the article
M
Aberration of Light",

by A. S. Eddington,
in the Encyclopedia Britannica, 14th ed.

tSec the article "Relativity"

by James Jeans,
also in the Enc. Brit. 14th ed.
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But, again and again,

to the consternation of the physicists,

no ether wind could be detected,'
until it seemed that

nature was in a "conspiracy'
1

to prevent our finding this effect!

At this point

Einstein took up the problem,
and decided that

a natural "conspiracy
11

must be a natural LAW operating.

And to answer the question

as to what is this law,

he proposed his Theory of Relativity,

published in two papers,

one in 1905 and the other in 1915.*

He first found it necessary to

re-examine the fundamental ideas

upon which classical physics was based,
and proposed certain vital changes in them.

He then made
A VERY LIMITED NUMBER OF
MOST REASONABLE ASSUMPTIONS
from which he deduced his theory.

So fruitful did his analysis prove to be

that by means of it he succeeded in:

(1) Clearing up the fundamental ideas.

(2) Explaining the Michelson-Morley experiment
in a much more rational way than

had previously been done.

*Both now published in one volume

including also the papers by
Lorentz and Minkowski,
to which we shall refer later/

see SOME INTERESTING READING, page 324.



(3) Doing away with

other outstanding difficulties

in physics.

(4) Deriving a

NEW LAW OF GRAVITATION
much more adequate than the

Newtonian one

(See Part II.: The General Theory)
and which led to several

important predictions

which could be verified by experiment;

and which have been so verified

since then.

(5) Explaining

QUITE INCIDENTALLY
a famous discrepancy in astronomy
which had worried the astronomers

for many years

(This also is discussed in

The General Theory).

Thus, the Theory of Relativity had

a profound philosophical bearing

on ALL of physics,

as well as explaining

many SPECIFIC outstanding difficulties

that had seemed to be entirely

UNRELATED,
and of further increasing our knowledge
of the physical world

by suggesting a number of

NEW experiments which have led to

NEW discoveries.

No other physical theory
has been so powerful

though based on so FEW assumptions.

As we shall see.





II. THE MICHELSON-MORLEY EXPERIMENT*

On page 4 we referred to

the problem that

Michelson and Morley set themselves.

Let us now see

what experiment they performed

and what was the startling result.

In order to get the idea of the experiment

very clearly in mind,
it will be helpful first

to consider the following simple problem,

which can be solved

by any boy who has studied

elementary algebra:

Imagine a river

in which there is a current flowing with

velocity v,

in the direction indicated by the arrow:

Now which would take longer

for a man to swim

From A to B and back to A ,

'Published in the

Philosophical Magazine, vol. 24, (1887).
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or

from A to C and back to A
,

if the distances AB and AC are equal,

AB being parallel to the current,

and AC perpendicular to it?

Let the man's rate of swimming in still water

be represented by c /

then, when swimming against the current,

from A to 8 ,

his rate would be only c v f

whereas,

when swimming with the current,

from 8 back to A
,

his rate would, of course, be c + v.

Therefore the time required

to swim from A to fi

would be a/(c v),

where a represents the distance AB ;

and the time required

for the trip from 8 to A
would be a/(c + v).

Consequently,
the time for the round trip would be

ti
=

a/(c
-

/) + a/(c + v)

or ti
=

2ac/(c
2 - v

2

).

Now let us see

how long the round trip

from A to C and back to A
would take.

If he headed directly toward C ,

the current would carry him downstream,
and he would land at some point

to the left of C in the figure on p. 8.

Therefore,

in order to arrive at C
,

9



he should head for some point D
just far enough upstream

to counteract the effect of the current.

In other words,
if the water could be kept still

until he swam at his own rate c

from A to D
,

and then the current

were suddenly allowed to operate,

carrying him at the rate v from D to C

(without his making any further effort),

then the effect would obviously be the same

as his going directly from A iojC
with a velocity equal to Vc'2

v
2
/

as is obvious from the right triangle:

ex \r

Consequently/
the time required

for the journey from A to C

would be a/Vc^- v
2

,

where a is the distance from A to C
Similarly,

in going back from C to A ,

it is easy to see that,

10



by the same method of reasoning,_
the time would again be a/Vc

2
v
2
.

Hence the time for the round trip

from A to C and back to A ,

would be _
fa
= 2a/vV - y\

In order to compare ti and f- more easily,

let us write ft for c/V c
2

v
2
.

Then we get:

ti
-

2a/3
2

/c
and fa

=
2a/3/c.

Assuming that v is less than c ,

and c
2

v
2

being obviously less than c
2
,

the Vc2
v

2
is therefore less than c ,

and consequently ft is greater than 1 ^

(since the denominator

is less than the numerator).

Therefore t\ is greater than fa ,

that is,

IT TAKES LONGER TO
SWIM UPSTREAM AND BACK
THAN TO SWIM THE SAME DISTANCE
ACROSS-STREAM AND BACK.

But what has all this to do
with the Michelson-Morley experiment?
In that experiment,

a ray of light was sent from A to B:

C-r

^-

HB
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At 8 there was a mirror

which reflected the light back to A ,

so that the ray of light

makes the round trip from AioB and back,

just as the swimmer did

in the problem described above.

Now, since the entire apparatus

shares the motion of the earth,

which is moving through space,

supposedly through a stationary ether/

thus creating an ether wind

in the opposite direction,

(namely, the direction indicated above),
this experiment seems entirely analogous
to the problem of the swimmer.

And, therefore/ as before/

ti
= 2a0Yc 0)

and ti
=

2a|S/c. (2)

Where c is now the velocity of light,

and *2 is the time required for the light

to go from A to C and back to A
(being reflected from another mirror at Q.
If/ therefore,

ti and t> are found experimentally/

then by dividing (1) by (2),

the value of /? would be easily obtained.

And since = c/Vc
2 -T2

,

c being the known velocity of light,

the value of v could be calculated.

That is,

THE ABSOLUTE VELOCITY OF THE EARTH
would thus become known.

Such was the plan of the experiment.

Now what actually happened?
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The experimental values of t\ and ti

were found to be the SAME,
instead of ti being greater than ti \

Obviously this was a most disturbing result,

quite out of harmony
with the reasoning given above.

The Dutch physicist, Lorentz,

then suggested the following explanation

of Michelson's strange result:

Lorentz suggested that

matter, owing to its electrical structure,

SHRINKS WHEN IT IS MOVING,
and this contraction occurs

ONLY IN THE DIRECTION OF MOTION.*
The AMOUNT of shrinkage

he assumes to be in the ratio of 1/ff

(where /3 has the value c/Vc
2

v
2

, as before).

Thus a sphere of one inch radius

becomes an ellipsoid when it is moving,
with its shortest semi-axis

(now only 1//3 inches long)

*The two papers by Lorentz on this subject

are included in the volume mentioned in

the footnote on page 5.

In the first of these papers
Lorentz mentions that the explanation proposed here

occurred also to Fitzgerald.

Hence it is often referred to as

the "Fitzgerald contraction" or

the "Lorentz contraction*
1

or

the "Lorentz-Fitzgerald contraction.
11

13



in the direction of motion,

thus:

aerection

Applying this idea

to the Michelson-Morlcy experiment,

the distance AB (= a) on p. 8,

becomes a/jS ,

and ti becomes 2a/3/c /

instead of 2a/3
2

/c ,

so that now ft
=

t2 ,

just as the experiment requires.

One might ask how it is

that Michelson did not

observe the shrinkage?

Why did not his measurements show

that AB was shorter than AC
(See the figure on p. 8)?

The obvious answer is that

the measuring rod itself contracts

when applied to AB,
so that one is not aware of the shrinkage.

To this explanation

of the Michelson-Morley experiment
the natural objection may be raised

that an explanation which is invented

for the express purpose

14



of smoothing out a certain difficulty,

and assumes a correction

of JUST the right amount,
is too artificial to be satisfying.

And Poincare, the French mathematician/

raised this very natural objection.

Consequently,
Lorentz undertook to examine

his contraction hypothesis

in other connections,

to see whether it is in harmony also

with facts other than

the Michelson-Morley experiment.

He then published a second paper in 1904,

giving the result of this investigation.

To present this result in a clear form

let us first re-state the argument
as follows:

vt

T

Consider a set of axes, X and Y,

supposed to be fixed in the stationary ether,

and another set X' and Y' ,

attached to the earth and moving with
it,

15



with velocity v , as indicated above

Let X7

move along X,
and V" move parallel to V.

Now suppose an observer on the earth,

say Michelson,
is trying to measure

the time it takes a ray of light

to travel from A to B ,

both A and 8 being fixed points on

the moving axis Xr

.

At the moment
when the ray of light starts at A
suppose that Y and Y

f

coincide,

and A coincides with D /

and while the light has been traveling to B
the axis V has moved the distance vt ,

and B has reached the position

shown in the figure on p. 1 5,

t being the time it takes for this to happen.

Then, if DB = x and AB =
x',

we have x' = x vt. (3)

This is only another way
of expressing what was said on p. 9
where the time for

the first part of the journey
was said to be equal to a/(c v).*

And, as we saw there,

this way of thinking of the phenomenon
did NOT agree with the experimental facts.

Applying now the contraction hypothesis

*Since we are now designating a by x',

we have x'/(c v)
=

t , or x = ct vf.

But the distance the light has traveled

is x ,

and x =
ct,

consequently x' = x - vt is equivalent to a/(c v)
=

t.

16



proposed by Lorentz,

x
r

should be divided by /3,

so that equation (3) becomes

x7/3 = x - vt

or x' = (x
-

vt). (4)

Now when Lorentz examined other fads,

as stated on p. 1 5,

he found that equation (4)

was quite in harmony with ail these facts,

but that he was now obliged

to introduce a further correction

expressed by the equation

(5)

where /3 , t , v , x , and c

have the same meaning as before

But what is t?!

Surely the time measurements

in the two systems are not different:

Whether the origin is at D or at A
should not affect the

TIME-READINGS.
In other words, as Lorentz saw it,

t' was a sort of "artificial
11

time

introduced only for mathematical reasons,

because it helped to give results

in harmony with the facts.

But obviously t had for him

NO PHYSICAL MEANING.
As Jeans, the English physicist, puts it:

"If the observer could be persuaded

to measure time in this artificial way,

setting his clocks wrong to begin with

and then making them gain or lose permanently,

the effect of his supposed artificiality

17





would just counterbalance

the effects of his motion

through the ether
11

!*

Thus,

the equations finally proposed by Lorentz

are:

x' = (x
-

vt)

z' =

Note that

since the axes attached to the earth (p. 1 5)

are moving along the X-axis,

obviously the values of y and z

(z being the third dimension)
are the same as / and z , respectively.

The equations just given

are known as

THE LORENTZ TRANSFORMATION,
since they show how to transform

a set of values of x , y ,
z , t

into a set x', y, z, t'

in a coordinate system

moving with constant velocity v,

along the X-axis,

with respect to the

unprimed coordinate system.

And, as we saw,

whereas the Lorentz transformation

really expressed the facts correctly,

it seemed to have

NO PHYSICAL MEANING,

*See the article on Relativity in the

Encyclopedia Britannica, 14th edition.
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and was merely

a set of empirical equations.

Let us now see what Einstein did.

III. RE-EXAMINATION OF THE
FUNDAMENTAL IDEAS.

As Einstein regarded the situation,

the negative result of

the Michelson-Morley experiment,

as well as of other experiments

which seemed to indicate a "conspiracy"

on the part of nature

against man's efforts to obtain

knowledge of the physical world (see p. 5),

these negative results,

according to Einstein,

did not merely demand

explanations of a certain number

of isolated difficulties,

but the situation was so serious

that a complete examination

of fundamental ideas

was necessary.

In other words,

he felt that there was something

fundamentally and radically wrong
in physics,

rather than a mere superficial difficulty.

And so he undertook to re-examine

such fundamental notions as

our ideas of

LENGTH and TIME and MASS.
His exceedingly reasonable examination

20



is most illuminating,

as we shall now see.

But first let us remind the reader

why length, time and mass

are fundamental,

Everyone knows that

VELOCITY depends upon
the distance (or LENGTH)
traversed in a given TIME,
hence the unit of velocity

DEPENDS UPON
the units of LENGTH and TIME.

Similarly,

since acceleration is

the change in velocity in a unit of time,

hence the unit of acceleration

DEPENDS UPON
the units of velocity and time,

and therefore ultimately upon
the units of LENGTH and TIME.

Further,

since force is measured

by the product of

mass and acceleration,

the unit of force

DEPENDS UPON
the units of mass and acceleration,

and hence ultimately upon
the units of

MASS, LENGTH and TIME,

And so on.

In other words,

all measurements in physics

depend primarily on

MASS, LENGTH and TIME.

That is why

21



the system of units ordinarily used

is called the "C.G.S."
system,^

where C stands for "centimeter"

(the unit of length),

G stands for "gram" (the unit of mass),

and 5 stands for "second" (the unit of time)/

these being the fundamental units

from which all the others are derived.

Let us now return to

Einstein's re-examination of

these fundamental units.

Suppose that two observers

wish to compare their measurements of time.

If they are near each other

they can, of course/ look at each other's watches

and compare them.

If they are far apart/

they can still compare each other's readings
BY MEANS OF SIGNALS,
say light signals or radio signals/

that is/ any "electromagnetic wave*
1

which can travel through space.

Let us/ therefore/ imagine that

one observer/ f ,
is on the earth/

and the other/ 5 / on the sun/

and imagine that signals are sent

as follows:

By his own watch/ 5 sends a message to

which reads "twelve o'clock/"
f receives this message

say/ eight minutes later;*

*Since the sun is about 93 000 000 miles

from the earth,

and light travels about 186 000 miles per second,
the time for a light (or radio) signal

to travel from the sun to the earth/
is approximately eight minutes.
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now, if his watch agrees with that of S ,

it will read
f<
12:08

n

when the message arrives.

then sends back to 5

the message "12:08,"

and, of course,

5 receives this message 8 minutes later,

namely, at 12:16.

Thus 5 will conclude,

from this series of signals,

that his watch and that of f

are in perfect agreement.

But let us now imagine

that the entire solar system

is moving through space,

so that both the sun and the earth

are moving in the direction

shown in the figure:

without any change in

the distance between them.

Now let the signals again be sent

as before:

S sends his message "1 2 o'clock,"

but sincejfjs moving awayjromjjta
IRelatter wiffnot reaclTE in 8 minutes,

but will take some longer time

to overtake f
,

Say, 9 minutes.

23



If Fs watch is in agreement with that of 5 ,

it will read 12:09

when the message reaches him,

and accordingly sends a return message/

reading "12:09."

Now 5 is traveling toward this message/

and it will therefore reach him

in LESS than 8 minutes,

say, in 7 minutes.

Thus S receives Fs message

at 1 2:1 6,
/

just as before.

Now if 5 and F are both

UNAWARE of their motion

(and, indeed,

we are undoubtedly moving

in ways that we are entirely unaware of,

so that this assumption

is far from being an imaginary one.)

5 will not understand

why Fs message reads

"12:09" instead of "12:08,"
and will therefore conclude

that Fs watch

must be fast.

Of course, this is only

an apparent error in Fs watch,

because, as we know,
it is really due to the motion,

and not at all

to any error in Fs watch.

It must be noted, however,
that this omniscient "we"

who can see exactly

what is "really" going on in the universe,

does not exist,

and that all human observers

24



are really in the situation

in which 5 is,

namely,
that of not knowing
about the motion in question,
and therefore

being OBLIGED to conclude

that 's watch is wrong!

And therefore,

5 sends the message

telling him that

if sets his clock back one minute,
then their clocks will agree.

In the same way,

suppose that other observers,

j4,B,C,ctc.,
all of whom are at rest WITH RESPECT TO
5 and ,

all set their clocks to agree with that of S ,

by the same method of signals described above.

They would all say then

that all their clocks are in agreement.
Whether this is absolutely true or not,

they cannot tell (see above),
but that is the best they can do.

Now let us see what will happen
when these observers wish

to measure the length of something.

To measure the length of an object,

you can place it,

say, on a piece of paper,

put a mark on the paper at one end of the object,

and another mark at the other end,

then, with a ruler,

find out how many units of length there are

25



between the two marks.

This is quite simple provided that

the object you are measuring and the paper
are at rest (relatively to you).

But suppose the object is

say, a fish swimming about in a tank?

To measure its length while it is in motion,

by placing two marks on the walls of the tank,

one at the head, and the other at the tail,

it would obviously be necessary
to make these two marks

SIMULTANEOUSLY-
for, otherwise,

if the mark 6 is made at a certain time,

C
/

V-

B

then the fish allowed to swim

in the direction indicated by the arrow,

and then the mark at the head

is made at some later time,

when it has reached C,
then you would say that

the length of the fish

is the distance BC,
which would be a fish-story indeed!

Now suppose that our observers,

after their clocks are all in agreement (see p. 25),

undertake to measure

the length of a train
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which is moving through their universe

with a uniform velocity.

They send out orders that

at 1 2 o'clock sharp,

whichever observer happens to be

at the place where

the front end of the train, A'9
arrives at that moment,
to NOTE THE SPOT;
and some other observer,

who happens to be at the place where

the rear end of the train, B ,

is at that same moment,
to put a mark at THAT spot.

Thus, after the train has gone,

they can, at their leisure,

measure the distance between the two marks,

this distance being equal to

the length of the train,

since the two marks were made

SIMULTANEOUSLY, namely at 12 o'clock,

their clocks being all

in perfect agreement with each other.

Let us now talk to the people on the train.

Suppose, first,

that they are unaware of their motion,
and that, according to them,
A f B f ^, t etc., are the ones who are moving,
a perfectly reasonable assumption.

And suppose that there are two clocks on the train,

one at A', the other at B',

and that these clocks

have been set in agreement with each other

by the method of signals described above.

Obviously the observers A , B , C, etc.,

wit! NOT admit that the clocks at A and B'
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arc in agreement with each other,

since they "know" that the train is in motion,

and therefore the method of signals

used on the moving train

has led to an erroneous setting

of the moving clocks (see p. 25).

Whereas the people on the train,

since they "know" that

A, B , C, etc./ are the ones who are moving,

claim that it is the clocks

belonging to A, 8, C, etc.,

which were set wrong.

What is the result of this

difference of opinion?

When the clocks of A and B
, say,

both read 12 o'clock,

and at that instant A and B

each makes a mark at a certain spot,

then A and B claim, of course,

that these marks were made

simultaneously;

but the people on the train do not admit

that the clocks of A and 8

have been properly set,

and they therefore claim that

the two marks were

NOT made SIMULTANEOUSLY,
and that, therefore,

the measurement of the LENGTH of the train

is NOT correct.

Thus,

when the people on the train

make the marks

simultaneously,

as judged by their own clocks,

the distance between the two marks
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will NOT be the same as before.

Hence we see that

MOTION
prevents agreement in the

setting of clocks,

and, as a consequence of this,

prevents agreement in the

measurement of LENGTH!

Similarly,

as we shall see on p. 79,

motion also affects

the measurement of mass

different observers obtaining

different results

when measuring the mass of the same object.

And since,

as we mentioned on p. 21,

all other physical measurements

depend upon

length, mass, and time,

it seems that

therefore there cannot be agreement

in any measurements made

by different observers

who are moving with different velocities!

Now, of course,

observers on the earth

partake of the various motions

to which the earth is subject

the earth turns on its axis,

it goes around the sun,

and perhaps has other motions as wefl.

Hence it would seem that

observations made by people on the earth
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cannot agree with

those taken from

some other location in the universe,

and are therefore

not really correct

and consequently worthless!

Thus Einstein's careful and reasonable examination

led to the realization that

Physics was suffering from

no mere single ailment,

as evidenced by the

Michelson-Morley experiment alone,
but was sick from head to foot!

Did he find a remedy?

HE DID!

IV. THE REMEDY.

So far, then, we see that

THE OLD IDEAS REGARDING
THE MEASUREMENT OF
LENGTH, TIME AND MASS
involved an "idealistic" notion of

"absolute time
11

which was supposed to be

the same for all observers,

and that

Einstein introduced

a more PRACTICAL notion of time

based on the actual way of

setting clocks by means of SIGNALS.
This led to the

DISCARDING of the idea that
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the LENGTH of an object

is a (act about the object

and is independent of the person

who does the measuring/

since we have shown (Chapter III.)

that the measurement of length

DEPENDS UPON
THE STATE OF MOTION OF THE MEASURER.

Thus two observers,

moving relatively to each other

with uniform velocity/

DO NOT GET THE SAME VALUE
FOR THE LENGTH OF A GIVEN OBJECT.
Hence we may say that

LENGTH is NOT a FACT about an OBJECT,
but rather a

RELATIONSHIP between

the OBJECT and the OBSERVER.
And similarly for TIME and MASS (Ch. III.).

In other words,
from this point of view

it is NOT CORRECT to say:

x' = x vt

as Michelson did* (see p. 16, equation (3) ),

since this equation implies that

the value of x'

is a perfectly definite quantity,

*We do not wish to imply that

Michelson made a crude error

ANY CLASSICAL PHYSICIST
would have made the same statement,

for those were the prevailing ideas

thoroughly rooted in everybody's mind,
before Einstein pointed out

the considerations discussed in Ch. III.
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namely,
THE length of the arm AB of the apparatus

in the Michelson-Morley experiment

(See the diagram on p. 1 5).

Nor is it correct to assume that

(again as Michelson did)

for two different observers,

which would imply that

both observers agree in their

time measurements.

These ideas were contradicted by
Michelson's EXPERIMENTS,
which were so ingeniously devised

and so precisely performed.

And so Einstein said that

instead of starting with such ideas,

and basing our reasoning on them,
let us rather

START WITH THE EXPERIMENTAL DATA,
and see to what relationships

they will lead us,

relationships between

the length and time measurements

of different observers.

Now what experimental data

must we take into account here?

They are:

FACT (1): It is impossible

to measure the "ether wind,"

or, in other words,
it is impossible to detect our motion

relative to the ether.

This was clearly shown by the
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Michelson-Morley experiment,
as well as by all other experiments

devised to

measure this motion (see p. 5).

Indeed, this is the great

"conspiracy*
1

that started all the trouble,

or, as Einstein prefers to see it,

and most reasonably so,

THIS IS A FACT.
FACT (2): The velocity of light is the same

no matter whether the source of light

is moving or stationary.

Let us examine this statement

more fully,

to see exactly what it means.

To do this,

it is necessary to remind the reader

of a few well-known facts:

Imagine that we have two trains,

one with a gun on the front end,
the other with a source of sound

on the front end,

say, a whistle.

Suppose that the velocity, u ,

of a bullet shot from the gun,

happens to be the same as

the velocity of the sound.

Now suppose that both trains

are moving with the same velocity, v ,

in the same direction.

The question is:

How does the velocity of a bullet

(fired from the MOVING train)

relatively to the ground,

compare with
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the velocity of the sound

that came from the whistle

on the other MOVING train,

relatively to the medium/ the air,

in which it is traveling?

Are they the same?

No!

The velocity of the bullet,

RELATIVELY TO THE GROUND,
is v + u ,

since the bullet is now propelled forward

not only wiih its own velocity, u ,

given to it by the force of the gun,

but, in addition,

has an inertia! velocity, v ,

which it has acquired from

the motion of the train

and which is shared by
all objects on the train.

But in the case of the sound wave

(which is a series of pulsations,

alternate condensations and rarefactions of the air

in rapid succession),

the first condensation formed

in the neighborhood of the whistle,

travels out with the velocity u

relatively to the medium,
regardless as to whether

the train is moving or not.

So that this condensation

has only its own velocity

and does NOT have the inertia! velocity

due to the motion of the train,

the velocity of the sound

depending only upon the medium
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(that is, whether it is air or water/ etc.,

and whether it is hot or cold, etc.),

but not upon the motion of the source

from which the sound started.

The following diagram

shows the relative positions

after one second/

in both cases:

CASE I.

Both trains at rest.

Tram u jt.

-ft.

CASE II.

Both trains moving with velocity v.

v
UfV

u 4*.

Thus/ in Case II.,

the bullet has moved
u + v feet in one second
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from the starting point,

whereas the sound has moved only u feet

from the starting point/

in that one second.

Thus we see that

the velocity of sound is u feet per second

relatively to the starting point,

whether the source remains stationary

as in Case I.,

or follows the sound, as in Case II.

Expressing it algebraically,

x = ut

applies equally well for sound

in both Case I. and Case II.,

x being the distance

FROM THE STARTING POINT.

Indeed, this fact is true of ALL, WAVE MOTION,
and one would therefore expect
that it would apply also to LIGHT.
As a matter of FACT,
it DOES,
and that is what is meant by
FACT (2) on p. 34.

Now, as a result of this,

it appears,

by referring again to the diagram on p. 36,
that

relatively to the MOVING train (Case II.)

we should then have,

for sound

x' = (u
-

v)t

x being the distance

from T to the point where

the sound has arrived after time t.
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From which, by measuring x
'

, u , and t,

we could then calculate v ,

the velocity of the train.

And, similarly, for light

using the moving earth

instead of the moving train,

we should then have,
as a consequence of FACT (2) on p 34,

x' = (c
-

v)t

where c is the velocity of light

(relatively to a stationary observer

out in space)
and v is the velocity of the earth

relatively to this stationary observer

and hence

the ABSOLUTE velocity of the earth.

Thus we should be able

to determine v.

But this contradicts FACT (1),

according to which

it is IMPOSSIBLE to determine v.

Thus it APPEARS that

FACT (2) requires

the velocity of light

RELATIVELY TO THE MOVING EARTH
to be c v (see diagram on p. 36),
whereas FACT (1) requires it to be c.*

*FACT (1) may be re-stated as follows:

The velocity of light

RELATIVE TO A MOVING OBSERVER
(For example, an observer

on the moving earth)

must be c, and NOT c v t

for otherwise,
he would be able to find v ,

which is contrary to fact.
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And so the two facts

contradict each other!

Or, stating it another way:

If, in one second,
the earth moves from E to E'

while a ray of light,

goes from the earth to L
,

then

FACT(1) requires that

E'/. be equal to c (
= 1 86,000 miles)

while FACT (2) requires that

EL be equal to c /

Now it is needless to say that

FACTS CAN NOT CONTRADICT
EACH OTHER!

Let us therefore see how,
in the light of the discussion in Ch. III.

FACTS (1) and (2) can be shown to be

NOT contradictory.

V. THE SOLUTION OF THE DIFFICULTY

We have thus seen that

according to the facts,

the velocity of light

IS ALWAYS THE SAME,
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whether the source of light

is stationary or moving

(See FACT (2) on p. 34),

and whether the velocity of light

is measured

relatively to the medium in which it travels,

or relatively to a MOVING observer

(See p. 37).

Let us express these (acts algebraically,

for two observers, K and Kf

,

who are moving with uniform velocity

relatively to each other,

thus:

K writes x = ct , (6)

and K' writes x' = ct', (7)

both using

THE SAME VALUE FOR
THE VELOCITY OF LIGHT,
namely, c ,

and each using

his own measurements of

length, x and x',

and time, t and t', respectively.

It is assumed that

at the instant when

the rays of light start on their path,

K and K' are at the SAME place,

and the rays of light

radiate out from that place

in all directions.

Now according to equation (6),

K
,
who is unaware of his motion through the ether

(since he cannot measure it),

may claim that he is at rest,

and that in time, t ,
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K' must have moved to the right,

as shown in the figure below/
and that/ in the meantime,
the light/

which travels out in all directions from K ,

has reached all points at

the distance ct from K ,

and hence

all points on the circumference

of the circle having the radius ct.

But W claims that he is the one

who has remained stationary/

and that K /
on the contrary,

has moved TO THE LEFT/
furthermore that the light travels out

from Kf

as a center,

instead of from K\

And this is what he means

when he says

x' = ct'.

How can they both be right?
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We may be willing

not to take sides

in their controversy regarding the question as to

which one has moved
K' to the right or K to the left

because either leads to the same result.

But what about the circles? ,-?

They cannot possibly have both K and K
as their centers!

'

One of them must be right and the other wrong.

This is another way of stating

the APPARENT CONTRADICTION BETWEEN
FACTS (1) and (2) (see p. 39).

Now, at last, we are ready
for the explanation.

Although K claims that

at the instant when

the light has reached the point C(p. 41),

it has also reached

the point Af on the other side,

still,

WE MUST REMEMBER THAT
when K says

two events happen simultaneously

(namely, the arrival of the light at C and A),

K' DOES NOT AGREE
THAT THEY ARE SIMULTANEOUS (see p. 28).

So that when
K says that

the arrival of the lisht at C and B

(rather than at C and A)
ARE SIMULTANEOUS,
his statement

DOES NOT CONTRADICT THAT OF K,
since K and K'

DO NOT MEAN THE SAME THING
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WHEN THEY SAY
"SIMULTANEOUS-.

11

for

K's clocks at C and A
do not agree with K'*s clocks at C and A.

Thus when the light arrives at A ,

the reading of K*s clock there

is exactly the same as that of K's clock at C

(K having set all clocks in his system

by the method of signals described on p. 25),

while

Kns clock at A i

when the light arrives there/

reads a LATER TIME than his clock at C
when the light arrived at C,
so that K maintains that

the light reaches A
LATER than it reaches C,
and NOT at the SAME instant,

as K claims.

Hence we see that

they are not really contradicting each other,

but ihat they are merely using

two different systems of clocks,

such that

the clocks in each system

agree with each other alright,

but the clocks in the one system

have NOT been set

in agreement with the clocks

in the other system (see p. 28).

That is,

If we take into account

the inevitable necessity of

using signals

in order to set clocks which are
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at a distance from each other,

and that the arrivals of the signals

at their destinations

are influenced by
our state of motion,
of which we are not aware (p. 24),

it becomes clear that

THERE IS NO REAL CONTRADICTION HERE,
but only a difference of description

due to INEVITABLE differences

in the setting of

various systems of clocks.

We now see

in a general qualitative way,
that the situation is

not at all mysterious or unreasonable,
as it seemed to be at first.

But we must now find out

whether these considerations,

when applied QUANTITATIVELY,
actually agree with the experimental facts.

And now a pleasant surprise awaits us.

VI. THE RESULT OF APPLYING
THE REMEDY.

In the last chapter we saw that

by starting with

two fundamental FACTS (p. 34),

we reached the conclusion

expressed in the equations

x = ct (6)

and x' = ct' (7)
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which are graphically represented on p. 41,
and we realized that these equations

are NOT contradictory,

(as they appear to be at first),

if we remember that there is

a difference in the setting of the clocks

in the two different systems.

We shall derive, now, from (6) and (7),

relationships between the measurements

of the two observers, K and Kf

.

And all the mathematics we need for this

is a little simple algebra,

such as any high school boy knows..

From (6) and (7) we get

x - ct =0
and x' - ct' = 0.

Therefore

x'
-

ct' - X(x
-

ct) (8)

where X is a constant.

Similarly, in the opposite direction,

x' + ct' = /x (x + ct) (9)

H being another constant.

By adding and subtracting (8) and (9)

we get: x' = ax - feet (10)

and ct' = act-fex (11)

where a = (X -f- ju)/2 and b = (X
-

ju)/2.

Let us now find the values of a and fe

in terms of v

(the relative velocity of K and /C ),

and c
,
the velocity of light.
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This is done in the following

ingenious manner:*

From (10)

when x =
,

then x =
bet/ a /

but x' = at the point K'\

(12)

And x in this case is

the distance from K to K!
,

that is,

the distance traversed/ in time t

by Kf

moving with velocity v

relatively to K.

Therefore x = vt.

Comparing this with (1 2), we get

v = be/a.

Let us now consider the situation

from the points of view of K and K'.

Take K first:

For the time t
-

,

/Cgetsx'
- ax (from (10)),

or x =
x'/a.

Hence K says that

*See Appendix I in "Relativity
11

by Einstein,

Pub. by Peter Smith, N. Y. (1931).
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to get the "true" value, x,
K

;

should divide his x by a/
in particular,

ifx'-1,
K says that K"s unit of length

is only 1/a of a "true" unit.

But K,
att' = 0,usins(11)
says

fex=act (15)

and since from (10),

(1 5) becomes

6x ac(ax x')/6c f

62^2 f

"x ax ax ,

from which

x' = a(1
- 6

2

/a
2

)x. (16)

And since 6/a =
y/c from (1 3),

(16) becomes

x
f =

a(1
-

vVc-)x. (17)

In other words,

K' says:

In order to get the "true" value, x',

K should multiply his x by

a(1
- v

2

/c).

In particular,

ifx- 1,

then K says that

f('s unit is really a(1 vr/c
2

) units long.

Thus

47



each observer considers that

his own measurements

are the "true" ones,

and advises the other fellow

to make a "correction.*
1

And indeed,

although the two observers, K and /(',

may express this "correction*
1

in different forms,

still

the MAGNITUDE of the "correction"

recommended by each of them

MUST BE THE SAME,
since it is due in both cases

to the relative motion,

only that each observer attributes this motion

to the other fellow.

Hence, from (14) and (1 7) we may write

1/a =
a(1

- v
s

/c
2

).*

Solving this equation for a , we get

a = c/V?~-v*.

*Note that this equation is

NOT obtained by
ALGEBRAIC SUBSTITUTION
from (14) and (17),

but is obtained by considering that

the CORRECTIONS advised by K and K'

in (14) and (17), respectively,

must be equal in magnitude
as pointed out above.

Thus in (14) K says:

"You must multiply your measurement by 1/a",
whereas in (1 7) K' says:

"You must multiply your measurement by a
(1

and since these correction factors

must be equal
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Note that this value of a

is the same as that of /? on p. 1 1 .

Substituting in (10)
this value of a

and the value fee = ay from (13),
we get

x' = 0x - |8vf

or x' = /3(x-rt) (18)

which is the first of the set of equations
of the Lorenti transformation on page 19!

Furthermore,

from (1 8) and / x = ct

\x'
= ct'

we get

ct' = P(ct
-

vt)

or t'
=

/3(t
-

vt/c).

Or, since t = x/c,

t' = /3(t
-

vx/c
2
), (19)

which is another of the equations

of the Lorentz transformation!

That the remaining two equations

y'
= y and z' = z also hold,

Einstein shows as follows:

Let K and /C' each have a cylinder
of radius r, when at rest

relatively to each other,

and whose axes coincide with the X (X
7

) axis/

Now, unless / = y and z
r = z,

K and Kf

would each claim that

his own cylinder is OUTSIDE the other fellow's!

We thus see that

the Lorentz transformation was derived

by Einstein

(quite independently of Lorentz),

NOT as a set of empirical equations
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devoid of physical meaning,

but, on the contrary,

as a result of

a most rational change in

our ideas regarding the measurement of

the fundamental quantities

length and time.

And so, according to him,
the first of the equations of the

Lorentz transformation,

namely,
x' - /3(x

-
vt)

is so written

NOT because of any real shrinkage,

as Lorentz supposed,
but merely an apparent shrinkage,

due to the differences in

the measurements made by K and /C
*
(see p. 45).

And Einstein writes

t' = /3(t
-

vx/c
2

)

NOT because it is just a mathematical trick

WITHOUT any MEANING (see p. 19)
but again because

it is the natural consequence of

the differences in the measurements

of the two observers.

And each observer may think

that he is right

and the oiher one is wrong/
and yet
each one,

by using his own measurements,
arrives at the same form

*This shrinkage, it will be remembered,
occurs only in the direction of motion (see p. 1 3).
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when he expresses a physical fact,

as, for example,
when K says x = ct

and Kf

says x' = ct' ,

they are really agreeing as to

the LAW of the propagation of light.

And similarly,

if K writes any other law of nature,

and if we apply
the Lorentz transformation

to this law,

in order to see what form the law takes

when it is expressed in terms of

the measurements made by /C
7

,

we find that

the law is still the same,

although it is now expressed

in terms of the primed coordinate system.

Hence Einstein says that

although no one knows

what the "true" measurements should be,

yet,

each observer may use his own measurements

WITH EQUAL RIGHT AND EQUAL SUCCESS
in formulating

THE LAWS OF NATURE,
or,

in formulating the

INVARIANTS of the universe,

namely, the quantities which remain unchanged
in spite of the change in measurements

due to the relative motion of K and K .

Thus, we can now appreciate

Einstein's Principle of Relativity:

"The laws by which
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the states of physical systems

undergo change,

are not affected

whether these changes of state be referred

to the one or the other

of two systems of coordinates

in uniform translatory motion.
"

Perhaps some one will ask

"But is not the principle of relativity old/

and was it not known long before Einstein?

Thus a person in a train

moving into a station

with uniform velocity

looks at another train which is at rest,

and imagines that the other train is moving

whereas his own is at rest.

And he cannot find out his mistake

by making observations within his train

since everything there

is just the same as it would be

if his train were really at rest.

Surely this fact,

and other similar ones,

must have been observed

long before Einstein?"

In other words,

RELATIVELY to an observer on the train

everything seems to proceed in the same way
whether his system (i.e., his train)

is at rest or in uniform* motion,

and he would therefore be unable

*0f course if the motion is not uniform,

but "jerky",

things on the train would jump around

and the observer on the train

would certainly know

that his own train was not at rest.
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to detect the motion.

Yes, this certainly was known

long before Einstein.

Let us see what connection it has

with the principle of relativity

as stated by him:

Referring to the diagram on p. 36
we see that

a bullet fired from a train

has the same velocity

RELATIVELY TO THE TRAIN
whether the latter is moving or not,

and therefore an observer on the train

could not detect the motion of the train

by making measurements on

the motion of the bullet.

This kind of relativity principle

is the one involved

in the question on page 53,
and WAS known long before Einstein.

Now Einstein

EXTENDED this principle

so that it would apply to

electromagnetic phenomena
(light or radio waves).

Thus,

according to this extension of

the principle of relativity,

an observer cannot detect

his motion through space

by making measurements on

the motion of ELECTROMAGNETIC WAVES.
But why should this extension

be such a great achievement

why had it not been suggested before?
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BECAUSE
it must be remembered that

according to fact (2) see p. 39,

o -

whereas,
the above-mentioned extension of

the principle of relativity

requires that EL should be equal to c

(compare the case of the bullet on p. 36).
In other words,
the extension of the principle of relativity

to electromagnetic phenomena
seems to contradict fact (2)

and therefore could not have been made
before it was shown that

fundamental measurements are merely "local"

and hence the contradiction was

only apparent,
as explained on p. 42;
so that the diagram shown above
must be interpreted

in the light of the discussion on p. 42.

Thus we see that

whereas the principle of relativity

as applied to MECHANICAL motion

(like that of the bullet)

was accepted long before Einstein,

the SEEMINGLY IMPOSSIBLE EXTENSION
of the principle

to electromagnetic phenomena
was accomplished by him.
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This extension of the principle,
for the case in which
K and K' move relatively to each other

with UNIFORM velocity,
and which has been discussed here/
is called

the SPECIAL theory of relativity.

We shall see later

how Einstein generalized this principle
STILL FURTHER,
to the case in which
K and K? move relatively to each other

with an ACCELERATION,
that is, a CHANGING velocity.

And, by means of this generalization/
which he called

the GENERAL theory of relativity,

he derived
A NEW LAW OF GRAVITATION/
much more adequate even than

the Newtonian law,
and of which the latter

is a first approximation.

But before we can discuss this in detail

we must first see
how the ideas which we have

already presented
were put into a

remarkable mathematical form

by a mathematician named Minkowski.
This work
was essential to Einstein

in the further development of his ideas/
as we shall see.

56



VII. THE FOUR-DIMENSIONAL SPACE-TIME
CONTINUUM.

We shall now see

how Minkowski* put Einstein's results

in a remarkably neat mathematical form,

and how Einstein then utilized this

in the further application of his

Principle of Relativity,

which led to

The General Theory of Relativity,

resulting in a

NEW LAW OF GRAVITATION
and leading to further important consequences
and NEW discoveries.

It is now clear

from the Lorentz transformation (D. 1 9)

that

a length measurement, x ,

in one coordinate system

depends upon BOTH x and t in another,

and that

t' also depends upon BOTH x and t.

Hence^
instead of regarding the universe

as being made up of

Space, on the one hand,
and Time, quite independent of Space,
there is a closer connection

between Space and Time

than we had realized.

In other words,

*See collection of papers mentioned in

footnote on p. 5.
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that the universe is NOT a universe of points,

with time flowing along

irrespective of the points,

but rather,

this is

A UNIVERSE OF EVENTS,
-

everything that happens,

happens at a certain place

AND at a certain time.

Thus, every event is characterized

by the PLACE and TIME of its occurrence.

Now,
since its place may be designated

by three numbers,

namely,

By the x, y, and z co-ordinates of the place

(using any convenient reference system),

and since the time of the event

needs only one number to characterize it,

we need in all

FOUR NUMBERS
TO CHARACTERIZE AN EVENT,
just as we need

three numbers to characterize

a point in space.

Thus we may say that

we live in a

four-dimensional world.

This does NOT mean

that we live in four-dimensional Space,
but is only another way of saying

that we live in

A WORLD OF EVENTS
rather than of POINTS only,

and it takes
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FOUR numbers to designate

each significant element,

namely, each event.

Now if an event is designated

by the four numbers x, y, z, f ,

in a given coordinate system,

the Lorentz transformation (p. 19)
shows how to find

the coordinates x', y', z', t',

of the same event,

in another coordinate system,

moving relatively to the first

with uniform velocity.

In studying "graphs
11

every high school freshman learns

how to represent a point

by two coordinates, x and y,

using the Cartesian system of coordinates,

that is,

two straight lines

perpendicular to each other.

Now, we may also use

another pair of perpendicular axes,

X' and Y' (in the figure on the next page),

having the same origin, ,
as before,

and designate the same point by x and y'

in this new coordinate system.

When the high school boy above-mentioned

goes to college,

and studies analytical geometry,

he then learns how to find
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the relationship between

the primed coordinates

and the original ones/

and finds this to be expressed as follows:*

anc

x = x'cosfl
-

/sine )

y
= x'sinfl + /cos0 /

where 6 is the angle through which

the axes have been revolved,

as shown in the figure above.

The equations (20) remind one somewhat

of the Lorentz transformation (p. 19),

since the equations of

*Seep. 310.
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the Lorentz transformation

also show how to go
from one coordinate system to another.

Let us examine the similarity

between (20) and the

Lorentz transformation

a little more closely,

selecting from the

Lorentz transformation

only those equations involving x and t ,

and disregarding those containing y and z,
since the latter remain unchanged
in going from one coordinate system to the other.

Thus we wish to compare (20) with:

/ x' - |8(x
-

vt)

t t'
-

/3(t
-

vx/c
2

).

Or, if, for simplicity, we take c = 1,

that is, taking

the distance traveled by light in one second,
as the unit of distance,

we may say that

we wish to compare (20) with

x' =
/3(x- vt))

t'
= P(t- vx)f

Let us first solve (21) for x and t ,

so as to get them more nearly

in the form of (20).

By ordinary algebraic operations,*

*And temembering that

we are taking c =
1,

and that therefore
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we get

x = fat + vt') )

and t
=

j8(t' + vx') }
'

Before we 90 any further,

let us linger a moment
and consider equations (22):

Whereas (21) represents /(speaking,

and saying to K '.

"Now you must divide x by /3,

before you can get the relationship

between x and x' that you expect,

namely, equation (3) on p. 16;

in other words, your x' has shrunk

although you don't know it."

In (22),

it is Kf

speaking,

and he tells K the same thing,

namely that K must divide x by /? ,

to get the "true" x ,

which is equal to x
1 + vt'.

Indeed,
this is quite in accord

with the discussion in Chapter VI.,

in which it was shown that

each observer

gives the other one

precisely the same advice!

Note that the only difference

between (21) and (22) is that

+ y becomes v

in going from one to the other.
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And this is again quite in accord

with our previous discussion

since each observer

believes himself to be at rest,

and the other fellow to be in motion,

only that one says:

"You have moved to the right*' (+ v),

whereas the other says:

"You have moved to the left*' ( v).

Otherwise,
their claims are precisely identical;

and this is exactly what

equations (21) and (22) show so clearly.

Let us now return to the comparison
of (22) and (20):

Minkowski pointed out that

if, in (22),

t is replaced by IT (where /
= V 1 ),

and t' by IT',

then (22) becomes:

x = /3(x' + ivr')

IT = /?(// + VX')

or

/ X = frt' +
\ IT - I/V +

Or (by multiplying the second equation by *-
i):

x = /3x' + i/3vr'

T = /3r'
-

fivx'.

Finally,
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substituting* cos0 for ]8 and sin0 for i

these equations become

( x = x'cosfl r'sinfl )

\ r = x'sinfl + r'cosfl j

EXACTLY like (20)!

In other words,

ff K observes a certain event

and finds that

the four numbers necessary

to characterize it (see p. 58)

are x , y , z , r ,

and K
', observing the SAME event,

finds that in his system
the four numbers

are x', y, i ', r
f

,

then the form (23)

of the Lorentz transformation

shows that

to go from one observer's coordinate system

to the other

it is merely necessary

to rotate the first coordinate system

through an angle 0, in the x ,
r plane,

without changing the origin,

*Since is greater than 1 (see p. 11)
must be an imaginary angle:

See
p.

25 of "Non-Euclidean Geometry/'
another book by H. G. and L. R. Lieber.

Note that sin
2 + cos

2 = 1

holds for imaginary angles

as well as for real ones/
hence the above substitutions are legitimate,

thus
2 + (- i/5v)

2 = F - V = 2

(1
- v

2

)
-

since /3
2 =

1/(1
- v

2

),

r being taken equal to 1 (see p. 62).
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thus:

(remembering that y
=

y
f

and z = z').

And since we took (p. 65)

p = cos e

and ifiv
= sin

then tan = iv.

That is,

the magnitude of the angle

depends upon v ,

the relative velocity of K and Kf

.

And since, from (23),

/ x2 =
(x

7

)
2
cos

2 - 2xYsin0 cosfl + (rj sin
2

( r
2 =

(x
7

)
2
sin

2 + 2x
/

r
/

$infl costf + (r')
2
cos

2
fl

then, obviously,

x
2 + r

2 =
(x')

2 + (rj

or (since y
= / and z = z

7

),

x
2 + y

2 + z
2 + r

2 = (xT + (y? + (z
7

)
2 + (rj
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Now, it will be remembered
from Euclidean plane geometry,

that x* + y
2

represents

the square of the distance

between O and A ,

and similarly,

in Euclidean three-dimensional space,

)C + y
2

also represents

the square of the distance between two points.

Thus, also,

x
2 + y

2 + r + r
2

represents

the square of the "interval
1 *

between two EVENTS,
in our four-dimensional world (see p. 58).

And,
just as in plane geometry
the distance between two points

remains the same

whether we use

the primed or the unprimed
coordinate systems (see p. 61),
that is,

*> + y
2 = (xj + (yj
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(although x does NOT equal x',

and y does NOT equal /).

So, in three dimensions,

x2 + y
2 + z

2 = (x7 + (yj + (zj

and, similarly,

as we have seen on p. 66,
the "interval" between two events,

in our four-dimensional

space-time world of events,

remains the same,
no matter which of the two observers,

K or /C',

measures it.

That is to say,

although K and K'

do not agree on some things/

as, for example/
their length and time measurements,

they DO agree on other things:

(1) The statement of their LAWS (see p, 51)

(2) The "interval" between events,

Etc.

In other words/

although length and time

are no longer INVARIANTS,
in the Einstein theory,
other quantities,

like the space-time interval between two events,

ARE invariants

in this theory.

These invariants are the quantities
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which have the SAME value

for all observers,*

and may therefore be regarded
as the realities of the universe.

Thus, from this point of view,
NOT the things that we see or measure

are the realities,

since various observers

do not get the same measurements

of the same objects,

but rather

certain mathematical relationships

between the measurements

(Like x2 + y
2 + z

2 + r
2

)

are the realities,

since they are the same
for all observers.*

We shall see,
in discussing

The General Theory of Relativity,

how fruitful

Minkowski's view-point of a

four-dimensional Space-Time World

proved to be.

VIII. SOME CONSEQUENCES OF THE
THEORY OF RELATIVITY.

We have seen that

if two observers, K and Kf

, move

relatively to each other

*Ail observers moving relatively to each other

with UNIFORM velocity (see p. 56).
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with constant velocity,

their measurements of length and time

are different;

and, on page 29,
we promised also to show
that their measurements of mass are different.

In this chapter we shall discuss

mass measurements,
as well as other measurements which

depend upon
these fundamental ones.

We already know that if an object moves

in a direction parallel to

the relative motion of K and K ,

then the Lorentz transformation

gives the relationship

between the length and time measurements

of K and K'.

We also know that

in a direction PERPENDICULAR to

the relative motion of K and Kf

there is NO difference in the

LENGTH measurements (See footnote on p. 50),

and, in this case,

the relationship between the time measurements

may be found as follows:

For this PERPENDICULAR direction

Michelson argued that

the time would be

t2
= 2a/c (seep. 12).

Now this argument
is supposed to be from the point of view

of an observer who
DOES take the motion into account,
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and hence already contains

the "correction" factor /}/

hence,

replacing to by t'f

the expression t'
=

2a/3/c

represents the time

in the perpendicular direction

as K tells K it SHOULD be written.

Whereas K , in his own system,

would, of course, write

t
=

2a/c

for his "true" time, t.

Therefore

t'
=

|8f

gives the relationship sought above,
from the point of view of K.

From this we see that

a body moving with velocity u

in this PERPENDICULAR direction,

will appear to K and K to have

different velocities:

Thus,

Since u = d/t and u' = c/'/f'

where c/ and </' represent

the distance traversed by the object

as measured by K and Kf

f respectively;

and since J =
</'

(there being NO difference in

LENGTH measurements in this direction

see p. 70)

and t
f =

j8t , as shown above,
then i/ = c///3t

=
(1//3)u.

Similarly,

since a = u/t and a' = u /t
f
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where a and a' are the

accelerations of the body,
as measured by K and /(', respectively,

we find that

In like manner

we may find the relationships

between various quantities in the

primed and unprimed systems of co-ordinates,

provided they depend upon

length and time.

But, since there are THREE basic units in Physics

and since the Lorentz transformation

deals with only two of them, length and time,

the question now is

how to get the MASS into the game.
Einstein found that the best approach
to this difficult problem was via the

Conservation Laws of Classical Physics.

Then, just as the old concept of

the distance between two points

(three-dimensional)

was "stepped up" to the new one of

the interval between two events

(four-dimensional), (see p. 67)
so also the Conservation Laws

will have to be "stepped up" into

FOUR-DIMENSIONAL SPACE-TIME.

And, when this is done

an amazing vista will come into view!

CONSERVATION LAWS OF
CLASSICAL PHYSICS:

(1) Conservation of Mass: this means that

no mass can be created or destroyed,
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but only transformed from one kind to another.

Thus, when a piece of wood is burned,
its mass is not destroyed, for

if one weighs all the substances into which

it is transformed/ together with the ash

that remains, this total weight is the

same as the weight of the original wood.

We express this mathematically thus: ASm = o

where 2 stands for the SUM, so that 2m
is the TOTAL mass, and A, as usual,

stands for the "change", so that

ASm = o says that the change in

total mass is zero, which is the

Mass Conservation Law in very

convenient, brief, exact form!

(2) Conservation of Momentum: this says that

if there is an exchange of momentum

(the product of mass and velocity, mv)
between bodies, say, by collision, the

TOTAL momentum BEFORE collision

is the SAME
as the TOTAL after collision: A2mv = o.

(3) Conservation of Energy: which means that

Energy cannot be created or destroyed, but

only transformed from one kind to another.

Thus, in a motor, electrical energy is

converted to mechanical energy, whereas

in a dynamo the reverse change takes place.

And if, in both cases, we take into account

the part of the energy which is

transformed into heat energy, by friction,

then the TOTAL energy
BEFORE and AFTER the transformation

is the SAME, thus: A2E = o.

Now, a moving body has
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KINETIC energy, expressible thus:

When two moving, ELASTIC bodies collide,

there is no loss in kinetic energy of

the whole system, so that then we have

Conservation of Kinetic Energy: AS^mv
2 = o

(a special case of the more general Law);

whereas, for inelastic collision, where

some of the kinetic energy is changed into

other forms, say heat, then AZ^r/nv
2
5^ o.

Are you wondering what is the use of all this?

Well, by means of these Laws, the most

PRACTICAL problems can be solved,*

hence we must know what happens to them

in Relativity Physics!

You will see that they will lead to:

(a) NEW Conservation Laws for

Momentum and Energy, which are

INVARIANT under

the Lorentz transformation,

and which reduce, for small v, J

to the corresponding Classical Laws

(which shows why those Laws worked

so well for so long!)

(b) the IDENTIFICATION of

MASS and ENERGY!
Hence mass CAN be destroyed as such

and actually converted into energy!

Witness the ATOMIC BOMB (see p. 318).

See, for example, "Mechanics for Students of Physics and

Engineering'* by Crew and Smith, Macmillan Co.,

pp. 238-241

Remembering that the "correction
1 *

factor, ft, is equal to

c/V c
2

y 2

, you see that, when v is small relatively to

the velocity of! i grit, c, thus making v
2

negligible, then
= 1 and hence no "correction*

1

is necessary.
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Thus the Classical Mass Conservation Law
was only an approximation and becomes

merged into the Conservation of Energy Lawl

Even without following the mathematics of

the next few pages/ you can already

appreciate the revolutionary IMPORTANCE of

these results, and become imbued with

the greatest respect for the human MIND
which can create all this and

PREDICT happenings previously unknown!

Here is MAGIC for you!

Some readers may be able to understand

the following "stepping up" process now,
others may prefer to come back to it

after reading Part II of this book:

The components of the velocity vector

in Classical Physics, are:

cfx/c/t, c/y/c/t, c/z/c/t.

And, if we replace x, y, z by xi, X2, xs,

these become, in modern compact notation:

JxjJt 0-1,2,3).

Similarly, the momentum components are:

m.c/x,/c/t (/= 1,2,3)

so that, for n objects,

the Classical Momentum Conservation Law is:

=o (/= 1,2,3) (24)

But (24) is NOT an invariant under

the Lorentz transformation;
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the corresponding vector which IS

so invariant is:

=o 0=1,2,3,4) (25)

where s is the interval between two events.

and it can be easily shown
*

that c/s
=

c/t//3,

c/s being, as you know, itself invariant

under the Lorentz transformation.

Thus, in going from 3-dimensional space
and 1 -dimensional absolute time

(i.e. from Classical Physics)

to 4-dimensional SPACE-TIME,
we must use s for the independent variable

instead of t.

Now let us examine (25) which is so easily

obtained from (24) when we learn to speak the

NEW LANGUAGE OF SPACE-TIME!

Consider first only the first 3 components of (25):

Then A{33m.c/xi/c/s}
= o (i

= 1,2,3) (26)

is the NEW Momentum Conservation Law,

since, for large v, it holds whereas (24) does NOT/
and, for small v, which makes /3

= 1 and c/s
=

c/f ,

(26) BECOMES (24), as it should!

And now, taking the FOURTH component of (25),

namely, m.cta/cfs or mc.dtjds (see p. 233)
and substituting c/t//J for </s,_
we get mci8 which is mc.c/Vc

2
v
2
or

mc/Vl - v
2

/c
2
or mc(1

- v2

/c
2

)

" *
. (27)

Expanding, by the binomial theorem,

/, , 1 v
2

,
3 v

4

,

\
we get cp +

j.^
+
j-^

+ . .

-j,

Since c/s
2 = cVt2 -

(c/x
2 + c/y

2 + c/z
2
) (see p. 233).

dividing by c/t
2 and taking c =

1
,
we get

(c/s /c/0
2 = 1

- v
2
anc/ c/s/c/t

= A/1 - y
2 = 1 //S
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which/ (or small v(neglecting terms after v
2

),

(1 vr\
1 + r ~

2
I. (28)

And, multiplying by c, we get me
2 + ^mv

2
.

Hence, approximately,

A{Z(roc
2 + |/nv

2

)}
= o. (29)

Now, if m is constant, as for elastic collision,

then A2/nc2 = o and therefore also A2(J?mv
2

)
= o

which is the Classical Law of the

Conservation of Kinetic Energy for

elastic collision (see p. 74);

thus (29) reduces to this Classical Law
for small v, as it should!

Furthermore, we can also see from (29) that

for INELASTIC collision, for which

A{2|mv
2

}
^o (see p. 74)

hence also A2mc2 ^ o or

c being a constant, c
2A2m ^ o

which says that, for inelastic collision,

even when v is small,

any loss in kinetic energy is compensated for

by an increase in mass (albeit small)

a new and startling consequence for

CLASSICAL Physics itself!

Thus, from this NEW viewpoint we realize that

even in Classical Physics

the Mass of a body is NOT a constant but

varies with changes in its energy

(the amount of change in mass being

too small to be directly observed)!

Taking now (27) instead of (28), we shall

not be limited to small v/
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and, multiplying by c as before,

we get A{2mc
2

/3j
= o for the

NEW Conservation Law of Energy,

which/ together with (25), is invariant under the

Lorentz transformation, and which,

as we saw above, reduces to

the corresponding Classical Law, For small v.

Thus the NEW expression for the ENERGY
of a body is: f = /nc

2

/3, which,

for v = o , gives fo = me2

, (30)

showing that

ENERGY and MASS are

one and the same entity

instead of being distinct, as previously thought!

Furthermore,

even a SMALL MASS^m,
is equivalent to a LARGE amount of ENERGY,
since the multiplying factor is c

2
,

the square of the enormous velocity of light!

Thus even an atom is equivalent to

a tremendous amount of energy.

Indeed, when a method was found (see p. 318)

of splitting an atom into two parts

and since the sum of these two masses is

less than the mass of the original atom,

you can see from (30) that

this loss in mass must yield

a terrific amount of energy

(even though this process does not transform

the entire mass of the original atom into energy).

Hence the ATOMIC BOMB! (p. 318)

Although this terrible gadget has

stunned us all into the realization

of the dangers in Science,

let us not forget that

78



the POWER behind it

is the human MIND itself.

Let us therefore pursue our examination of

the consequences of Relativity,

the products of this REAL POWER!

In 1901 (before Relativity),

Kaufman*, experimenting with

fast moving electrons,

found that

the apparent mass of a moving electron

is greater than that of one at rest

a result which seemed

very strange at the time!

Now, however, with the aid of (26)

we can see

that his result is perfectly intelligible,

and indeed accounts for it quantitatively!

Thus the use of c/s instead of c/t,

(where c/s
=

dtj(3) brings in

the necessary correction factor, j3, for large v ,

not via the mass but is inherent in our

NEW RELATIVITY LANGUAGE,
in which c/x

r/c/s replaces the idea of

velocity, c/Xj/c/t, and makes it

unnecessary and undesirable to think in terms of

mass depending upon velocity.

Many writers on Relativity replace

c/s by c(t/j8 in (26) and write it:

A{Sinj8.(/Xj/(/t}
= o, putting the

correction on the m.

Though this of course gives

*
Gcscll. Wiss. Gott. Nachr., Math.-Phys., 1901 K1-2,

p. 143, and 1902, p. 291.
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the same numerical result,

it is a concession to

CLASSICAL LANGUAGE,
and Einstein himself does not like this.

He rightly prefers that since we are

learning a NEW language (Relativity)

we should think directly in that language
and not keep translating each term

into our old CLASSICAL LANGUAGE
before we "feel

11

its meaning.
We must learn to "feel" modern and talk modern.

Let us next examine

another consequence of

the Theory of Relativity:

When radio waves are transmitted

through an "electromagnetic field/
1

an observer K may measure

the electric and magnetic forces

at any point of the field

at a given instant.

The relationship between

these electric and magnetic forces

is expressed mathematically

by the well-known Maxwell equations

(see page 311).

Now, if another observer, K'/

moving relatively to K
with uniform velocity,

makes his own measurements

on the same phenomenon,
and, according to

the Principle of Relativity,

uses the same Maxwell equations
in his primed system,
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it is quite easy to show* that

the electric force

is NOT an INVARIANT
for the two observers/

and similarly

the magnetic force is also

NOT AN INVARIANT
although the relationship between

the electric and magnetic forces

expressed in the

MAXWELL EQUATIONS
has the same form for

both observers;

just as, on p. 68,

though x does NOT equal x'

and y does NOT equal y
f

still the formula for

the square of the distance between two points
has the same form

in both systems of coordinates.

Thus we have seen that

the SPECIAL Theory of Relativity,

which is the subject of Part I (see p. 56),
has accomplished the following:

(1) It revised the fundamental physical concepts.

(2) By the addition of

ONLY ONE NEW POSTULATE,
namely,
the extension of

the principle of relativity

* See Einstein's first paper (pp. 52 & 53) in

the bo>k mentioned in the footnote on p. 5.
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to ELECTROMAGNETIC phenomena*
(which extension was made possible

by the above-mentioned revision

of fundamental units see p. 55),

it explained many
ISOLATED experimental results

which baffled the

pre-Einsteinian physicists:

As, for example,
the Michelson-Morley experiment,
Kaufman's experiments (p. 79),
and many others (p. 6).

(3) It led to the merging into

ONE LAW
of the two, formerly isolated, principles^

of the Conservation of Mass and
the Conservation of Energy.

In Part II

we shall see also how
the SPECIAL Theory served as a

starting point for

the GENERAL THEORY,

*The reader may ask:

"Why call this a postulate?
(s it not based on Facts?"

The answer of course is that

a scientific postulate must be
BASED on facts,

but it must 30 further than the known facts

and hold also for

facts that are still TO BE discovered.

So that it is
really only an ASSUMPTION

(a most reasonable one, to be sure

since it agrees with facts now known),
which becomes strengthened in the course of time

if it continues to agree with NEW facts

as they are discovered.
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which, again,

by means of only
ONE other assumption,

led to FURTHER NEW IMPORTANT RESULTS,
results which make the theory

the widest in scope
of any physical theory.

IX. A POINT OF LOGIC AND A SUMMARY

It is interesting here

to call attention to a logical point

which is made very clear

by the Special Theory of Relativity.

In order to do this effectively

let us first list and number

certain statements, both old and new,
to which we shall then refer by NUMBER:

(1) It is impossible for an observer

to detect his motion through space (p. 33).

(2) The velocity of light is

independent of the motion of the source (p. 34).

(3) The old PRE-EINSTEINIAN postulate

that time and length measurements

are absolute,

that is,

are the same for all observers.

(4) Einstein's replacement of this postulate

by the operational fact (see p. 31)
that

time and length measurements
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are NOT absolute,

but relative to each observer.

(5) Einstein's Principle of Relativity (p. 52).

We have seen that

(1)and(2)
are contradictory IF (3) is retained

but are NOT contradictory IF

(3) is replaced by (4). (Ch. V.)
Hence

it may NOT be true to say that

two statements MUST be

EITHER contradictory or NOT contradictory,

without specifying the ENVIRONMENT
Thus,

in the presence of (3)

(1) and (2) ARE contradictory,

whereas,

in the presence of (4),

the very same statements (1) and (2)

are NOT contradictory.*

We may now briefly summarize

the Special Theory of Relativity:

(1), (2) and (4)

are the fundamental ideas in it,

and,

since (1) and (4) are embodied in (5)7

then (2) and (5) constitute

the BASIS of the theory.

Einstein gives these two

as POSTULATES

*Similarly

whether two statements are

EQUIVALENT or not

may also depend upon the environment

(ee p. 30 of "Non-Euclidean Geometry"
bv H. G. and L R. Lieber).
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from which he then deduces

the Lorentz transformation (p. 49)
which gives the relationship

between the length and time measurements]

of two observers moving relatively to each other

with uniform velocity,
and which shows that

there is an intimate connection

between space and time.

This connection was then

EMPHASIZED by Minkowslo,
who showed that

the Lorentz transformation may be regarded
as a rotation in the x , r plane
from one set of rectangular axes to another

in a four-dimensional space-time continuum

(see Chapter VII.).

fFor the relationships between
other measurements,
jee Chapter VIII.
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THE MORAL

1. Local, "provincial" measurements

are not universal,

although they may be used

to obtain universal realities

if compared with other systems of

local measurements taken from

a different viewpoint.

By examining certain

RELATIONSHIPS BETWEEN
LOCAL MEASUREMENTS,
and finding those relationships which

remain unchanged in going from

one local system to another,

one may arrive at

the INVARIANTS of our universe.

2. By emphasizing the fact that

absolute space and time

are pure mental fictions,

and that the only PRACTICAL notions of time

that man can have

are obtainable only by some method of signals,

the Einstein Theory shows that

'Idealism" alone,
that is, "a priori

11

thinking alone,

cannot serve for exploring the universe.

On the other hand,
since actual measurements

are local and not universal,
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and that only certain

THEORETICAL RELATIONSHIPS
are universal,
the Einstein Theory shows also that

practical measurement alone
is also not sufficient

for exploring the universe.

In short,
a judicious combination
Of THEORY and PRACTICE,
EACH GUIDING the other

a "dialectical materialism"

is our most effective weapon.



PART II

THE GENERAL THEORY





A GUIDE FOR THE READER.

I. The first three chapters of Part II give

the meaning of the term

''General Relativity/*

what it undertakes to do,

and what are its basic ideas.

These are easy reading and important.

II. Chapters XIII, XIV, and XV introduce

the fundamental mathematical ideas

which will be needed

also easy reading and important.

III. Chapters XVI to XXII build up
the actual

streamlined mathematical machinery

not difficult, but require

the kind of

care and patience and work

that go with learning to

run any NEW machine.

The amazing POWER of this new

TENSOR CALCULUS,
and the EASE with which it is operated,

are a genuine delight!

IV. Chapters XXIII to XXVIII show how
this machine is used to derive the

NEW LAW OF GRAVITATION.
This law,

though at first complicated
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behind its seeming simplicity,

is then

REALLY SIMPLIFIED.

V. Chapters XXIX to XXXIV constitute

THE PROOF OF THE PUDDING!

easy reading again

and show

what the machine has accomplished.

Then there are

a SUMMARY
and

THE MORAL
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INTRODUCTION,

In Part I,

on the SPECIAL Theory,
it was shown that

two observers who
are moving relatively to each other

with UNIFORM velocity

can formulate

the laws of the universe

"W!TH EQUAL RIGHT AND
EQUAL SUCCESS,

11

even though
their points of view

are different,

and their actual measurements

do not agree.

The things that appear alike

to them both

are the 'TACTS
11

of the universe,

the INVARIANTS.
The mathematical relationships

which both agree on

are the "LAWS 11

of the universe.

Since man does not know
the "true laws of God/

1

why should any one human viewpoint

be singled out

as more correct than any other?

And therefore

it seems most fitting

to call THOSE relationships
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"THE laws,"

which are VALID from

DIFFERENT viewpoints,

taking into consideration

all experimental data

known up to the present time.

Now, it must be emphasized
that in the Special Theory,

only that change of viewpoint
was considered

which was due to

the relative UNIFORM velocity

of the different observers.

This was accomplished by
Einstein

in his first paper*

published in 1905.

Subsequently, in 1916*,
he published a second paper
in which

he GENERALIZED the idea

to include observers

moving relatively to each other

with a CHANGING velocity

(that is, with an ACCELERATION),
and that is why it is called

"the GENERAL Theory of Relativity.
11

It was shown in Part I

that

to make possible

even the SPECIAL case considered there,

was not an easy task,

*See "The Principle of Relativity*
1

by A. Einstein and Others,

published by Methuen & Co., London.
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for it required

a fundamental change in Physics

to remove the

APPARENT CONTRADICTION
between certain

EXPERIMENTAL FACTS!

Namely,
the change from the OLD idea

that TIME is absolute

(that is,

that it is the same (or all observers)

to the NEW idea that

time is measured

RELATIVELY to an observer,

just as the ordinary

space coordinates, x , y , z,

are measured relatively to

a particular set of axes.

This SINGLE new idea

was SUFFICIENT

to accomplish the task

undertaken in

the Special Theory.

We shall now see that

again

by the addition of

ONLY ONE more idea,

called

"THE PRINCIPLE OF EQUIVALENCE/
1

Einstein made possible

the GENERAL Theory.

Perhaps the reader may ask

why the emphasis on the fact that

ONLY ONE new idea

was added?

Are not ideas good things?
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And is it not desirable

to have as many of them as possible?

To which the answer is that

the adequateness

of a new scientific theory

is judged

(a) By its correctness, of course,

and

(b) By its SIMPLICITY.

No doubt everyone appreciates

the need for correctness,

but perhaps

the lay reader may not realize

the great importance of

SIMPLICITY!

iJBut,"
he will say,

"surely the Einstein Theory

is anything but simple!

Has it not the reputation

of being unintelligible

to all but a very few experts?"

Of course

"SIMPLE
11

does not necessarily mean

"simple to everyone/*
*

but only in the sense that

*lndeed, it can even be simple to

everyone WHO
will take the trouble to learn some

mathematics.

Though this mathematics

was DEVELOPED by experts,

it can be UNDERSTOOD by
any earnest student.

Perhaps even the lay reader

will appreciate this

after reading this little book.
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if all known physical (acts

are taken into consideration,

the Einstein Theory accounts for

a large number of these facts

in the SIMPLEST known way.

Let us now see

what is meant by
"The Principle of Equivalence/*

and what it accomplishes.

It is impossible to refrain

from the temptation

to brag about it a bit

in anticipation!

And to say that

by making the General Theory possible,

Einstein derived

A NEW LAW OF GRAVITATION
which is even more adequate than

the Newtonian one,

since it explains,

QUITE INCIDENTALLY,
experimental facts

which were left unexplained

by the older theory,

and which had troubled

the astronomers

for a long time.

And, furthermore,

the General Theory
PREDICTED NEW FACTS,
which have since been verified

this is of course

the supreme test of any theory.

But let us get to work

to show all this.
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XL THE PRINCIPLE OF EQUIVALENCE.

Consider the following situation:

Suppose that a man, Mr. K,
lives in a spacious box,

away from the earth

and from all other bodies,
so that there is no force of gravity

there.

And suppose that

the box and all its contents

are moving (in the direction

indicated in the drawing on p. 100)
with a changing velocity,

increasing 32 ft. per second

every second.

Now Mr. K,
who cannot look outside of the box,
does not know all this;

but, being an intelligent man,
he proceeds to study the behavior

of things around him.

We watch him from the outside,

but he cannot see us.

We notice that

he has a tray in his hands.

And of course we know that

the tray shares the motion of

everything in the box,
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and therefore remains

relatively at rest to him

namely, in his hands.

But he does not think of it in

this way/
to him, everything is actually

at rest.

Suddenly he lets 30 the tray.

Now we know that the tray will

continue to move upward with

CONSTANT velocity/*

and, since we also know that the box

is moving upwards with

an ACCELERATION,
we expect that very soon the floor

will catch up with the tray

and hit it.

And, of course, we see this

actually happen.

Mr. K also sees it happen,
but explains it differently,

he says that everything was still

until he let go the tray,

and then the tray FELL and

hit the floor;

and K attributes this to

"A force of gravity.
11

Now K begins to study this "force.
11

He finds that there is an attraction

between every two bodies,

*Any moving object CONTINUES to move
with CONSTANT speed in a

STRAIGHT LINE due to inertia,

unless it is stopped by
some external force,

like friction, (or example.
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and its strength is proportional to

their "gravitational masses/
1

and varies inversely as the

square of the distance between them.

He also makes other experiments,

studying the behavior of bodies

pulled along a smooth table top,

and finds that different bodies offer

different degrees of resistance to

this pull,

and he concludes that the resistance

is proportional to the

"inertial mass" of a body.

And then he finds that

ANY object which he releases

FALLS with the SAME acceleration,

and therefore decides that

the gravitational mass and

the inertial mass of a body
are proportional to each other.

In other words, he explains the fact

that all bodies fall with the

SAME acceleration,

by saying that the force of gravity

is such that

the greater the resistance to motion

which a body has,

the harder gravity pulls it,

and indeed this increased pull

is supposed to be

JUST BIG ENOUGH TO OVERCOME
the larger resistance,

and thus produce
THE SAME ACCELERATION IN ALL BODIES!

Now, if Mr. K is a very intelligent
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Newtonian physicist,

he says,

"How strange that these two distinct

properties of a body should

always be exactly proportional

to each other.

But experimental (acts show

this accident to be true,

and experiments cannot be denied."

But it continues to worry him.

On the other hand,

if K is an Einsteinian relativist,

he reasons entirely differently:

"There is nothing absolute about

my way of looking at phenomena.
Mr. K1

, outside,

(he means us),

may see this entire room moving

upward with an acceleration,

and attribute all these happenings
to this motion

rather than to

a force of gravity

as I am doing.

His explanation and mine

are equally good,
from our different viewpoints."

This is what Einstein called

the Principle of Equivalence.

Relativist K continues:

"let me try to see things from

the viewpoint of

my good neighbor, K
f

,

though I have never met him.

He would of course see
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the floor of this room come up and

hit ANY object which I might release,

and it would therefore seem

ENTIRELY NATURAL to him

for all objects released

from a given height

at a given time

to reach the floor together,

which of course is actually the case.

Thus, instead of finding out by

long and careful EXPERIMENTATION
that

the gravitational and inertial masses

are proportional,

as my Newtonian ancestors did/

he would predict A PRIORI

that this MUST be the case.

And so,

although the facts are explainable

in either way,
K"s point of view is

the simpler one,

and throws light on happenings which

I could acquire only by
arduous experimentation,

if I were not a relativist and hence

quite accustomed to give

equal weight to

my neighbor's viewpoint!

Of course as we have told the story,

we know that Kf

is really right:

But remember that

in the actual world

we do not have this advantage:

We cannot "know" which of the two

explanations is "really" correct.
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But, since they are EQUIVALENT,
we may select the simpler one,

as Einstein did.

Thus we already see

an advantage in

Einstein's Principle of Equivalence.

And,
as we said in Chapter X.

this is only the beginning,

(or it led to his

new Law of Gravitation which

RETAINED ALL THE MERITS OF
NEWTON'S LAW,
and

has additional NEW merits which

Newton's Law did not have.

As we shall see,
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XII. A NON-EUCLIDEAN WORLD.

Granting, then,

the Principle of Equivalence,

according to which Mr. K may replace

the idea of a "force of gravity
11

by
a "fictitious force

1 *

due to motion/
the next question is:

"How does this help us to derive

A new Law of Gravitation?
11

In answer to which

we ask the reader to recall

a few simple things which

he learned in elementary physics in

high school:

*The idea of a "fictitious force
11

due to motion

is familiar to everyone
in the following example:

Any youngster knows that

if he swings a pail full of water

in a vertical plane

WITH SUFFICIENT SPEED,
the water will not fall out of the pail,

even when the pail is

actually upside down!

And he knows that

the centrifugal "force"

is due to the motion only,

since,

if he slows down the motion,

the water WILL fall out

and give him a good dousing.

107



If a force acts on a moving object

at an angle to this motion,
it will change the course of the object,

and we say that

the body has acquired an

ACCELERATION,
even though its speed may have

remained unchanged!
This can best be seen with the aid of

the following diagram:

If AB represents the original velocity

(both in magnitude and direction)

and if the next second

the object is moving with a velocity

represented by AC ,

due to the fact that

some force (like the wind)

pulled it out of its course,
then obviously
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BC must be the velocity which

had to be "added" to AB
to give the "resultant

11

AC,
as any aviator, or even

any high school boy, knows from

the "Parallelogram of forces.
1 '

Thus BC is the difference between

the two velocities, >ACand AB.

And, since

ACCELERATION is defined as

the change in velocity, each second,

then BC is the acceleration,

even if AB and AC happen to be

equal in length,

that is,

even if the speed of the object

has remained unchanged;*

the very fact that it has merely

changed in DIRECTION
shows that there is an ACCELERATION!

Thus,

if an object moves in a circle/

with uniform speed,

it is moving with

an acceleration since

it is always changing its direction.

Now imagine a physicist who

lives on a disc which

is revolving with constant speed!

Being a physicist,

he is naturally curious about the world,

and wishes to study it,

even as you and I.

And, even though we tell him that

*This distinction between "speed
11

and "velocity"

is discussed on page 1 28.
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he is moving with an acceleration

he, being a democrat and a relativist,

insists that he can formulate

the laws of the universe

"WITH EQUAL RIGHT AND
EQUAL SUCCESS :

and therefore claims that

he is not moving at all

but is merely in an environment in which

a "force of gravity
11

is acting

(Have you ever been on a revolving disc

and actually felt this "force
11

?!).

Let us now watch him

tackle a problem:

We see him become interested in circles:

He wants to know whether

the circumferences of two circles

are in the same ratio as their radii.

He draws two circles,

a large one and a small one

(concentric with

the axis of revolution of the disc)

and proceeds to measure

their radii and circumferences.

When he measures the larger circumference,

we know,
from a study of

the Special Theory of Relativity*

that he will get a different value

from the one WE should get

(not being on the revolving disc);

but this is not the case with

his measurements of the radii,

since the shrinkage in length,

described in the Special Theory,

"See Part I of this book.
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takes place only

IN THE DIRECTION OF MOTION,
and not in a direction which is

PERPENDICULAR to the direction of motion

(as a radius is).

Furthermore/ when he measures

the circumference of the small circle,

his value is not very different from ours

since the speed of rotation is small

around a small circle,

and the shrinkage is therefore

negligible.

And so, finally, it turns out that

he finds that the circumferences

are NOT in the same ratio as the radii!

Do we tell him that he is wrong?
that this is not according to Euclid?

and that he is a fool for trying

to study Physics on a revolving disc?

Not at all!

On the contrary,

being modern relativists, we say

"That is quite all right, neighbor,

you are probably no worse than we are,

you don't have to use Euclidean geometry if

it does not work on a revolving disc,

for now there are

non-Euclidean geometries which are

exactly what you need

Just as we would not expect

Plane Trigonometry to work on

a large portion of the earth's surface

for which we need

Spherical Trigonometry,

in which

the angle-sum of a triangle

isNOTlSO ,
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as we might naively demand after

a high school course in

Euclidean plane geometry,

In short/

instead of considering the disc-world

as an accelerated system,

we can,

by the Principle of Equivalence,

regard it as a system in which

a "force of gravity
11

is acting,

and, from the above considerations,

we see that

in a space having such a

gravitational field

Non-Euclidean geometry,
rather than Euclidean,

is applicable.

We shall now illustrate

how the geometry of

a surface or a space may be studied.

This will lead to

the mathematical consideration of

Einstein's Law of Gravitation

and its consequences.

XIII. THE STUDY OF SPACES.

Let us consider first

the familiar Euclidean plane.

Everyone knows that

for a right triangle on such a plane

the Pythagorean theorem holds:

Namely,

113



that
s
2

Conversely,

it is true that

IF the distance between two points

on a surface

is given by

(1) s
2 = *

2 + y>

THEN
the surface MUST BE

A EUCLIDEAN PLANE,

Furthermore,

it is obvious that

the distance from to A
ALONG THE CURVE:
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is no longer

the hypotenuse of a right triangle,

and of course

we CANNOT write here s
2 = x

2 + y
2

!

If, however,

we take two points, A and 8,

sufficiently near together,

the curve AB is so nearly

a straight line,

that we may actually regard

ABC as a little right triangle

in which the Pythagorean theorem

does hold.
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Only that here

we shall represent its three sides

by c/s
,
c/x and c/y ,

as is done in

the differential calculus,

to show that

the sides are small.

So that here we have

(2) c/s
2 = </x

2 + c/y
2

Which still has the form of (1)

and is characteristic of

the Euclidean plane.

It will be found convenient

to replace x and y

by xi and xi , respectively,

so that (2) may be written

(3) c/s
2 - c/x L

2 + c/xA

Now what is the corresponding situation

on a non-Euclidean surface,

such as,

the surface of a sphere, for example?

Let us take

two points on this surface, A and 8
,

designating the position of each

by its latitude and longitude:
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**"^^ \

TV

Let Df be the meridian

from which

longitude is measured

the Greenwich meridian.

And let DK be a part of the equator,

and the north pole.

Then the longitude and latitude of A

are, respectively,

the number of degrees in

the arcs ^F and AG ,

(or in the

corresponding central angles, a and 0).

Similarly,
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the longitude and latitude of 8

are, respectively,

the number of degrees in

the arcs CF and BK.

The problem again is

to find the distance

between A and B.

If the triangle /ABC is

sufficiently small,

we may consider it to lie

en a Euclidean plane which

practically coincides with

the surface of the sphere in

this little region,

and the sides of the triangle ABC
to be straight lines

(as on page 1 1 5).

Then,
since the angle at C
is a right angle,

we have

(4) AB* = A? + BC*-

And now let us see

what this expression becomes

if we change
the Cartesian coordinates in (4)

(in the tangent Euclidean plane)

to the coordinates known as

longitude and latitude

on the surface of the sphere.

Obviously AB
has a perfectly definite length

irrespective of

118



c



which coordinate system we use;

but>4C and BC,
the Cartesian coordinates in

the tangent Euclidean plane

may be transformed into

longitude and latitude on

the surface of the sphere, thus:

let r be

the radius of the latitude circle FAC,
and R the radius of the sphere.

Then

Similarly

BC =/?$.

Therefore, substituting in (4),

we have

(5) c/s
2 = tJc? +

And, replacing a by xi , and j8 by
this may be written

(6) c/s
2 =

i>c/x? + tfdxt .

A comparison of (6) and (3)

will show that

*any high school student knows

that if x represents the length of

an arc, and is the number of

radians in it, then

And therefore

x =
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on the sphere,

the expression (or c/s
2

is not quite so simple

as it was on the Euclidean plane.

The question naturally arises,

does this distinction between

a Euclidean and a non-Euclidean surface

always hold,

and is this a way
to distinguish between them?

That is,

if we know

the algebraic expression which represents

the distance between two points

which actually holds

on a given surface,

can we then immediately decide

whether the surface

is Euclidean or not?

Or does it perhaps depend upon
the coordinate system used?

To answer this,

let us 30 back to the Euclidean plane,

and use oblique coordinates

instead of the more familiar

rectangular ones

thus:
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The coordinates of the point A
are now represented by

xand y

which are measured

parallel to the X and Y axes,

and are now

NOT at right angles to each other.

Can we now find

the distance between and A

using these oblique coordinates?

Of course we can,

for,

by the well-known

Law of Cosines in Trigonometry,

we can represent

the length of a side of a triangle
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lying opposite an obtuse angle,

by:

s
2 = x

2 + y
2

2xy cos a.

Or, for a very small triangle,

</$
2 = c/x

2 + c/y
2

-2c/x</ycosa.

And, if we again

replace x and y

by xi and X2 , respectively,

this becomes

(7) c/s
2 - c/x

2 + Jxl
- 2 c/xrc/X2-cosa.

Here we see that

even on a Euclidean plane,

the expression for c/s
2

is not as simple as it was before.

And, if we had used

polar coordinates

on a Euclidean plane,

we would have obtained

or

(8) Js
2 = c/x

2 + x?

*
(See page 1 24)
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The reader should verify this,

remembering that

the polar coordinates of point P

are

(1) its distance, xi , from a fixed point, O ,

(2) the angle, x2 , which OP makes with a fixed line OX.
Then (8) is obvious from

the following figure:

o
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Hence we see that

the form of the expression for c/r

depends upon BOTH
(a) the KIND pF SURFACE

we are dealing with,

and

(b) the particular

COORDINATE SYSTEM.

We shall soon see that

whereas

a mere superficial inspection

of the expression for </s
2

is not sufficient

to determine the kind of surface

we are dealing with,

a DEEPER examination

of this expression

DOES help us to know this.

For this deeper examination

we must know

how,
from the expression for c/s

2

,

the sVcalled "CURVATURE TENSOR
11

of the surface.

And this brings us to

the study of tensors:

What are tensors?

Of what use are they?
and HOW are they used?

Let us see.
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XIV. WHAT IS A TENSOR?

The reader is no doubt familiar

with the words "scalar
1 *

and "vector.
11

A scalar is a quantity which

has magnitude only,

whereas

a vector has

both magnitude and direction.

Thus,

if we say that

the temperature at a certain place

is 70 Fahrenheit,

there is obviously NO DIRECTION
to this temperature,

and hence

TEMPERATURE is a SCALAR.
But

if we say that

an airplane has gone
one hundred miles east,

obviously its displacement

from its original position

is a VECTOR,
whose MAGNITUDE is 100 miles,

and whose DIRECTION is EAST.

Similarly,

a person's AGE is a SCALAR,
whereas
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the VELOCITY with which an object moves

is a VECTOR,*
and so on;

the reader can easily

find further examples
of both scalars and vectors.

We shall now discuss

some quantities

which come up in our experience

and which are

neither scalars nor vectors,

but which are called

TENSORS.

And,
when we have illustrated and defined these,

we shall find that

a SCALAR is a TENSOR whose RANK is ZERO,
and

a VECTOR is a TENSOR whose RANK is ONE,
and we shall see what is meant by
a TENSOR of RANK TWO, or THREE, etc.

Thus "TENSOR" is a more inclusive term,

*A distinction is often made between

"speed" and "velocity
"-

the former is a SCALAR, the latter a VECTOR.
Thus when we are interested ONLY in

HOW FAST a thing is moving,
and do not care about its

DIRECTION of motion,
we must then speak of its SPEED,
but if we are interested ALSO in its

DIRECTION,
we must speak of its VELOCITY.
Thus the SPEED of an automobile

would be designated by
"Thirty miles an hour,"
but its VELOCITY would be

"Thirty miles an hour EAST."
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of which "SCALAR
11

and "VECTOR
11

are

SPECIAL CASES.

Before we discuss

the physical meaning of

a tensor of rank two,

let us consider

the following facts about vectors.

Suppose that we have

any vector, AB ,
in a plane,

and suppose that

we draw a pair of rectangular axes,

X and y,

thus:

T B
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Drop a perpendicular BC
from 8 to the X-axis.

Then we may say that

AC is the X-component oF AB ,

and CB is the /-component of

for,

as we know from

the elementary law of

"The parallelogram of forces/*

if a force AC acts on a particle

and CB also acts on it,

the resultant effect is the same

as that of a force AB alone.

And that is why
>AC and CB are called

the "components" of AB.

Of course if we had used

the dotted lines as axes instead,

the components of AB
would now be AD and DB.

In other words,
the vector AB may be broken up
into components
in various ways,

depending upon our choice of axes.

Similarly,

if we use THREE axes in SPACE
rather than two in a plane,

we can break up a vector

into THREE components
as shown

in the diagram

on page 1 31 .
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By dropping the perpendicular BD

from 8 to the XY-plane,

and then drawing

the perpendiculars DC and DE

to the X and Y axes, respectively,

we have the three components of AB
L

namely,

and, as before,

the components depend upon

the particular choice of axes.

Let us now illustrate

the physical meaning

of a tensor of rank two.

Suppose we have a rod

at every point of which

there is a certain strain

due to some force acting on it,

As a rule the strain
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is not the same at all points,

and, even at any given point,

the strain is not the same in

all directions.*

Now, if the STRESS at the point A
(that is, the FORCE causing the strain at A)
is represented
both in magnitude and direction

by/B

*When an
object finally breaks

under a sufficiently great strain,

it does not fly into bits

as it would do if

the strain were the same
at all points and in all directions,
but breaks along certain lines

where, for one reason or another,
the strain is greatest.
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and if we are interested to know
the effect of this force upon
the surface CDEF (through A}f

we are obviously dealing

with a situation which depends
not on a SINGLE vector,

but on TWO vectors:

Namely,
one vector, AB ,

which represents the force in question;

and another vector

(call it /AG),

whose direction will indicate

the ORIENTATION of the surface CDEF,
and whose magnitude will represent

the AREA of CDEF.

In other words,

the effect of a force upon a surface

depends NOT ONLY on the force itself

but ALSO on the

size and orientation of the surface.

Now, how can we indicate

the orientation of a surface

by a line?

If we draw a line through A
in the plane CDEF ,

obviously we can draw this line

in many different directions,

and there is no way
of choosing one of these

to represent the orientation of this surface.

BUT,
if we take a line through A
PERPENDICULAR to the plane CDEF,
such a line is UNIQUE
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and CAN therefore be used

to specify the orientation

of the surface CDEF.

Hence, if we draw a vector,

in a direction perpendicular to CDEF
and of such a length that

it represents the magnitude of

the area of CDEF,
then obviously

this vector AG
indicates clearly

both the SIZE and the ORIENTATION
of the surface CDEF.

Thus.

the STRESS at A
upon the surface CDEF

depends upon the TWO vectors,

AB and AG ,

and is called

a TENSOR of RANK TWO.

Let us now find a convenient way
of representing this tensor.

And, in order to do so,

let us consider the stress, F,
upon a small surface, c/S ,

represented in the following figure

Now if OG, perpendicular to ABC
is the vector which represents

the size and orientation of ABC ,

then,
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z
c

it is quite easy to see (page 1 36)

that the X-component of OG
represents in magnitude and direction

the projection 08C of ABC upon the XZ-plane.

And similarly,

the 7 and Z components of OG
represent the projections

0/C and 0/B , respectively.
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To show that OK represents OBC
both in magnitude and direction:

T
That it does so in direction

is obvious,

since OK is
perpendicular

to OBC (see p. 1 34).

As regards the magnitude

we must now show that

OK _ OBC

OG ABC'

(a) Now OBC = ABC x cos of the dihedral angle

between ABC and OBC

(since the area of the projection

of a given surface

is equal to

ihe area of the given surface multiplied by
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the cosine of the dihedral angle
between the two planes).

But this dihedral angle equals anale GO/C
since 06 and OK are respectively

perpendicular to ABC and OBC ,

and cos ZGOKisOK/OG.
Substitution of this in (a)

gives the required

OBC _ OK
ABC OG-

Now, if the force F ,

which is itself a vector,

acts on ABC ,

we can examine its total effect

by considering separately

the effects of its three components

fx i fy i and fz

upon EACH of the three projections

OBC,OAC*ndOAB.

Let us designate these projections

by dSx / dSy end dSz , respectively.

Now,
since fx

(which is the X-component of F)

acts upon EACH one of the three

above-mentioned projections,

let us designate the pressure

due to this component alone

upon the three projections

by

Pxx / Pxy , Pxz /

respectively.

We must emphasize
the significance of this notation:

In the first place,
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the reader must distinguish between

the "pressure" on a surface

and the "force" acting on the surface.

The
M
pressurel1 k

the FORCE PER UNIT AREA.
So that

the TOTAL FORCE is obtained by
MULTIPLYING
the PRESSURE by the AREA of the surface.

Thus the product

PXX
' dSx

gives the force acting upon
the projection dS,

due to the action of f, ALONE.
Note the DOUBLE subscripts in

PXX i Pxy i PXZ
'

The first one obviously refers to the fact

that

these three pressures all emanate

from the component f., alone;

whereas,

the second subscript designates

the particular projection upon which

the pressure acts.

Thus p/.v means

the pressure due to fr

upon the projection dSy ,

Etc.

It follows therefore that

fx
=

pxx'dSx + Pxy'dSy + pxz'd

And, similarly,

>y
~

Pyx'dSx -f Pyy'dSy + Pyz'J
and

fx
=

PZX
' dSx ~\~ fzy

'

dSy + pzz dS
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Hence the TOTAL STRESS, F,
on the surface c/S,

F=(x+(y + ?,

or

i
=

PXX
'

cfix ~T Pxy
*

cr jj/ ~r PXZ
' dSz

+ Pyx
' uSx H~ Pyy

'

uSy + pyz
' C/S2

+ PZX
' dSx + PZU

'

dSy ~\- pZ2
'

C/Sz .

Thus we see that

stress is not just a vector,

with three components in

three-dimensional space (see p. 1 30)

but has NINE components
in THREE-dimensional space.

Such a quantity is called

A TENSOR OF RANK TWO.

For the present

let this illustration of a tensor suffice:

Later we shall give a precise definition.

It is obvious that

if we were dealing with a plane

instead of with

three-dimensional space,

a tensor of rank two would then have

only FOUR components instead of nine,

since each of the two vectors involved

has only two components in a plane,

and therefore,

there would now be only
2X2 components for the tensor

instead of 3 X 3 as above.

And, in general,

if we are dealing with

n-dimensional space,
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a tensor of rank two

has n components

which are therefore conveniently written

in a SQUARE array

as was done on page 1 39.

Whereas,

in n-dimensional space/

a VECTOR has only n components:

Thus,

a VECTOR in a PLANE
has TWO components/

in THREE-dimensional space it has

THREE components/

and so on.

Hence,
the components of a VECTOR
are therefore written

in a SINGLE ROW;
instead of in a SQUARE ARRAY
as in the case of a TENSOR of RANK TWO.

Similarly,

in n-dimensional space

a TENSOR of rank THREE has n3

components,

and so on.

To sum up:

In n-dimensional space,

a VECTOR has n components,

a TENSOR of rank TWO has n
2

components,

a TENSOR of rank THREE has n
3

components,

and so on.

The importance of tensors

in Relativity

will become clear

as we 90 on.

140



XV. THE EFFECT ON TENSORS OF A
CHANGE IN THE COORDINATE

SYSTEM.

In Part I of this book (page 61)
we had occasion to mention

the fact that

the coordinates of the point A
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in the unprimed coordinate system

can be expressed in terms of

its coordinates in the

primed coordinate system

by the relationships

/Ov / x = x co$0 y
f

w
(y

= x sin0 + / cos0

as is known to any young student of

elementary analytical geometry.

Let us now see

what effect this change in

the coordinate system

has

upon a vector and its components.

Call the vector cfs,

and let o'x and c/y represent

its components in the UNPRIMED SYSTEM,
and dx and c/y'

its components in the PRIMED SYSTEM
as shown on page 143.
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Obviously c/s itself

is not affected by the change

of coordinate system,

but the COMPONENTS of </s

in the two systems

are DIFFERENT,
as we have already pointed out

on page 1 30.

Now if the coordinates of point A
are x and y in one system
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and x' and / in the other,

the relationship between

these four quantities

is given by equations (9) on p. 142.

And now, from these equations,

we can, by differentiation*,

find the relationships between

c/x and c/y

and

c/x' and c/y
7

.

It will be noticed,

in equations (9),

that

x depends upon BOTH x and y',

so that any changes in x' and y'

will BOTH affect x.

Hence the TOTAL change in x,

namely c/x ,

will depend upon TWO causes:

(a) Partially upon the change in x',

namely c/x' ,

and

(b) Partially upon the change in y',

namely c/y
7

.

Before writing out these changes,
it will be found more convenient

to solve (9) for x
7

and y
7

in terms of x and y.|

*See any book on

Differential Calculus.

fAssuming of course that the

determinant of the coefficients in (9)

is not zero.

(See the chapter on "Determinants" in

"Higher Algebra" by M. Bocher.)

144



In other words,
to express the

NEW, primed coordinates, x' and /,
in terms of the

OLD, original ones, x and y ,

rather than the other way around.

This will of course give us

x' == ax + 6y
(10) < , , ,N '

\ y
= ex + dy

where a, fc, c, J are functions of 0.

It will be even better

to write (1 0) in the form:

(11)x ' x2
=

621X1

using xi and XL instead of x and y ,

(and of course x[ and x'2 instead of

x' and /);

and putting different subscripts

on the single letter a ,

instead of using

four different letters: a , b , c , d

The advantage of this notation is

not only that we can

easily GENERALIZE to n dimensions

from the above

two-dimensional statements,

but,

as we shall see later,

this notation lends itself to

a beautifully CONDENSED way of

writing equations,

which renders them

very EASY to work with.

145



Let us now proceed with

the differentiation of (11):

we get

(1 2) I
k' = ail('Xl "^ ai2C^X2

* '
\ C/X2

=
521C/X1 + a 22C/X?

The MEANING of the a's in (12)

should be clearly understood:

Thus an is

the change in x'\ due to

A UNIT CHANGE in xi,

so that

when it is multiplied by
the total change in xi , namely c/xi ,

we get

THE CHANGE IN *( DUE TO
THE CHANGE IN * ALONE.
And similarly in a^cfa,

612 represents

the change in xi PER UNIT CHANGE in x2 ,

and therefore

the product of a\? and

the total change in x / namely dx ,

gives

THE CHANGE IN x{ DUE TO
THE CHANGE IN x2 ALONE.

Thus

the TOTAL CHANGE in xi

is given by

just as

the total cost of

a number of apples and oianges

would be found

by multiplying the cost of

ONE APPLE

by the total number of apples,
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and ADDING this result

to a similar one

for the oranges.

And similarly for Jx2 in (1 2).

We may therefore

replace an by dx(/dx\

a symbol which represents

the partial change in xj

per unit change in xi*,

and is called

the "partial derivative of xi

with respect to xi ."

Similarly,

dx{ 9x2 _ 9x5
3l2 ~

'

/ cl21
~ T~~ / ^22 ^

"

9X2 OXi 0X2

And we may therefore rewrite (1 2)

in the form

dx{ j dx{
dx\ H

f\ *^i i f\

OXi 0X2

(13)
9X2 ,

,

<?X2

2
= T-'CfXi + T~

0x2
</X2

=

But perhaps the reader

is getting a little tired of all this,

and is wondering
what it has to do

with Relativity.

*Note that a PARTIAL change
is always denoted by the letter "d"

i A A MJM
in contrast to d

which designates a TOTAL change
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To which we may give him

a partial answer now

and hold out hope
of further information

in the remaining chapters.

What we can already say is that

since General Relativity is concerned with

finding the laws of the physical world

which hold good for ALL observers/

and since various observers

differ from each other,

as physicists,

only in that they

use different coordinate systems,

we see then

that Relativity is concerned

with finding out those things

which remain INVARIANT
under transformations of

coordinate systems.

Now, as we saw on page 143,
a vector is such an INVARIANT/
and, similarly,

tensors in general

are such INVARIANTS,
so that the business of the physicist

really becomes

to find out

which physical quantities

are tensors,

and are therefore

the "facts of the universe/
1

since they hold good
for all observers.

*See p. 96.
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Besides,

as we promised on page 125,
we must explain the meaning of

"curvature tensor/
1

since it is this tensor

which CHARACTERIZES a space.

And then

with the aid of the curvature tensor of

our four-dimensional world of events,*

we shall find out

how things move in this world

what paths the planets take,

and in what path

a ray of light travels

as it passes near the sun,

and so on.

And of course

these are all things which

can be

VERIFIED BY EXPERIMENT.

XVI. A VERY HELPFUL SIMPLIFICATION

Before we go any further

let us write equations (13) on page 147

more briefly

thus:

(,4) -**
*FOUR-dimensional, since

each event is characterized by
its THREE space-coordinates and
the TIME of its occurrence

(see Part I. of this book, page 58)
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A careful study of (14) will show

(a) That (14) really contains TWO equations

(although it looks like only one),

since, as we give M
its possible values, 1 and 2 ,

we have

c/x[ and c/Xj on the left,

just as we did in (13);

(b) The symbol 2, means that

when the various values of <J
,

namely 1 and 2
,

are substituted for cr

(keeping the \i constant in any one equation)

the resulting two terms

must be ADDED together.

Thus, for /i
= 1 and <r

= 1
, 2

,

(1 4) becomes

it dx( , . dxi j
dxi

= -dxi + -dx2,
dxi 0x2

just like the FIRST equation in (13),

and, similarly,

by taking ju
= 2

,

and again "summing on the <r's ,"

since that is what 2, tells us to do,
we get

If 3X2 I I

5X2 Jdx2
= T-'cfxi + -

-ax2 t
OXi OX2

which is the SECOND equation in (13).

Thus we see that

(14) includes all of (13).

A still further abbreviation

is introduced by omitting

the symbol 2,
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WITH THE UNDERSTANDING THAT
WHENEVER A SUBSCRIPT OCCURS TWICE
IN A SINGLE TERM
(as, for example, <r

in the right-hand member of (14) ),

it will be understood that

a SUMMATION is to be made
ON THAT SUBSCRIPT.

Hence we may write (14) as follows:

(15) <Jx' =
dx

'*-<lxU ; d*"
dx.

*'

in which we shall know
that the presence of the TWO </s

in the term on the right,

means that 2 a is understood.

And now, finally,

since c/xi and cfe

are the components of c/s in the

UNPRIMED system

let us represent them more briefly by

A ]

and A2

respectively.

The reader must NOT confuse

these SUPERSCRIPTS
with EXPONENTS-
thus >4

2
is not the "square of" A ,

but the superscript serves merely
the same purpose as a

SUBSCRIPT,

namely,
to distinguish the components
from each other.

Just why we use

SUPERSCRIPTS instead of subscripts

will appear later (p. 1 72).
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And the components of c/s

in the PRIMED coordinate system
will now be written

A'
1
and A'\

Thus (1 5) becomes

And so,

if we have a certain vector A" ,

that is,

a vector whose components are

A 1 and A2

in a certain coordinate system,

and if we change to

a new coordinate system

in accordance with

the transformation represented by (11) on page 145
,

then

(16) tells us what will be

the components of this same vector

in the new (PRIMED) coordinate system.

Indeed, (1 5) or (16) represents

the change in the components
of a vector

NOT ONLY for the change given in (11),

but for ANY transformation

of coordinates:*

Thus

suppose x, are the coordinates of

a point in one coordinate system,

*Except only that

the values of (xa) and (x/) must be in

one-to-one correspondence.
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and suppose that

xj
=

ft (xi , x2/ ....) =
ft

x!2 =f>(xa)

etc.

Or, representing this entire

set of equations by

Xp Ifj. \Xa)f

where the fs represent

any (unctions whatever,

then, obviously

' - ^ J J- afl J J-
HI ~ OXi T" ^ 'CTX2 ~r . . . .

OXi 0X2

or, since ft
=

x{ ,

If {
= r-~ C/Xi + ^

'

C/X2 + - . . .

OXi 0X2

etc.

Hence

gives the manner of transformation

of the vector dxa to

ANY other coordinate system

(see the only limitation

mentioned in the footnote on

page 1 54).

And in fact

ANY set of quantities which

transforms according to (16) is

DEFINED TO BE A VECTOR,
or rather,

A CONTRAVARIANT VECTOR-
the meaning of "CONTRAVARIANT"
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will appear later (p. 1 72).

The reader must not forget that

whereas the separate components in

the two coordinate systems are

different,

the vector itself is

an INVARIANT under the

transformation of coordinates

(see page 143).

It should be noted further that

(16) serves not only to represent

a two-dimensional vector,

but may represent

a three- or four- or

n-dimensional vector,

since all that is necessary is

to indicate the number of values that

M and (r may take.

Thus, if JLI

= 1
,
2 and <r

=
1

,
2 ,

we have a two-dimensional vector/

but if M - 1
,
2

,
3

,
and a = 1

,
2

,
3 ,

(16) represents a 3-dimensional vector,

and so on.

For the case M ^ 1
/
2

,
3 and (7

= 1,2
(16) obviously represents

THREE EQUATIONS in which

the right-hand members

each have THREE terms:

(JX[ ux-2 0x3

3*2 /! i

dXo I*
,

fa'
-A

l + r
}
-A-+ -

axi 0x3 5x3
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Similarly we may now give

the mathematical definition of

a tensor of rank two,*

or of any other rank.

Thus

a contravariant tensor of rank two

is defined as follows:

(17)

Here, since 7 and 5 occur TWICE
in the term on the right,

it is understood that

we must SUM for these indices

over whatever range of values they have.

Thus if we are speaking of

THREE DIMENSIONAL SPACE,
we have 7 = 1

,
2

,
3 and 5 = 1

,
2

,
3.

ALSO a = 1
, 2

,
3

,
and = 1

,
2

, 3;

But

NO SUMMATION is to be performed

on the a and j8

since neither of them occurs

TWICE in a single term/

so that

any particular values of cv and p

must be retained throughout ANY ONE equation.

For example,

for the case a =
1

, /3
= 2

,

It will be remembered (see page 128)
that

a VECTOR is a TENSOR of RANK ONE.
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(1 7) gives the equation:

,, _ <9x[ dxs
All ,

dx[ dxj
,
12 , dx! 3*2

/\ ~
V~~

'

r\

~ '^ "I n
" '

a
'^ '

Jl

'

3
9xi 9xi 9xi 0x2 9xi 0x3

.. . . __ .

6x2 9xi 9x2 9x2 9x2 9x3

+ ^.^./31 +
dx

l.
dx

*.AV , ??!.
dx

?.

9X3 9xi 9X3 9X2 9X3 9X3

It will be observed that 7 and <5

have each taken on

their THREE possible values: 1,2,3,
which resulted in

NINE terms on the right/

whereas

a = 1 and ft
= 2

have been retained throughout.

And now since a and /3

may each have the three values, 1,2,3,
there will be

NINE such EQUATIONS in all.

Thus (1 7) represents

nine equations each containing

nine terms on the right,

if we are considering

three-dimensional space.

Obviously for two-dimensional space,

(17) will represent

only four equations each containing

only four terms on the right.

Whereas,
in four dimensions,

as we must have in

Relativity*

*See the footnote on p. 1 50.
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(17) will represent

sixteen equations each containing

sixteen terms on the right.

And
;
in general,

in n-dimensional space,

a tensor of RANK TWO,
defined by (17),

consists of

n equations, each containing

n terms in the right-hand member.

Similarly,

a contravariant tensor of RANK THREE
is defined by

(18) A'-to-l^-^-A
vXp ox? dxff

and so on.

As before,

the number of equations represented by (18)

and the number of terms on the right in each,

depend upon

the dimensionality of the space in question.

The reader can already appreciate somewhat

the remarkable brevity

of this notation,

But when he will see in the next chapter

how easily such sets of equations

are MANIPULATED,
he will be really delighted,

we are sure of that.
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XVII. OPERATIONS WITH TENSORS.

For example,

take the vector (or tensor of rank one) A
a

f

having the two components A
1

and A2

in a plane,

with reference to a given set of axes.

And let 6
a
be another such vector.

Then, by adding the corresponding components
of Aa

and B
a

,

we obtain a quantity

also having two components,

namely,

A 1 + B l

and A2 + B2

which may be represented by

and C
2

,

respectively.

Let us now prove

that this quantity

is also a vector:

Since A* is a vector,

its law of transformation is:

(19) /V
x = M"(see

Similarly, for B" :

(20) B'
X =

^--B\
ox,

Taking corresponding components,
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AH lAli *.f\ /I i ^
OXi 0X2

B/l
^Xl Dl 1

^Xl D2=
TT

..... D ~r
- -D .

axi 0x2

we get, in full:

and

The sum of these gives:

Similarly,

dxi 6x2

Both these results are included in:

Or

(21) c^^-e.dxa

Thus we see that

the result is

a VECTOR (see p. 155).

Similarly for tensors of

higher ranks.

Furthermore,

note that (21) may be obtained

QUITE MECHANICALLY
by adding (19) and (20)
AS IF each of these were

A SINGLE equation

containing only
A SINGLE term on the right,
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instead of

A SET OF EQUATIONS
EACH CONTAINING
SEVERAL TERMS ON THE RIGHT.

Thus the notation

AUTOMATICALLY takes care that

the corresponding components
shall be properly added.

This is even more impressive

in the case of multiplication.

Thus,

to multiply

(22) A'
x = M'

by ^
(23) ""^^ (A, /.,,/* = 1,2)

we write the result immediately:

(24) 0-g.g.C* (X //t/ ,/3-1,2X

To convince the reader

that it is quite safe

to write the result so simply,
let us examine (24) carefully

and see whether it really represents

correctly

the result of multiplying (22) by (23).

By "multiplying (22) by (23)"
we mean that

EACH equation of (22) is to be

multiplied by
EACH equation of (23)
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in the way in which this would be done

in ordinary algebra.

Thus,

we must first multiply

by
f
j
\r

fjy

We 8 et,

(25)
9xi 9xi

9x2 9xi

9xi 9xi
,

-

ox* 0x2

Similarly we shall set

three more such equations/

whose left-hand members are,

respectively,

A'T, A'-B'\ A"- B'
2

,

and whose right-hand members

resemble that of (25).

Now, we may obtain (25) from (24)

by taking X =
1

, /*
=

1
,

retaining these values throughout,

since no summation is indicated on X and

[that is, neither X nor /x is repeated

in any one term of (24)].
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But since a and ft

each OCCUR TWICE
in the term on the right,

they must be allowed to take on

all possible values, namely, 1 and 2
,

and SUMMED,
thus obtaining (25),

except that we replace A'B**

by the simpler symbol C
a^

*.

Similarly,

by taking A = 1 , /*
= 2 in (24),

and summing on a and /? as before,

we obtain another of the equations

mentioned on page 164.

And X = 2
, /*

= 1
,

gives the third of these equations/

and finally A = 2
, M

- 2

gives the fourth and last.

Thus (24) actually does represent

COMPLETELY
the product of (22) and (23)!

Of course, in three-dimensional space,

(22) and (23) would each represent

THREE equations, instead of two,

each containing

THREE terms on the right, instead of two;

and the product of (22) and (23)

*Note that either A" B or C<*

allows for FOUR components:

Namely, AW or C11

,

AW or C",

AW or C21

,

and AW or C22
.

And hence we may use

G* instead of A* V.
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would then consist of

NINE equations, instead of four,

each containing

NINE terms on the right, instead of four.

But this result

is still represented by (24)!

And, of course, in four dimensions

(24) would represent

SIXTEEN equations, and :I so on.

Thus the tensor notation enables us

to multiply

WHOLE SETS OF EQUATIONS
containing MANY TERMS IN EACH,
as EASILY as we multiply

simple monomials in elementary algebra!

Furthermore,

we see from (24)

that

the PRODUCT of two tensors

is also a TENSOR (see page 157),

and, specifically, that

the product of two tensors

each of RANK ONE,
gives a tensor of RANK TWO.

In general,

if two tensers of ranks m and n .

respectively,

are multiplied together,

the result is

a TENSOR OF RANK m + n.

This process of multiplying tensors

is called

OUTER multiplication,
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to distinguish it from

another process known as

INNER multiplication

which is also important
in Tensor Calculus,

and which we shall describe later (page 183).

XVIII. A PHYSICAL ILLUSTRATION.

But first let us discuss

a physical illustration of

ANOTHER KIND OF TENSOR,
A COVARIANT TENSOR:*

Consider an object whose density
is different in different parts of the object.

A
B

^This is to be distinguished from the

CONTRAVARIANT tensors

discussed on pages 1 55ff.
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We may then speak of

the density at a particular point, A .

Now, density is obviously

NOT a directed quantity,

but a SCALAR (see page 127).

And since the density of the given object

is not uniform throughout,

but varies from point to point,

it will vary as we go from A to B .

So that if we designate by ^
the density at A ,

then

^ . ^
-- and -"--

dxi dx2

represent, respectively,

the partial variation of \l/

in the xi and x> directions.

Thus, although ^ itself is NOT
a DIRECTED quantity,

the CHANGE in $ DOES depend upon

the DIRECTION
and IS therefore a DIRECTED quantity,

whose components are

9xi

Now let us see

what happens to this quantity when

the coordinate system is changed (see page 149).

We are seeking to express

d\[/ d\l/ . f d$ d\l/-
r , ,

in terms o!
-

, ,
-

.

9x1 3x2 9xi 9x2

Now if we have three variables,

say^^andz,
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such that y and z depend upon x ,

it is obvious that

the change in z per unit change in x,
IF IT CANNOT BE FOUND DIRECTLY,

may be found by

multiplying

the change in y per unit change in x

by
the change in z per unit change in y,

or,

expressing this in symbols:

f
.. c/z _ cfz Jy

(26)
cfx~d[ydx-

In our problem above,
we have the following similar situation:

A change in x( will affect

BOTH xi and x2 (see p. 145),

and the resulting changes in XL and X2

will affect 1/7

hence

Note that here we have TWO terms

on the right

instead of only ONE, as in (26),

since the change in x{

affects BOTH xi and x2

and these in turn BOTH affect ty,

whereas in (26),

a change in x affects y/
which in turn affects z ,

and that is all there was to it.

Note also that

the curved "d" is used throughout in (27)

since all the changes here
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are PARTIAL changes

(see footnote on page 147).
And since ^ is influenced also

by a change in x2/
this influence may be

similarly represented by

And, as before,
we may combine (27) and (28)

by means of the abbreviated notation:

where the occurrence of a TWICE
in the single term on the right

indicates a summation on a ,

as usual.

And, finally,

writing A^ for the two components

4 J' W
represented in

C/ JC
\ I

and >A ff for the two components, v /

we may write (29) as follows:

(30) Al-jfrA. 0*^ =
CXM

If we now compare (30) with (16)

we note a

VERY IMPORTANT DIFFERENCE,

namely,
that the coefficient on the right in (30)

is the reciprocal of

the coefficient on the right in (16),
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so that (30) does NOT satisfy

the definition of a vector given in (16).

But it will be remembered that

(16) is the definition of

A CONTRAVARIANT VECTOR ONLY.
And in (30)
we introduce to the reader

the mathematical definition of

A COVARIANT VECTOR.

Note that

to distinguish the two kinds of vectors,

it is customary to write the indices

as SUBscripts in the one case

and as SUPERscripts in the other.*

As before (page 1 56),

(30) may represent a vector in

any number of dimensions,

depending upon the range of values

given to JJL and 0" ,

and for ANY transformation of coordinates.

Similarly,

A COVARIANT TENSOR OF RANK TWO
is defined by

and so on, for higher ranks.

COMPARE and CONTRAST carefully

(31) and (17).

^Observe that the SUBscripts are used

for the COvariant vectors,

in which the PRIMES in the coefficients

are in the DENOMINATORS (see (30), p. 171).
To remember this more easily

a young student suggests the slogan

"CO, LOW, PRIMES BELOW/ 1
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XIX. MIXED TENSORS.

Addition of covariant vectors

is performed in the same simple manner

as for contravariant vectors (see p. 1 61 )

Thus, the SUM of

A\ r-~7*.na
ox\

and

Sx=
dx(

"

is

c = 3xx .

Also,
the operation defined on page 166
as OUTER MULTIPLICATION
is the same for

covariant tensors:

Thus, the OUTER PRODUCT of

A( =
^-Aa

and

is

dxa

Furthermore,

it is also possible to multiply

a COVARIANT tensor by
a CONTRAVARIANT one,

thus,
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the OUTER PRODUCT of

A( =
|J.

A.

and

is

(32) C/5;:=
^'-ax"'

C'-

Comparison of (32) with (31) and (17)
shows that it is

NEITHER a covariant

NOR a contravariant tensor.

It is called

A MIXED TENSOR of rank TWO.

More generally,

the OUTER PRODUCT of

and

is

rfr - *** *

That is,

if any two tensors of ranks m and n,

respectively,

are multiplied together

so as to form their

OUTER PRODUCL
the result is a TENSOR of rank m +
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thus, the rank of (33) is 3 ,

and that of (34) is 2 ,

hence,
the rank of their outer product, (35),

is 5.

Furthermore,

suppose the tensor of rank m
is a MIXED tensor,

having mi indices of covariance*

and m indices of contravariancef

(such that mi + m^ =
m),

and suppose the tensor of rank n

has m indices of covariance*

and n2 indices of contravariance/f"

then,

their outer product will be

a MIXED tensor having

mi + m indices of covariance*

and

m2 + rt2 indices of contravariance.f

All this has already been illustrated

in the special case given above:

Thus,

(33) has ONE index of covariance (7)
and (34) also has

ONE index of covariance (5),

therefore their outer product, (35),

has TWO indices of covariance (7, <5);

and similarly,

since (33) has

TWO indices of contravariance (a/ /?)

and (34) has

*
SUBscripts.

t SUPERscripts.
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ONE index of contravariance (K),

their outer product, (35),

has

THREE indices of contravariance (, /3, K)O

We hope the reader appreciates

the fact that

although it takes many words

to describe these processes

it is extremely EASY
to DO them

with the AID of the

TENSOR NOTATION.
Thus the outer product of

A* and B75

is simply C$ !

Let us remind him, however, that

behind this notation,

the processes are really complicated:

Thus (33) represents

a whole SET of equations*

each having MANY* terms on the right

And (34) also represents

a SET of equations!

each having MANYj terms on the right.

And their outer product, (35),

is obtained by
multiplying

*Namely, EIGHT for two-dimensional space;
TWENTY-SEVEN for three-dimensional,
SIXTY-FOUR for four-dimensional,
and so on.

tFour for two-dimensional space,
NINE for three-dimensional space,
SIXTEEN for four-dimensional space}
and so on.
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EACH equation of (33) by
EACH one of (34),

resulting in a SET of equations, (35),

containing

THIRTY-TWO equations for

two-dimensional space,

TWO HUNDRED AND FORTY-THREE for

three-dimensional space,

ONE THOUSAND AND TWENTY-FOUR for

four-dimensional space,

and so on.

And all with a

correspondingly large number of terms

on the right of each equation!

And yet

"any child can operate it
11

as easily as

pushing a button.

XX. CONTRACTION AND DIFFERENTIATION.

This powerful and

easily operated machine,
the TENSOR CALCULUS,
was devised and perfected by
the mathematicians

Ricci and Levi-Civita

in about 1900,
and was known to very few people
until Einstein made use of it.

Since then it has become

widely known,
and we hope that this little book
will make it intelligible

even to laymen.
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But what use did Einstein make of it?

What is its connection with Relativity?

We are nearly ready to Fulfill

the promise made on page 1 25.

When we have explained

two more operations with tensors,

namely,
CONTRACTION and DIFFERENTIATION,
we shall be able to derive

the promised CURVATURE TENSOR,
from which

Einstein's Law of Gravitation

is obtained.

Consider the mixed tensor (33), p. 175:

suppose we replace in it

7 by a,

obtaining

-
f\<x ^~f a -\ **"

dxa dxx dxM

By the summation convention (p. 1 52),

the left-hand member is to be summed on

so that (36) now represents

only TWO equations instead of eight,*

each of which contains

TWO terms on the left instead of one;

furthermore,

on the RIGHT,
since a occurs twice here,

we must sum on a

for each pair of values of v and X :

Now,

*Secp. 177.
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when v happens to have a value

DIFFERENT from X,

then

dx, dx^ __ dxv __

dx
f

a dxx dxx

BECAUSE
the x's are NOT functions of each other

(but only of the x"s)

and therefore

there is NO variation of xp

with respect to

a DIFFERENT x, namely xx .

Thus coefficients of A? when A ^ v

will all be ZERO
and will make these terms drop out.

BUT
When A = v.
then

dx, dx _ dxx dx'a _ .

dxl dxx dx'a 3xx

Thus (36) becomes

(37) A' =
g-^

in which we must still

sum on the right

for X and M -

To make all this clearer,

let us write out explicitly

the two equations represented by (37):

'\
l + A'? = |^ (A\

l + Al
l

) + ^ (Al
2 + A?)

UXi OX'2

!? + A'f =
d

f (A? + ^l
1

) +^ (A? + Al
2
).

UXi
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Thus (37) may be written more briefly:

08) c-g-e
where

C'^/T + ^T,
C2 = A'\

2 + X?
and

C2 = A[
2 422

In other words,

by making one upper and one lower index

ALIKE
in (33),

we have REDUCED
a tensor of rank THREE to

a tensor of rank ONE.

The important thins to note is

that this process of reduction

or CONTRACTION,
as it is called/

leads again to

A TENSOR,
and it is obvious that

foi every such contraction

the rank is reduced by TWO,
since for every such contraction

two of the partial derivatives in

the coefficient

cancel out (see page 181).

We shall see later

how important this process ot contraction is.

Now,
if we form the OUTER PRODUCT of two tensors,

in the way already described (p. 1 75)
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and if the result is

a mixed tensor,

then,

by contracting this mixed tensor

as shown above,
we get a tensor which is called

an INNER PRODUCT
in contrast to

their OUTER PRODUCT.

Thus the OUTER product of

A* and B7

is Ck (see page 1 77);

now, if in this result

we replace 7 by |8 ,

obtaining

CS, or Da (see pages 1 80 to 1 82),

then D is an INNER product of

A* and B\

And now we come to

DIFFERENTIATION.

We must remind the reader that

if

y
= uv

where // u, and v are variables,

then

dy _ dv
j,

c
f?f*

c/x c/x c/x

Applying this principle to

the differentiation of

(39) A* =
^'A',
OXff

*See any book on differential calculus
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with respect to x,' ,

we get:

Or, since

dA dA* dxr

hence (40) becomes

(41
\ ^ =

dxT

From (41 ) we see that

if the second term on the right

were not present,

then (41) would represent

a mixed tensor of rank two.

And, in certain special cases,

this second term does vanish,

so that

in SUCH cases,

differentiation of a tensor

leads to another tensor

whose rank is one more than

the rank of the given tensor.

Such a special case is the one

in which the coefficients

dx.

in (39)

are constants,

as in (13) on page 147,
since the coefficients in (1 3)

are the same as those in (1 1) or (10);
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and are therefore (unctions of 6 ,

6 being the angle through which

the axes were rotated (page 141),

and therefore a constant.

In other words,

when the transformation of coordinates

is of the simple type

described on page 141 ,

then

ordinary differentiation of a tensor

leads to a tensor.

BUT, IN GENERAL,
these coefficients are NOT constants,

and so,

IN GENERAL
differentiation of a tensor

does NOT give a tensor

as is evident from (41).

BUT
there is a process called

COVARIANT DIFFERENTIATION
which ALWAYS leads to a tensor,

and which we shall presently describe.

We cannot emphasize too often

the IMPORTANCE
of any process which

leads to a tensor,

since tensors represent

the "FACTS
11

of our universe

(see page 149).

And, besides,

we shall have to employ
COVARIANT DIFFERENTIATION
in deriving
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the long-promised

CURVATURE TENSOR
and

EINSTEIN'S LAW OF GRAVITATION

XXI. THE LITTLE g's.

To explain covariant differentiation

we must first refer the reader back

to chapter XIII;

in which it was shown that

the distance between two points,

or, rather, the square of this distance,

namely, c/s
2

,

takes on various forms

depending upon

(a) the surface in question

and

(b) the coordinate system used.

But now,
with the aid of the remarkable notation

which we have since explained,

we can include

ALL these expressions for c/s
2

in the SINGLE expression

(42) Jf = g^Jx^Jx9ff

and, indeed,
this holds NOT ONLY for

ANY SURFACE,
but also for

any THREE-dimensional space,

or FOUR-dimensional,
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or, in general,

any n-dimensional space!*

Thus, to show how (42) represents

equation (3) on page 116,
we take M = 1 , 2 and ^ = 1,2,
obtaining

(43) c/s
2 =

guc/xi-c/Xi + gi>c/xrc/x2

g2lC/X2
'

C/Xi + g22C/X>
'

C/X2 /

since the presence of ju and P

TWICE
in the term on the right in (42)

requires SUMMATION on both /* and p.f

Of course (43) may be written:

(44) c/s
2 =

giic/x? + g, 2c/xic/X2 +

and, comparing (44) with (3),

we find that

the coefficients in (3)

have the particular values:

ffll
= 1

I ff!2
=

, jjfel

=
7 22

=

^Except only at a so-called "singular point"

of a space/

that is,

a point at which

matter is actually located

In other words,

f42) holdr. for any region AROUND matter.

Pee page 1 52.

|Note that in c/xi (as well as in c/x:)

the upper "2" is really an exponent
and NOT a SUPERSCRIPT
since (44) is an

ordinary algebraic equation
and is NOT in the

ABBREVIATED TENSOR NOTATION.
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Similarly, in (6) on page 120,

gu
=

r\ ffi2
=

, g2i
=

, 322
= /?* /

and, in (7) on page 123,

gn
=*

1, 912
^ - cos a, g2i

= -cos a, g22
=

1,

and so on.

Note that gi2 and g?i have

the SAME value.

And indeed, in general

9?"
=

9w

in (42) on page 187.

Of course, if, in (42),

we take /*- 1,2, 3 and ^=1,2, 3,
we shall get the value for c/s

2

in a THREE-dimensional space:

(45) c/s
2 =

guc/xi + gi2C/xrc/x2 + gisc/xrc/xs

4- g>2]dx2-dxi +

Thus, in particular,

for ordinary Euclidean three-space,

using the common rectangular coordinates,

we now have:

gn
= 1

, g22
= 1

/ gas
= 1

/

and all the other g's are zero,

so that (42) becomes,
for THIS PARTICULAR CASE,
the familiar expression

c/s
2 =

c/x? + c/xl + c/xi

c/s
2 = c/x

2 + c/y
2 + c/z

2

/

and similarly for

higher dimensions.
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Thus/ for a given space/

two-, three-, four-, or n-dimensional,

and for a given set of coordinates,

we get a certain set of g's.

It is easy to show* that

any such set of g's,

(which is represented by gv)

constitutes

the COMPONENTS of a TENSOR,
and; in fact, that

COVARIANT TENSOR OF RANK TWO,
and hence is appropriately

designated with TWO SUBscriptsf:

Let us now briefly sum up
the story so far:

By introducing

the Principle of Equivalence

Einstein replaced the idea of

a
M
force of gravity"

by the concept of

a geometrical space (Chap. XII).

And since a space

is characterized by its g's,

the knowledge of the g's of a space

is essential to a study of

how things move in the space,

and hence essential

to an understanding of

Einstein's Law of Gravitation.

*Seep.313.

tSeep.172.
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XXII. OUR LAST DETOUR

As we said before (page 185),

to derive the

Einstein Law of Gravitation,

we must employ
COVARIANT DIFFERENTIATION.

Now, the COVARIANT DERIVATIVE of a terror

contains certain quantities known as

CHRISTOFFEL SYMBOLS*
which are functions of the tensor g^
discussed in chapter XXI,
and also of another set g^

(note the SUPERscripts here)

which we shall now describe:

For simplicity,

let us limit ourselves for the moment

to TWO-dimensional space,

that is,

let us take /x
= 1

,
2 and v = 1

,
2 ;

then gMV will have

FOUR components,

namely,
the four coefficients on the right

in (44).

And let us arrange these coefficients

in a SQUARE ARRAY, thus:

ff21 ff22 I

which is called a MATRIX.
Now since gt2

=
921 (see page 1 89)

*Named for the mathematician, Christoffcl.
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this is called a

SYMMETRIC MATRIX,
since it is symmetric with respect to

the principal diagonal

(that is, the one which starts

in the upper left-hand corner).

IF we now replace the double bars

on each side of the matrix

by SINGLE bars,

as shown in the following:

we get what is known as

a DETERMINANT.*
The reader must carefully

DISTINGUISH between

*The reader probably knows that

a square array of numbers

with single bars on each side

5 6

2 3

is called a determinant,

and that its value is found thus:

5X3-6X2 = 15-12-

Or, more generally,

at I I

c J
=*-

A determinant does not necessarily

have to have TWO rows and columns,
but may have n rows and n columns,
and is then said to be of order n .

The way to find the VALUE of

a determinant of the nth order

is described in any book on

college algebra.
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a square array with SINGLE bars

from one with DOUBLE bars:

The FORMER is a DETERMINANT
and has a SINGLE VALUE
found by combining the "elements"

in a certain way
as mentioned in the foot-note on p. 193.

Whereas

the DOUBLE-barred array

is a set of SEPARATE "elements,"

NOT to be COMBINED in any way.

They may be just

the coefficients of the separate terms

on the right in (44),

which,
as we mentioned on page 1 90,
are the separate COMPONENTS of a tensor.

The determinant on page 193

may be designated more briefly by

! g. I , Oi
= 1

,
2 /

v = 1
, 2)

or, still better, simply by g.

And now let us form a new square array

in the following manner:

DIVIDE the COFACTOR* of EACH ELEMENT
of the determinant on page 193

by the value of the whole determinant,

namely, by g,
thus obtaining the corresponding element of

the NEW array.

*For readers unfamiliar with determinants

this term is explained on p. 195.
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The COFACTOR of a given element

of a determinant

is found by striking out

the row and column containing the given element,
and evaluating the

determinant which is left over,

prefixing the sign + or

according to a certain rule:

Thus, in the determinant

523
4 1

6 8 /

the cofactor of the element 5, is:

1

8 7
= 1X7-8X0 = 7-0 = 7.

Similarly, the cofactor of 4 is:

2 3

8 7
= -(14 -24) = 10;

and so on.

Note that in the first case

we prefixed the sign + ,

while in the second case

we prefixed a .

The rule is:

prefix a + or according as

the NUMBER of steps required to go
from the first element

(that is, the one in

the upper left-hand corner)

to the given element,
is EVEN or ODD, respectively/

thus to go from "5" to "4"

it takes one step,

hence the cofactor of "4" must have

a MINUS prefixed before

2 3

8 7
'

But all this is more thoroughly

explained in any book on

college algebra.
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Let us now 90 back

to the array described

at the bottom of p. 194.

This new array,

which we shall designate by g"
p

can also be shown to be

a TENSOR,
and, this time,

A CONTRAVARIANT TENSOR
OF RANK TWO.
That it is also SYMMETRIC
can easily be shown by the reader.

We can now give the definition

of the Christoffel symbol
which we need.

It is designated by {^v, \]

and is a symbol for:

In other words,

the above-mentioned Christoffel symbol
:

involves partial derivatives of

the coefficients in (44),

combined as shown in (46)

and multiplied by
the components of the tensor g^ .

Thus, in two-dimensional space,

*There arc other Christoffel symbols,
but we promised the reader

to introduce only the

barest minimum of mathematics

necessary for our purpose!
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since M , v , X , a each have the values 1
,
2

,

we have, for example,

(11 1) - a11 4-
9n - 9n

* I I
/

I
{ <J I i 1-1 ^T

2 \dxi dxi dxi

12

2
g

and similarly (or the remaining

SEVEN values of

obtained by allowing M , v and X

to take on their two values for each.

Note that in evaluating {11 ;
1

} above,
we SUMMED on the a,

allowing a to take on BOTH values, 1,2,
BECAUSE
if (46) were multiplied out,

EACH TERM would contain a TWICE,
and this calls for

SUMMATION on the a (see page 1 52).

Now that we know the meaning of

the 3-index Christoffel symbol

X},

we are ready to define

the covariant derivative of a tensor,

from which it is only a step to

the new Law of Gravitation.

If Ar is a covariant tensor of rank one,
its COVARIANT DERIVATIVE
with respect to xr

is DEFINED as:

(47) dA. .

}

.

^-{r,aM..
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It can be shown to be a TENSOR
in fact/ it is a

COVARIANT TENSOR OF RANK TWO*
and may therefore be designated by

A,T .

Similarly,

if we have

a contravariant tensor of rank one,

represented by A
a

,

its COVARIANT DERIVATIVE
with respect to x,

is the TENSOR:

<48> K. +ln . r] *.

Or,

starting with tensors of rank TWO,
we have the following three cases:

(a) starting with the

CONTRAVARIANT tensor, 4",
we get the COVARIANT DERIVATIVE:

(b) from the MIXED tensor, A:,
we get the COVARIANT DERIVATIVE:

',*See p. 60 of

"The Mathematical Theory of Relativity/
1

by
A. S. Eddington,
the 1930 Edition.

198



(c) from the COVARIANT tensor, A.T ,

we set the COVARIANT DERIVATIVE:

A A

Arrp
=

-jT^
-

{*P/ *} Ar - \Tp / *} A, .

UXp

And similarly (or the

COVARIANT DERIVATIVES
of tensors of higher ranks.

Note that IN ALL CASES
COVARIANT DIFFERENTIATION
OF A TENSOR
leads to a TENSOR having

ONE MORE UNIT OF
COVARIANT CHARACTER
than the given tensor.

Of course since

the covariant derivative of a tensor

is itself a tensor,

we may find

ITS covariant derivative

which is then the

SECOND COVARIANT DERIVATIVE of

the original tensor,

and so on for

higher covariant derivatives,

Note also that

when the g's happen to be constants,

as, for example,
in the case of a Euclidean plane,

using rectangular coordinates,

in which case we have (see p. 1 88)

so that

flfll

=
I / l2

=
, ff21

=
, 22
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all constants,

then obviously

the Christoffel symbols here

are all ZERO,
since the derivative of a constant is zero,

and every term of the

Christoffel symbol
has such a derivative as a factor/

so that (47) becomes simply
~~

.

That is, in this case,

the covariant derivative becomes

simply the ordinary derivative.

But of course

this is NOT so IN GENERAL

XXIII. THE CURVATURE TENSOR AT LAST.

Having now built up the necessary machinery,
the reader will have no trouble

in following the derivation of

the new Law of Gravitation.

Starting with the tensor, A, ,

form its covariant derivative

with respect to x r :

(49) A = d - K!A.(seep.197).

*See page 196.
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Now form the covariant derivative

of AT (see page 1 99)
with respect to xp :

(50) Arp
= d -

!<rp, e) A,
-

[rp, ej A,.

obtaining

a SECOND covariant derivative of Aa ,

which is a

COVARIANT TENSOR
OF RANK THREE.

Substituting (49) in (50),

we get

A l/ ^ff ( ) ^^a A ^ <
)

A,,,
=

T.-*-
~

(
ffr'/ i ^7"

- A i {"/ "I
UJ\p v/JCp

9A ,

or

dA,

o 4
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If we had taken these derivatives

in the REVERSE order,

namely,

FIRST with respect to xp

and THEN with respect to xr ,

we would of course have obtained

the following result instead:

|f )
3A

M<rT ' }

ax~

+ {<7T,e} {tp,a} A.

f
) Vf\a ,f ) ( ) l-

{pT'tlfc
+ !PT / ) l

(T6 / a l A,

which is again

a COVARIANT TENSOR OF RANK THREE

Now,
comparing (51) with (52)

we shall find that they are

NOT alike THROUGHOUT:
Only SOME of the terms are the

SAME in both,

but the remaining terms are different.

Let us see:

the FIRST term in each is:

3
2

Ar j d~A ff
,

V-^-~ and T ,- , respectively.
dxTdxp

dx
pdx/

These, by ordinary calculus,

203



ARE the same.*

The SECOND term of (51)
is the same as

the FOURTH term of (52)
since the occurrence of a (or e)

TWICE in the same term

implies a SUMMATION
and it is therefore immaterial

what letter is used (a or e) ! f

Similarly for

the FOURTH term of (51)
and the SECOND of (52).

The SIXTH term (and the SEVENTH)
is the same in both

since the reversal of r and p in

*For, suppose that z is a (unction of x and / ,

as, for example, z x2 + 2xy,

Then . = 2x + 2y (treating y as constant)

and v v" = 2 (treating x as constant).
dx-dy

And, if we reverse the order of differentiation,

finding FIRST the derivative with respect to y
and THEN with respect to x ,

we would get

Y = 2x (treating x as constant)

\0

and 7, 2 (treating y as constant)
dydx

the SAME FINAL result.

And this is true IN GENERAL.

t An index which is thus easily replaceable is called a

"dummy"!
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does not alter the value of

this Christoffel symbol:
This can easily be seen by referring

to the definition of this symbol;*
and remembering that the tensor gM,

is SYMMETRIC,

that is, ft, g,M (see page 1 89).

Similarly the last term is the same

in both (51) and (52).

But the THIRD and FIFTH terms of (51)

are NOT equal to any of the terms in (52).

Hence by subtraction we get
\

} {^ f } A* Aa {

oxp

or

(53)

And since addition (or subtraction)

of tensors

gives a result which is itself a tensor (see page 161)
the left-hand member of (53) is

A COVARIANT TENSOR OF RANK THREE,
hence of course the right-hand member
is also such a tensor.

But, now,
since A n is an arbitrary covariant vector,

*Seepa9e196.
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its coefficient;

namely; the quantity in square brackets,

must also be a tensor

according to the theorem on p. 31 2.

Furthermore,

this bracketed expression

must be a MIXED tensor of RANK FOUR,
since on inner multiplication by A.

it must give a result which is

of rank THREE;
and indeed it must be of the form

(see page 31 3).

This

AT LAST
is the long-promised

CURVATURE TENSOR (Pa8e187),
and is known as

THE RIEMANN-CHRISTOFFEL TENSOR.

Let us examine it carefully

so that we may appreciate

its meaning and value.

XXIV. OF WHAT USE IS THE CURVATURE
TENSOR?

In the first place

we must remember that

it is an abbreviated notation for

the expression in square brackets

in (53) on page 205;

in which,

if we substitute for the Christoffel symbols,
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(crp, e} and so on,

their values in accordance with

the definition on page 196,
we find that we have

an expression containing

First and second partial derivatives

of the g's ,

which are themselves the coefficients

in the expression for c/s
2

(see p. 1 87)

How many components does

the Riemann-Christoffel tensor have?

Obviously that depends upon the

dimensionality of the space

under consideration.

Thus, if we are studying

a two-dimensional surface,

then each of the indices,

will have two possible values,

so that B*TP would then have

sixteen components.

Similarly,

in three-dimensional space

it would have 3
4
or 81 components,

and so on.

For the purposes of Relativity,

in which we have to deal with

a FOUR-dimensional continuum

this tensor has 4 4
or 256 components!

We hasten to add that

it is not quite so bad as that,

as we can easily see:

In the first place,

if, in this tensor,*

*That is, in the expression in square brackets

in (53) on page 205.
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we interchange r and p ,

the result is merely to change its sign.J

Hence,
of the possible 16 combinations of r and p ,

only 6 are independent:

This is in itself so interesting

that we shall linger here for a moment:

Suppose we have 16 quantities, a,,;j ,

(wherea= 1
, 2, 3 7 4, and - 1,2,3,4),

which we may arrange as follows:

a-2t 322 a23 324

ast 332 a;j;} 331

641 ^42 ^43 44

And suppose that a
a)3
= afta

(that is, a reversal of the two subscripts

results only in a change of sign of the term),

then, since an = an implies that an = ,

and similarly for the remaining terms

in the principal diagonal,

hence,
the above array becomes:

323

324

324

Thus there are only
SIX distinct quantities

instead of sixteen.

Such an array is called

ANTISYMMETRIC.

tThc reader would do well to compare this expression
with the one obtained from it by an interchange of r and

p throughout.
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Compare this with the definition of

a SYMMETRIC array on page 193.J

And so,

to come back to the discussion on page 208,
we now have

six combinations of r and p

to be used with

sixteen combinations of <r and a,

giving 6 X 16 or 96 components
instead of 256.

Furthermore,

it can be shown

that we can further reduce this number

to 20.*

Thus our curvature tensor,

for the situation in Relativity,

has only 20 components and NOT 256!

Now let us consider for a moment

the great IMPORTANCE of this tensor

in the study of spaces.

fThus in an ANTISYMMETRIC matrix we have

ap =
a/3 ,

whereas, in a SYMMETRIC matrix we have

Note that if the first matrix on p. 208

were SYMMETRIC,
it would reduce to

TEN distinct elements,
since the elements in the principal diagonal

would NOT be zero in that case.

*See A. S. Fddington's

The Mathematical Theory of Relativity,

page 72 of the 1930 edition.
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Suppose we have

a Euclidean space
of two, three, or more dimensions,
and suppose we use

ordinary rectangular coordinates.

Here the g*s are all constants.*

Hence,
since the derivative of a constant

is zero

the Christoffel symbols will

also be zero (see page 200);

and, therefore,
all the components of the

curvature tensor

will be zero too,
because every term contains

a Christoffel symbol (see page 205).

BUT,
if the components of a tensor

in any given coordinate system
are all zero,

obviously its components in

any other coordinate system
would also be zero

(consider this in the simple case on page 129)c

And so,

whereas from a mere superficial inspection

of the expression for cfe
2

we cannot tell whether

the space is Euclidean or not,!
an examination of the curvature tensor

(which of course is obtained

from the coefficients

in the expression for c/s
2

)

*Sec page 1 89.

JScc page 1 25.
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can definitely give this information,

no matter what coordinate system

is used in setting up cfs
2
.

Thus,

whether we use (3) on page 116

or (7) or (8) on page 123,
all of which represent

the square of the distance

between two points

ON A EUCLIDEAN PLANE,
using various coordinate systems,

we shall find that

the components of B"Tp in all three cases

ARE ALL ZERO.*
The same is true

for all coordinate systems

and for any number of dimensions,

provided that we remain in

Euclidean geometry.

*To have a clear idea of

the meaning of the symbolism,

the reader should try the simple exercise

of showing that B?TP = for (8) on p. 123.

He must bear in mind that here

911
=

1, 312
=

g-2i
=

o, gfc^xj,

and use these values in the bracketed expression

in (53) on page 205,

remembering of course that the meaning of [ap 1 1] , etc.

is given by the definition on page 196;
also that all indices, <r

, p ,
c

, etc.

have the possible values 1 and 2,
since the space here is

two-dimensional;

and he must not forget to SUM
whenever an index appears

TWICE IN ANY ONE TERM.
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Thus

(54) B;rp
=

is a NECESSARY condition

that a space shall be

EUCLIDEAN.

It can be shown that

this is also a SUFFICIENT condition.

In other words,

given a Euclidean space,

this tensor will be zero,

whatever coordinate system is used,.

AND CONVERSELY,
given this tensor equal to zero,

then we know that

the space must be Euclidean.

We shall now see

how the new Law of Gravitation

is EASILY derived

from this tensor.

XXV. THE BIG G'S OR EINSTEIN'S LAW
OF GRAVITATION.

In (54) replace p by a ,

obtaining

(55) B a
= 0.

Since a appears twice

in the term on the left,

we must, ,

according to the usual convention,
sum on a,
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so that (55) represents

only SIXTEEN equations

corresponding to the

4X4 values of <r and r

in a four-dimensional continuum.

Thus, when er = r = 1
7

(55) becomes

Bin + Bin + Bin + B?u = 0.

Similarly for <r = 1
,
r = 2

,

we get

0121 + Bl22 + Bi23 + Bi24
=

and so on,

for the 16 possible combinations of <r and r

We may therefore write (55) in the form

(56) Gffr
=

where each G consists of 4 B's

as shown above.

In other words,

by CONTRACTING B,'rp ,

which is a tensor of the FOURTH rank,

we get a tensor of the SECOND rank,

namely, GffT ,

as explained on page 182.

The QUITE INNOCENT-LOOKING
EQUATION (56) IS

EINSTEIN'S LAW OF GRAVITATION.

Perhaps tht reader is startled

by this sudden announcement.

But let us look into (56)

carefully,

and see what is behind its

innocent simplicity,
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and why it deserves to be called

the Law of Gravitation.

In the first place

it must be remembered

that before contraction,

B*rt>

represented the quantity in brackets

in the right-hand member

of equation (53) on page 205.

Hence,
when we contracted it

by replacing p by a ,

we can see from (53) that

Gar represents

the following expression:

\ r\

(57) {era, e} (er, a}
-^ {<"", a] + {aa, a]

-
{err,*} {,<*},

which, in turn,

by the definition of

the Christoffel symbol (page 196)

represents

an expression containing

first and second partial derivatives

of the little g's.

And, of course,

(57) takes 16 different values

as <r and r each take on

their 4 different values,

while the other Creek letters in (57),

namely, a and e,
are mere dummies (see page 204)
and are to be summed

(since each occurs twice in each term),

as usual.
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To get clearly in mind

just what (57) means,

the reader is advised

to replace each Christoffe! symbol
in accordance with the definition on page 196,
and to write out in particular

one of the 16 expressions represented by (57)

by putting, say <r = 1 and r = 2
,

and allowing a and 6 to assume,

in succession,

the values 1,2, 3 ,4.

It can easily be shown

that (56) actually represents

NOT 16 DIFFERENT equations

but only 10,

and, of these, only 6 are independent.*

So that the new Law of Gravitation

is not quite so complicated

as it appears at first.

But why do we call it a

Law of Gravitation at all?

It will be remembered

that a space,

of any number of dimensions,

is characterized by
its expression for cfs

2

(see page 187).

Thus

(56) is completely determined by
the nature of the space which,

by the Principle of Equivalence

determines the path

of a freely moving object

in the space.

*Se p. 242.
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But, even granting the

Principle of Equivalence,

that is,

granting the idea

that the nature of the space,

rather than a "force
11

of gravity,

determines how objects (or light)

move in that space

in other words,

granting that the g's alone

determine the Law of Gravitation

one may still ask:

Why is this particular expression (56)

taken to be the

Law of Gravitation?

To which the answer is that

it is the SIMPLEST expression which is

ANALOGOUS to Newton's Law of Gravitation.

Perhaps the reader is unpleasantly surprised

at this reply,

and thinks that the choice has been

made rather ARBITRARILY!

May we therefore suggest to him

to read through the rest of this book

in order to find out

the CONSEQUENCES of Einstein
1

* choice

of the Law of Gravitation.

We predict that he will be convinced

of the WISDOM of this choice,*

and will appreciate that this is

part of Einstein's GENIUS!

*The reader who is particularly

interested in this point

may wish to look up a book called

"The Law of Gravitation in Relativity"

by Levinson and Zeisler, 1931.
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He will see, for example, on page 271 ,

that the equations giving

the path of a planet,

derived by Newton,
are the SAME, to a first approximation,
as the Einstein equations,

so that the latter can do
ALL that the Newtonian equations do,
and FURTHERMORE,
the ADDITIONAL term in (84)
accounts for the "unusual" path

of the planet Mercury,
which the Newtonian equation (85)
did not account for at all.

But we are anticipating the story!

Let us now express Newton's Law in

a form which will show the analogy clearly.

XXVI. COMPARISON OF EINSTEIN'S LAW
OF GRAVITATION WITH NEWTON'S.

Everyone knows that,

according to Newton,*
two bodies attract each other

with a force which is proportional

to the product of their masses,

and inversely proportional to the

square of the distance between them,
thus:

*See the chapter on the

"Theory of Attractive Forces*' in

Ziwet and Field's

Introduction to Analytical Mechanics,
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In this formula

we regard the two bodies,

of masses mi and m >

,

as each concentrated at a single point
*

(its "center of gravity
11

),

and r is then precisely

the distance between these two points.

Mow we may consider that mi

is surrounded by a "gravitational field*
5

in which the gravitational force at A
(see the diagram on page 221)
is given by the above equation.

If we divide both sides by m%

we get

_F_ __ fc/m
1 ~

o~~

ni2 r"

And, according to Newton,

= a , the acceleration with which
/3l2

m> would move due to

the force F acting on it.

We may therefore write

(58) a =

where the constant C now includes

since we are speaking of

the gravitational field around mi .

*Thus it is a fact that

to support a body
it is not necessary to

hold it up all over,

but one needs only support it

right under its center of gravity,

as if its entire mass

were concentrated at that point.
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Now, acceleration is a vector quantity/*

and it may be split up into components:!

Thus take the origin to be at mi ,

and the mass 012 at A i

then OA =
r;

and let AB represent the acceleration at A

(since m2 is being pulled toward mi)

in both magnitude and direction.

Now if X is the x-component of a
,

it is obvious that

Therefore

X
a

x

r'

Or, better,

*See page 127.

fSee page 129.
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to show that the direction of X is to the left.

Substituting in this equation

the value of a from (58)

we get:

y - ^*
A - -

7
-

And, similarly,

y = --
3

-
and, in 3-dimensional space,

we would have also Z = --p

By differentiation, we get:

dx r
6

But, since r
2 = x

2 + y
2 + z

2

(as is obvious from the diagram

on page 131 , if AB =
r),

i
dr x

then = - '

dx r

Substituting this in the above equation,

it becomes

dx r
6

And, similarly,

From these we get:

(59) 3X,ay,az_
[- TV"

ox ay az
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This equation may be written:

(60) dV , ^ , *

ax
2 "*"

a/
2 "*"

dz
2

where is a (unction such that

and is called the

"gravitational potential
1

*/

*

obviously (60) is merely another way
of expressing the field equation (59)

obtained from

Newton's Law of Gravitation.

This form of the law, namely (60),

is generally 'known as

the Laplace equation

and is more briefly denoted by

v 2

^ -

where the symbol V 2

merely denotesf

that

the second partial derivatives

with respect to x , y , and z ,

respectively,

are to be taken and added together,

as shown in (60).

We see from (60), then,

that the gravitational field equation

obtained from

Newton's Law of Gravitation

is an equation containing

the second partial derivatives

of the gravitational potential.

*
See footnote on page 21 9.

fThe symbol V is read "nabla",
and V 2

is read *'nabla square".
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Whereas (56) is

a set of equations

which also contain

nothing higher than

the second partial derivatives

of the g's,

which,

by the Principle of Equivalence,

replace the notion of

a gravitational potential

derived from the idea of

a "force
11

of gravity,

by the idea of

the characteristic property of

the SPACE in question (see Ch. XII).

It is therefore reasonable

to accept (56) as the

gravitational field equations

which follow from the idea of

the Principle of Equivalence.

HOW REASONABLE it is

will be evident

when we test it by
EXPERIMENT!

It has been said (on page 21 5)

that each G consists of four B'SO

Hence,
if the B's are all zero,

then the G's will all be zero;

but the converse

is obviously NOT true:

Namely,
even if the G's are all zero,

it does not necessarily follow

that the B's are zero.
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But we know that,

to have the fi's all zero

implies that

the space is Euclidean (see p. 213).

Thus,

if the condition for Euclidean space
is fulfilled,

namely,
Ba =
OffTp

~ V /

then G<rT
=

automatically follows/

thus

is true in the special case of

Euclidean space.

But, more than this,

since

does NOT NECESSARILY imply
that the fi's are zero,

hence

can be true

EVEN IF THE SPACE IS

NOT EUCLIDEAN,
namely,
in the space around a body which

creates a gravitational field.

Now all this sounds very reasonable,

but still one naturally asks:

"How can this new
Law of Gravitation

be tested EXPERIMENTALLY?"
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Einstein suggested several ways
in which it might be tested.

and,

as every child now knows/
when the experiments were

actually carried out,

his predictions were all fulfilled,

and caused a great stir

not only in the scientific world,
but penetrated even into

the daily news

the world over.

But doubtless the reader

would like to know
the details of these experiments/

and just how the above-mentioned

Law of Gravitation

is applied to them.

Thai is what we shall show next.

XXVII. HOW CAN THE EINSTEIN LAW OF
GRAVITATION BE TESTED?

We have seen that

G,r
=

represents Einstein's new
Law of Gravitation/

and consists of 6 equations

containing partial derivatives of

the little g's.*

*See pages 21 5 to 21 7.
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In order to test this law

we must obviously substitute in it

the values of the g's which

actually apply in our ohysical world;

in other words,

we must know first

what is the expression for d*

which applies to our world

(see Chapter XIII).

Now, if we use

the customary polar coordinates,

we know that

in two-dimensional EUCLIDEAN space

we have

c/s
2 =

c/r
2 + rW.*

Similarly,

for three-dimensional

EUCLIDEAN space

we have the well-known:

c/s
2 =

c/r
2 + rW + r

2

sinW</>
2

The reader can easily derive this from

c/s
2 -

c/x? + Jxl + Jx] (on pagc 189),

by changing to polar coordinates

with the aid of the diagram
on page 230.

*See page 123
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where

xi
= x = 01 = OMcos <t>

= r cos / POM cos </>

= r sin ^ cos <

X2
=

y
= LM = OM sin <

= r sin sin

xs = z = PM = r cos 0.

And,
for 4-dimensional space-time
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we have

fc/s
2 = - Jr

2 - rW -
fWe/fl-cfy

2 +
(61 a) or

[c/s

2 = -
c/x?

- xl^ -
x?sinVc/xi -f c/xi

(where xi
=

r, x2
=

9, x3
= 0, x4

=
t 7

and c is taken equal to 1),

as we can readily see:

Note that the general form for

four-dimensional space

in Cartesian coordinates,

analogous to the 3-dimensional one on p. 189,

c/s
2 = Jx

2 + dy
2 + </z

2 + c/r
2
.

But
7 on page 67

we showed that

in order to get

the square of an "interval" in

space-time

in this form/

with all four plus signs,

we had to take r NOT equal to

the time, t,

BUT to take T = - ict* where

i
=

c = the velocity of light;

from which

c/r
2 = - cW,

and the above expression becomes:

*As a matter of fact,

in "Special Relativity,
11

we took r = it,

but that was because

we also took c = 1/

otherwise, we must take r = ict.
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And, furthermore,

since in actual fact,

c
2
c/t

2
is always found to be

Sreater than (</x
2 + c/y

2 + c/z
2

),

therefore,

to make c/s come out reel instead of imaginary,

it is more reasonable to write

c/s
2 = -c/x

2

-Jy
2

-c/z
2 +cW,

which in polar coordinates,

becomes (61 a).

The reader must clearly realize that

this formula still applies to

EUCLIDEAN space-time,

which is involved in

the SPECIAL theory of Relativity*

where we considered only

observers moving with

UNIFORM velocity relatively to each other.

But now,
in the GENERAL theory (page 96)

where we are considering

accelerated motion (page 102),

and therefore have a

NON-EUCLIDEAN space-time

(see Chapter XII),

what expression for c/s
2

shall we use?

In the first place

it is reasonable to assume that

(61 b) Js
2 = -

e* </x?
-

e* (xldxl +
+ e'c/x

(where Xi , X2 / Xa / X4 represent

*See Part I of this book.
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the polar coordinates r, 0, $, and t,

respectively,

and A , IJL , and v are (unctions of xi only),

BECAUSE:

(A) we do not include product terms

of the form cfxi cfa ,

or, more generally,

of the form dx
ff c/xr where cr ^ r ,

(which ARE included in (42), p. 187)
since

from astronomical evidence

it seems that

our universe is

(a) ISOTROPIC and

(b) HOMOGENEOUS:
That is,

the distribution of matter

(the nebulae)

is the SAME
(a) IN ALL DIRECTIONS and

(b) FROM WHICHEVER POINT WE LOOK.

Now,
how does the omission of terms like

dxff JxT where <r ^ r

represent this mathematically?

Well, obviously,

a term like c/rc/0

(or C/0-C/0 or c/rc/(/>)

would be different

for 6 (or </> or r) positive or negative,

and, consequently,

the expression for c/s
2

would be different if we turn

in opposite directions
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which would contradict the

experimental evidence that

the universe is ISOTROPIC
And of course the use of

the same expression for c/s
2

from ANY point

reflects the idea of HOMOGENEITY.
And so we see that it is reasonable

to have in (61 b)

only terms involving c[0
2

, c[</>

2

, c/r
2

,

in which it makes no difference

whether we substitute +c/0 or c/0, etc.

Similarly,

since in getting a measure for c/s
2

/

we are considering

a STATIC condition,

and not one which is changing

from moment to moment,
we must therefore not include

terms which will have different values

for +dtand -c/f/

in other words,

we must not include

product terms like c/rc/t, etc,

In short

\we must not have any terms involving

cfx^-c/Xr where or ^T,

but only terms involving

dx
ff -dxr where (7 = T.

(B) The factors e
x

, e
M
, e", are inserted

in the coefficients
*

to allow for the fact

*Cf.(61a)and(61b).
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that our space is now
NON-EUCLIDEAN.
Hence they are so chosen as to

allow freedom to adjust them

to the actual physical world

/since they are variables),

jnd yet

iheir FORM is such that

it will be easy to manipulate them

in making the necessary adjustment-
as we shall see.*

Now,
(61 b) can be somewhat simplified

by replacing

e*x? by (x()
2

,

and taking x( as a new coordinate,

thus getting rid of e" entirely/

and we may even drop the prime,

since any change in c/xi which arises

from the above substitution

can be taken care of

by taking X correspondingly different.

Thus (61 b) becomes, more simply,

(62) c/s
2 = -

e\/x?
-

xldxl
- xrsinWx

2
. + e'-c/x4

2

And we now have to find

the values of the coefficients

e
x
and e"

in terms of xi.j

^Further justification for (61 b)

may be found in

R. C. Tolman's

Relativity Thermodynamics & Cosmology,
p. 239 ff.

ISee page 934.
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We warn the reader that this is a

COLOSSAL UNDERTAKING,
but, in spite of this bad news,
we hasten to console him by
telling him that

many terms will reduce to zero,

and the whole complicated structure

will melt down to almost nothing;

we can then apply the result

to the physical data

with the greatest ease.

To any reader who "can't take it
1
'

we suggest that

he omit the next chapter

and merely use the result

to follow

the experimental tests of the

Einstein Law of Gravitation

given from page 255 on.

BUT HE WILL MISS A LOT OF FUN!

XXVIII. SURMOUNTING THE DIFFICULTIES.

So far, then,

we have the following values:

SLI
= *

x
/ ff22

= -
x? , g33

= -
x?sin

2x2 , g44
= e*

and gar = when cr ^ r. (see (62) on p. 236.)

Furthermore,

the determinant g (see page 194)
is simply equal to

the product of the four elements in

its principal diagonal,
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since ail the other elements are zero:

Hence

Also7 in this case,

and

g*
T = when a ^ r. f

We shall need these relationships

in determining e* and e in (62).

Now we shall see

how the big G's will help us to

Find the little g's

and how the little g's will help us

to reduce the number of big G's 10

ONLY THREE!

First let us show that

the set of quantities

is SYMMETRIC,}:
and therefore

*See the chapter on determinants

in any college algebra,

to Find out how to evaluate

a determinant of the fourth order.

tSee the definition of g
M" on page 196.

{Seepage 193.
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Gar
= reduces to TEN equations

*

instead of sixteen/

as v and r each take on

their values 1 ,2/3,4.
To show this,

we must remember that

GffT really represents (57) on p. 216;
and let us examine {act, a}
which occurs in (57):

By definition (page 196),

But,

remembering that

the presence of a and c TWICE
in EACH term

(after multiplying out)

implies that we must SUM on a and e

the reader will easily see that

many of the terms will cancel out

and that we shall qet

Furthermore,

by the definition of g"
v
on page 196,

the reader may also verify the fact that

i dg = 1 dg
2ff

where g is the determinant of p. 239.

And, from elementary calculus,

*See pase 193.

240



/} =
:->- log v-gr.

Similarly,

Substituting these values in (57),

we get:

<\

(63) GffT
=

{era, e} {er, a}
-

jar, aj +

We can now easily see

that (63) represents

10 equations and not sixteen/

(or the following reasons:

In the first place/

{er, a]
=

{re, a} (see pp. 204, 205).

Hence,

by interchanging a and r ,

the first term of (63) remains unchanged,
its two factors merely change places

*Notc that _
we might also have obtained V + g,

but since g is always negative

(we shall show on p. 252 that X = -y,
and therefore g on p. 239 becomes xi

4
-sin

2

X2)

it is more reasonable to select v g f which

will make the Christoffel symbols,
and hence also the terms in

the new Law of Gravitation,

REAL rather than imaginary.

241



(since and a are mere dummies,
as explained on page 204).

And,
the second, third and fourth terms of (63)
are also unchanged by
the interchange of a and r.

in other words,

Thus, if we arrange

the 16 quantities in GJT

in a square array:

Gn Gi2 Gis G
vJ21 tf22 VJ23 \3

Gsi Gs2 633 G
G41 642 Gl3 6

We have just shown that

this is a SYMMETRIC matrix.*

Hence (63) reduces to 10 equations

instead of 1 6
,

as we said before.

We shall not burden the reader

with the details of

how (63) is further reduced

to only SIX equations.!

But perhaps the reader is thinking

that "only six" equations

are still no great consolation,

particularly if he realizes

*See page 239.

flf he is interested,

he may look this up on page 115 of
M
The Mathematical Theory of Relativity/

1

by A. S. Eddington,
the 1930 edition.
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how long each of these equations is !

But does he realize this?

he would do well to take

particular values of cr and r ,

say <r = 1 , and r = 1 ,

in order to see just what

ONE of the equations in (63)
is really like!

(don't forget to sum on the dummies I)

Is the reader wondering

just what we are trying to do to him?

Is this a subtle mental torture

by which we

alternately frighten and console him?

The fact is that

we do want to frighten him sufficiently

to make him realize

the colossal amount of computation
that is involved here,

and yet to keep up his courage too

by the knowledge that

it does eventually boil down
to a really simple form.

He might not appreciate

the final simple form

if he did not know
the labor that produced it.

With this apology,
we shall now proceed to indicate

how the further simplification

takes place.

In each Christoffel symbol in (63),

we must substitute specific values

for the Greek letters.

It is obvious then
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that there will be four possible types:

(a) those in which the values of

all three Greek letters are alike:

Thus: ffo- g a}

0-<r , r

or , r
(b) those of the form

(c) those of the form

and

(d) those of the form {err , p}.

Note that it is unnecessary to consider

the form {rer, r}

since this is the same as (or, r} (see p. 204).

Now, by definition (page 196),

and, as usual,

we must sum on a.

But since the only g's which are not zero

are those in which

the irrdices are alike (see p. 237)

and, in that case,

flT*=1/ff~ (P- 239).

Hence

f
_

}
_ jL( dS 4-

d9~ d9~ \
(jcr, a

} ^'l v~ -r ~^-
--- -

I

2g(TAdx<y 5xff 3x,/
and therefore

which, by elementary calculus, gives

(a) {<r<r,<r}
=

^ ^ log gro.
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Similarly,

*"-' =
Mi!*-" + 1- -H-2 Vox, dx, dxa /

Here the only values of a that

will keep the outside factor g
ra

from being zero

are those for which a = T ,

and since r ^ a

(for otherwise we should have case (a) )

we get

or

/L\
(b)

Likewise

(c) {CTT.T}
=

g ^ log grr

and

(d) {<rr /P }=0.

Let us now evaluate these various forms

for specific values:

Thus, take, in case (a), cr = 1 :

1 r)

Then {11/1} =
g ^7

lo33n

Butgn= -cx

(Seep. 239).

hence {11 f i}=l.|og(-O

which, by elementary calculus, gives
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L V 4where A represents - or /

6x1 dr

since xi
= r (see page 233),

Similarly,

in, i4 if *-J
But, since

in taking a PARTIAL derivative

with respect to one variable,

all the other variables are held constant,

hence

and therefore

(22,2} =0.

And, likewise,

{33 ,3) = {44,41=0.

Now, for case (b),

take first (r = 1
,
r = 2 /

then

{11 , 2}
= - ^ gn

= - ~ ~-
x2 2flL>2 3x2

But, since X is a function of x\ only/
and is therefore held constant

while the partial derivative

with respect to x> is taken,

hence {11,2} =0,
and so on.

Let us see how many specific values

we shall have in all.

Obviously (a) has 4 specific cases,

*Se page 234.
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namely, <r = 1 ,2,3,4,
which have already been evaluated above.

(b) will have 12 specific cases,

since for each value of a = 1
,
2

, 3 , 4 ,

r can have 3 of its possible 4 values

(for here a ^ r) /

(c) will also have 12 cases,

and

(d) will have 4 X 3 X 2 = 24 cases,

but since {or , p}
=

[TV , p\ (see p. 204),

this reduces to 1 2.

Hence in all

there are 40 cases.

The reader should verify the fact that

31 of the 40 reduce to zero,

the 9 remaining ones being

(64)

'Remember that x2
=



Note that / = d~ = % .

oxi or

Now, in (63),
when we give to the various Greek letters

their possible values,
we find that,

since so many of the ChristofFel symbols
are equal to zero,
a great meny (over 200) terms drop out !

And there remain now
only FIVE equations,
each with a much smaller number of terms.

These are written out in full below,
and,
lest the reader think that

this is the promised
final simplified result,

we hasten to add that

the BEST is yet to come!

Just how Gii is obtained,
showing the reader how
to SUM on a. and e

and which terms drop out

(because they contain zero factors}
will be found in V,
on page 31 7.

And,
similarly (or the other G's.

Here we give
the equations which result

after the zero terms have been
eliminated.
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Gu= 11,1} {11,1}+
13, 3} {31,3} +

12, 2} {21, 2}

14,4)141,4}

Similarly,

= 0.

,3] (83,3)

= 0.

= 2{33 / 1}{13,3} + 2{33,2}{23,3}

-ST {33,11-ir 133, 2}

,

= 0.

,1} {14,41-(44,1}

= 0.

/

= 0.
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If we now substitute

in these equations

the values given in (64),

we get

= v
" + "" - xv - -424

= 0*

Similarly

G33
= sin

2
0-e-

x
l + r (/

-
X')

-
sin

= 0.

2

= 0.

\" = d X

and v" =
j
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and 612 becomes:

-
cotfl

- -
cotfl =

r r

which is identically zero

and therefore drops out,

thus reducing the number of equations

to FOUR.

Note also that

633 includes 622 ,

so that these two equations

are not independent
hence now the equations are

THREE.

And now, dividing G44 by e*~
x

and adding the result to Gn ,

we get

(65) A' = - /

d\ dv
or T"

= ~
T"

'

or dr

Therefore, by integration,

(66) A = - v + I

where / is a constant of integration.

But, since

at an infinite distance from matter,

our universe would be Euclidean,*

*See page 226.
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and then, (or Cartesian coordinates,

we would have:

that is,

the coefficient of c/x? and of dx\

must be 1 under these conditions/

hence,
if (61 b) is to hold also for

this special case,

as of course it must do,
we should then have A = , v = 0.

In other words,

since,

when v = , X also equals ,

then, from (66), / , too, must be zero.

Hence

(67) \=-v.

Usins (65) and (67),

622 on page 250 becomes

(68) e'(1 +n/) = 1.

If we put 7 = e ,

and differentiate with respect to r ,

we get

dy _ v
dv_ v

^~ e "
or dr

or

Hence (68) becomes

(69) 7 + fy = 1.

*See pages 189 and 231.
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This equation may now be

easily integrated/

obtaining

(70) T = 1
- ~

where 2m is a constant of integration.

The constant m will later be shown

to have an important physical meaning.

Thus we have succeeded in finding

x
ande an e'

*From elementary theory of

differential equations,
we write (69):

or

or

cfT_ = -Jr
1-7 r

'

Having separated the variables,

we can now integrate both sides

thus:

log (1 7)
= -

log r + constant;
or

log r (1 7)
=

constant,

and therefore

r (1 7)
= constant.

We may then write

r (1
-

7)
= 2m ,

from which we get

A 2m
7 = 1 .
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in terms of xi :

e" = 1/e
x =7 = 1- 2m/r = 1

-
2/n/x,

and (62) becomes:

(71 ) ctf = - 7-i</r
2 - rV02 -

r
2
sin

2

c/</

where, as before (p. 233),

r = xi /
= x2 ,

= x3 , t = x4 .

And hence

the new Law of Gravitation,

consisting now of only
the THREE remaining equations:

Gn =
, G33

=
, and G44

=
,

are now fully determined by
the little g s of (71).

We can now proceed
to test this result

to see whether it really applies

to the physical world we live in.

XXIX. "THE PROOF OF THE PUDDING.
11

The first test is naturally

to see what

the new Law of Gravitation

has to say about

the path of a planet.

It was assumed by Newton that

a body "naturally
1 *

moves

along a straight line
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if it is not pulled out of its course

by some force acting on it:

As, for example,
a body moving on

a frictionless Euclidean plane.

Similarly,

according to Einstein

if it moves "freely
11

on

the surface of a SPHERE
it would 30 along the

"nearest thing to a straight line/
1

that is,

along the GEODESIC for this surface,

namely,

along a great circle.

And, for other surfaces,

or spaces of higher dimensions,
it would move along
the corresponding geodesic for

the particular surface or space.

Now our problem is

to find out

what is the geodesic in

our non-Euclidean physical world,

since a planet must move

along such a geodesic.

In order to find

the equation of a geodesic
it is necessary to know

something about the

"Calculus of Variations/
1

so that we cannot go info details here.

But we shall give the reader

a rough idea of the plan,

together with references where
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he may look up this matter further.*

Suppose, For example, that

we have given

two points, A and B , on a

Euclidean plane,-

it is obviously possible to

join them by various paths,

thus:

B

Now,
which of all possible paths

is the geodesic here?

Of course the reader knows the answer:

It is the straight line path.

But how do we set up
the problem mathematically
so that we may solve

similar problems in other cases?

*(1) For fundamental methods see

"Calculus of Variations/' by
G. A. Bliss.

(2) For this specific problem see

"The Mathematical Theory of

Relativity/
1

by A. S. Eddington,

p. 59 of the 1930 edition.

(3) Or see pages 128-1 34 of

"The Absolute Differential Calculus/
1

by T. Levi-Civita.
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Well,
we know from ordinary calculus

that

if a short arc on

any of these paths

is represented by c/s ,

then
f.B

f A
J A

represents the total length of

that entire path.

And this of course applies to

any one of the paths from A to B.

How do we now select from among these

the geodesic?

This problem is similar to

one with which the reader is

undoubtedly familiar,

namely,

if y = f(x),

find the values of y for which

y is an "extremum" or a "stationary.
16

Such values of y are shown in

the diagram on the next page
at a , 6 , and c:
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a

and/ (or all these/ we must have

dy/dx
=

or

(72) <fr=ffo)-c/x
=

where x, is a , 6 , or c.

Similarly/

to go back to our problem on pp. 258 and 259,

the geodesic we are looking for

would make

rB

f
A

JA

a stationary.

This is expressed in

the calculus of variations by

(73) fc/s
-

JA

analogously to (72).

To find the equation of the geodesic/

satisfying (73),

is not as simple as finding
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a maximum or minimum in

ordinary calculus,

and we shall give here

only the result:*

(74) + W .,

Let us consider (74):

In the first place,

for ordinary three-dimensional

Euclidean space
a would have

three possible values: 1,2,3,
since we have here

three coordinates xi, X2, x3/

furthermore,

by choosing Cartesian coordinates,

we would have (see page 1 89):

ffll
==

522
=

ff33
= 1

and

& = for /i ^ v

and therefore

which involves derivatives of the g'sf

would be equal to zero,

so that (74) would become

(75)
~

*For details, look up the references in

the footnote on p. 258.

fSee (46) on p. 196.
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Now, if in (75)

we replace c/s by dt
*

it becomes

(76)
= -0 (*

= 1,2,3)

which is a short way of writing

the three equations:

/77\
(77)

But what is

the PHYSICAL MEANING of (77)?

*lf we consider an observer who
has chosen his coordinates

in such a way that

C/Xl
=

C/X2
= C/X3 = 9

in other words,
an observer who is traveling with

a moving object,

and for whom the object is therefore

standing still with reference to

his ordinary space-coordinates,
so that only time is changing for him,

then, for him (61 a) becomes

c/s
2 = c/x4

2

or c/s
2 = c/t

2

or c/s
=

c/t.

That is to say,

c/s becomes of the nature of "time/"
for this reason

c/s is often called

"the proper time"

since it is a "time"

for the moving object itself.
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Why, everyone knows that,

(or uniform motion,

v=s/t,

where v is the velocity with which

a body moves when

it goes a distance of 5 feet in

t seconds.

If the motion is NOT uniform,

we can, by means of

elementary differential calculus,

express the velocity AT AN INSTANT,
by

v = ds/dt .

Or, if x, /, and z are

the projections of s on the

X, Y, and Z axes, respectively,

and vx , vy , and vz are

the projections of v

on the three axes,

then

_ e/x _ dy __ di~ ~

in the abridged notation,

v,
= ^ ('=1,2, 3)

where we use xi, X2 , Xs

instead of x , y , z ,

and vi , v2 , va instead of vx ,vv ,Vz'

Furthermore,
since acceleration is

the change in velocity per unit of time,
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we have

Jv

or

(78)
a =^ tr-1 2 3)<T 1.2 V* * I

* / */

Thus (77) states that

the components of the acceleration

must be zero,

and hence the acceleration itself

must be zero, thus:

or

From this we set, by integrating,

v = a constant,

or

-r = a constant,

and therefore

by integrating again,

s = at+ b,

which is the equation of

A STRAIGHT LINE.

In other words,
when the equations for a geodesic,

namely, (74),

are applied to the special case of

THREE-DIMENSIONAL EUCLIDEAN SPACE,
they lead to the (act that
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in this special case

THE GEODESIC IS A STRAIGHT LINE!

We hope (he reader is DELIGHTED
and NOT DISAPPOINTED
to get a result which is

so familiar to him;

and we hope it gives him

a friendly feeling of confidence

in (74)!

And of course he must realize

that (74) will work also

for any non-Euclidean space,

since it contains

the little g's

which characterize the space/*

and for any dimensionality,

since cr may be given

any number of values.

In particular,

in our four-dimensional

non-Euclidean world,

(74) represents

the path of an object moving
in the presence of matter

(which merely makes the space

non-Euclidean),

with no external force acting upon the object;

and hence (74) is

THE PATH OF A PLANET
which we are looking for!

*Seep. 190.
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XXX. MORE ABOUT THE PATH OF
A PLANET.

Of course (74) is only
a GENERAL expression,

and does not yet apply to

our particular physical world,
since the Christoffel symbol

involves the g's,

and is therefore not specific until

we substitute the values of the g's

which apply in a specific case

in the physical world.

Now in (64)
we have the values of \a/3 , a}
in terms of X , v , r and 0.

And, by (67), A - - v ,

hence we know {&$ , <?} in terms of

v , r and 6.

Further, since e" = 7 (see page 252)
and 7 is known in terms of r from (70),

we therefore have [ct$ f a} in terms of

r and 0.

The reader must bear in mind

that

whereas (76), in Newtonian physics,

represents only three equations,

on the other hand,

(74) in Einsteinian physics
is an abridged notation for

FOUR equations,
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as <J takes on

its FOUR possible values: 1,2,3,4.
Taking first the value a = 2

,

and, remembering that x2
=

(see page 233),
we have,

(or one of the equations of (74),

the following:

/-rn\ a . f
^
dxa dxa ^

(79) 2 +{^} =
-

And now,
since a and /? each occur

TWICE
in the second term,

we must sum on these as usual,

so that we must consider terms

containing, respectively,

{11,2}, {12,2}, [13,2}, {14,2},

{21,2}, {22,2}, {23,2}, {24, 2}, etc

in which a always equals 2
,

and a and /3 each runs its course

from 1 to 4.

But, from (64), we see that

most of these are zero,

the only ones remaining being

and

{33,2}
= - sin0-co$0.

Also, by page 204,

{21,2} = {12,2}.
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Thus (79) becomes

fftfYk
<PO 1 dr dd ,/</</>Y

(80) + -.._.- tm fl. eoi .. =0.

If we now choose our coordinates

in such a way
that

an object begins moving in the plane

6 = 7T/2 ,

then

-j-
= and cos0 =

di

and hence

If we now substitute all these values in (80),

we see that this equation is satisfied,

and hence =
ir/2 is a solution of the equation,

thus showing that

the path of the planet
is in a plane.

Thus from (80)
we have found out that

a planet,

according to Einstein,

must move in a plane,

just as in Newtonian physics.

Let us now examine (74) further,

and see what

the 3 remaining equations in it

tell us about planetary motion:

263



For <T = 1 ,

(79) becomes

Or

But since we have chosen 6 = 7r/2 ,

then
In

~-r = and sin0 = 1 ,

hence this equation becomes

And similarly,

for a- = 3
,

(79) sives

(82)
as

2
r as as

and for cr = 4 ,

we get

(83) ^ +Ff** o.
or as as
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And now
from (81), (82), (83), and (71),
tosether with (70),
we get*

(84)

c/
2u

, ___ m
W A

5

== n

where c and h are

constants of integration,

and u 1/r.

Thus (84) represents

the path of an object moving freely,

that is,

not constrained by any external force,

and is therefore,
in a sense,

analogous to a straight line in

Newtonian physics.
But it must be remembered
that in Einsteinian physics,

owing to the

Principle of Equivalence (Chapter XI),
an object is

NOT constrained by any external force

even when it is moving in

the presence of matter,

as, for example,
a planet moving
around the sun.

And hence (84)
would represent the path of a planet.

*For details see page 86 in

"The Mathematical Theory of Relativity/' by
A. S. Eddington (the 1930 edition).
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From this point of view

we are not interested in

comparing (84) with

the straight line motion in

Newtonian physics,
as mentioned on page 270,
but rather with

the equations representing

the path of a planet
in Newtonian physics,
in which, of course,
the planet is supposed to move
under the

GRAVITATIONAL FORCE
of the sun.

it has been shown
in Newtonian physics
that a body
moving under a "central force/

1

(like a planet moving
under the influence of the sun)
moves in an ellipse,

with the central force (the sun)

located at one of the foci.*

And the equations of this path are:

m
TO
*

(85)

e/
2
u

, __ m
jLTsi ~r u - TO

*
" *

where r is the distance

from the sun to the planet,

m is the mass of the sun,

*Sec Ziwct and Field: "Mechanics/*
or any other book on mechanics.
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a is the semi-major-axis of the ellipse,

4> is the angle swept out by the planet

in time t.

We notice at once

the remarkable resemblance between

(84) and (85).

They are indeed

IDENTICAL EXCEPT for

the presence of the term 3mu2
,

and of course the use of

</s instead of dt in (84).*

Thus we see that

the Newtonian equations (85)
are really

a first approximation to

the Einstein equations (84);

that is why
they worked so satisfactorily

for so long.

Let us now see

how the situation is affected by
the additional term 3mir.

XXXI. THE PERIHELION OF MERCURY.

Owing to the presence of the term

3mu2

(84) is no longer an ellipse

but a kind of spiral

in which the path

is NOT retraced

each time the planet

*See p. 262.
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makes a complete revolution,

but is shifted as shown

in the following diagram:

in which

the "perihelion/* that is,

the point in the path

nearest the sun, S, at the focus/

is at A the first time around/
at 6 the next time/
at C the next/

and so on.
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In other words,
a planet does not 30
round and round

in the same path,

but there is a slight shift

in the entire path,

each time around.

And the shift of the perihelion
can be calculated

by means of (84).*
This shift can also be
MEASURED experimentally,
and therefore can serve

as a method of

TESTING
the Einstein theory
in actual fact.

Now it is obvious that

when a planetary orbit

is very nearly CIRCULAR
this shift in the perihelion
is not observable,
and this is unfortunately
the situation with

most of the planets.

There is one, however,
in which this shift

IS measurable,

namely,
the planet MERCURY.

Lest the reader think

that the astronomers

*For details see aqain

Eddington's book referred to

in the footnote of page 270.
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can make only
crude measurements,
let us say in their defense,
that the discrepancy
even in the case of Mercury
is an arc of

ONLY ABOUT
43 SECONDS PER CENTURY!

Let us make clear what we mean by
"the discrepancy:

19

when we say that

the Newtonian theory
requires the path of a planet to be
an ellipse,
it must be understood that

this would hold only if

there were a SINGLE planet;
the presence of other planets
causes so-called "perturbations,"
so that

even according to Newton
there would be
some shift in the

perihelion.
But the amount of shift

due to this cause
has long been known to be
531 seconds of arc per century,
whereas observation shows
that the actual shift is

574 seconds,
thus leaving a shift of

43 seconds per century
UNACCOUNTED FOR
in the Newtonian theory.

Think of the DELICACY
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of the measurements

and the patient persistence

over a long period of years

by generations of astronomers

that is represented

by the above figure!

And this figure was known
to astronomers

long before Einstein.

It worried them deeply
since they could not account

for the presence of this shift.

And then

the Einstein theory,

which originated in the attempt

to explain

the Michelson-Morley experiment,*

and NOT AT ALL with the intention

of explaining the shift

in the perihelion of Mercury,
QUITE INCIDENTALLY EXPLAINED
THIS DIFFICULTY ALSO,
for the presence of the term 3mu' in (84)

leads to the additional shift of perihelion

of 42.9" ! |

XXXII. DEFLECTION OF A RAY OF LIGHT.

We saw in the previous chapter

that the experimental evidence

*See Part I.: the Special Theory of Relativity.

fFor the details of the calculation which leads

from (84) to this correction of perihelion shift,

see p. 88 of the 1930 edition of

"The Mathematical Theory of Relativity/
1

by
A. S. Eddington.
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in connection with

the shift of the perihelion of Mercury
was already at hand

when Einstein's theory was proposed,
and immediately served

as a check of the theory.

Let us now consider

further experimental verification

of the theory,
but this time

the evidence did not precede
but was PREDICTED BY
the theory.

This was in connection with

the path of a ray of light

as it passes near a large mass

like the sun.

It will be remembered that

according to the Einstein theory
the presence of matter in space
makes the space non-Euclidean

and that the path of anything moving freely

(whether it be a planet

or a ray of light)

will be along a geodesic
in that space, and therefore

will be affected by the presence
of these obstacles in space.

Whereas,

according to classical physics,

the force of gravitation

could be exerted

only by one mass (say the sun)

upon another mass (say a planet),

but NOT upon a ray of light.
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Here then was

a definite difference in viewpoint
between the two theories,

and the facts should

decide between them.

For this it was necessary

to observe

what happens to a ray of light

coming from a distant star

as it passes near the sun

is it bent toward the sun,

as predicted by Einstein,

or does it continue on

in a straight line,

as required by classical physics?
*

Now it is obviously impossible

to make this observation

under ordinary circumstances,

since we cannot look at a star

whose rays are passing near the sun,

on account of the brightness of the sun itself:

Not only would the star be invisible,

but the glare of the sun

would make it impossible
to look in that direction at all.

And so it was necessary
to wait for a total eclipse,

*lf, however, light were considered

to be a stream of incandescent particles

instead of waves,
the sun WOUL6 have

a gravitational effect upon
a ray of light, even by classical theory,a ray

the AMOUNT of deflection

calculated even on this basis,

DOES NOT AGREE with experiment,
as we shall show later (see p. 287).
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when the sun is up in the sky
but its glare is hidden by the moon,
so that the stars become

distinctly visible during the day.

Therefore, at the next total eclipse

astronomical expeditions were sent out

to those parts of the world

where the eclipse could be

advantageously observed/

and,

since such an eclipse

lasts only a few seconds,

they had to be prepared
to take photographs of the stars

rapidly and clearly,

so that afterwards,

upon developing the plates/

the positions of the stars

could be compared
with their positions in the sky
when the sun is NOT present.
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The following diagram shows

B /A

F

the path of a ray of light, AOE ,

from a star, v4 ,

when the sun is NOT
in that part of the sky.

And, also,

when the sun IS present,
and the ray is deflected

and becomes ACF ,
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so that,

when viewed from F,
the star APPEARS to be at B.

Thus,

if such photographs
could be successfully obtained,
AND IF they showed

that all the stars

in the part of the sky near the sun

were really displaced (as from A to B)

AND IF

the MAGNITUDE of the displacements

agreed with the values

calculated by the theory,

then of course

this would constitute

very strong evidence in favor of

the Einstein theory.

Let us now determine

the magnitude of this displacement

as predicted by the Einstein theory:

We have seen (on page 233)
that

in the "Special Theory of Relativity/
1

which applies in EUCLIDEAN space-time,

c/s
2 - cW -

(c/x
2 + c/y

2 + c/z
2

)/

if we now divide this expression by cfc
2

,

we get

but

Jx c/y </z

"~T i ~~r i ~~r are
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the components of the velocity, v , of

a moving thing (see p. 263),
then obviously the

above quantity in brackets is v
2
,

and the above equation becomes:

= c

Now when
the "moving thing

1 *

happens to be
a light-ray,

then v = c ,

and we get, FOR LIGHT,

c/$ = 0.

But what about our

NON-EUCLIDEAN world,

containing matter?

It will be remembered (see p. 118)
that in studying a

non-Euclidean two-dimensional space

(namely, the surface of a sphere)
in a certain small region,
we were aided by
the Euclidean plane which

practically coincided with

the given surface in

that small region.

Using the same device for

space of higher dimensions,
we can,
in studying a small region of

NON-Euclidean four-dimensional space-time,
such as our world is,

also utilize the

EUCLIDEAN 4-dimensionaI space-time which
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practically coincides with it

in that small region.

And hence

will apply FOR LIGHT even

in our NON-EUCLIDEAN world.

And now,
using this result in (71),

together with the condition (or A

a geodesic, on page 261 ,

we shall obtain

THE PATH OF A RAY OF LIGHT.

XXXIII. DEFLECTION OF A RAY OF
LIGHT (Continued)

In chapters XXIX and XXX we showed that

the condition for a geodesic

given on page 260
led to (74),

which, together with

the little g's of (71)

gave us the path of a planet, (84).

And now,
in order to find

the path of A RAY OF LIGHT,
we must add the further requirement:

c/s = 0,

as we pointed out in Chapter XXXII.

Substituting c/s in

the second equation of (84),
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we get

which changes the

first equation of (84) to

which is the required

PATH OF A RAY OF LIGHT.

And this,

by integration*

gives, in rectangular coordinates,

+ y
2

for the equation of the curve on

page 280.

Now, since a (page 280) is

a very small angle,

the asymptotes of the curve may be

found by taking y very large by

comparison with x ,

and so,

neglecting the x terms on the right

in the above formula,

it becomes

And,

*For details see page 90 of

A. S. Eddinston's
"The Mathematical Theory of Relativity/'

the 1930 edition.
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using the familiar formula for

the angle between two lines

(see any book on Analytics):

__ mi iii2

tan OL
~~~ f

where a is the desired angle,

and mi and m> are

the slopes of the two lines,

we get

4/?m
tana =

4m2 -fl2

from which it is easy to find

4m.

sin a -
R + 4m2/R

And, a being small,

its value in radian measure is

equal to sin a *

so that

we now have

/O/A 4m
(86) a =

R + 4mVR -

Now,
what is the actual value of a
in the case under discussion,

in which

R = the radius of the sun

and

m is its mass?

*For the proof of this see

any book on calculus,

or look up a table of

trigonometric functions.
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Since R = 697,000 kilometers,

and m = 1.47 kilometers f

4m2
may be neglected by

comparison with /?,

so that (86) reduces to the

very simple equation:

4m

from which we easily get

a = 1 .75 seconds.

In other words,
it was predicted by
the Einstein theory

that,

a ray of light passing near the sun

would be bent into a curve (ACF),
as shown in the figure on p. 280,
and that,

consequently
a star at A would

APPEARtobeatB,
a displacement of

an angle of 1.75 seconds!

If the reader will stop a moment
to consider

how small is an angle of

even one DEGREE,
and then consider that

one-sixtieth of that is

an angle of one MINUTE,
and again

one-sixtieth of that is

tSee page 315.
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an angle of one SECOND,
he will realize how small is

a displacement of 1 .75 seconds!

Furthermore,

according to the Newtonian theory,*

the displacement would be

only half of that!

And it is this TINY difference

that must distinguish

between the two theories.

After all the trouble that

the reader has been put to,

to find out the issue,

perhaps he is disappointed to learn

how small is the difference

between the predictions of

Newton and Einstein.

And perhaps he thinks that

a decision based on

so small a difference

can scarcely be relied upon!
But we wish to point out to him,

that,

far from losing his respect and faith

in scientific method,
he should,

ON THE CONTRARY,
be all the more filled with

ADMIRATION AND WONDER
to think that

experimental work in astronomy
IS SO ACCURATE
that

*See the footnote on p. 278.
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these small quantities* are measured

WIFH PERFECT CONFIDENCE,
and that they
DO distinguish

between the two theories and

DO decide in favor of the

Einstein theory,
as is shown by the

following figures:

The British expeditions, in 1919,
to Sobral and Principe,

gave for this displacement:

1.98" 0.1 2"

and

1.61"0.30",

respectively;

values which have since been
confirmed at other eclipses,

as, for example,
the results of Campbell and Trumpler,
who obtained,

using two different cameras,

1.72" 0.11" and 1.82" 0.1 5",

in the 1922 expedition of the

Lick Observatory.

So that by now
all physicists agree that

the conclusions are

beyond question.

*See also the discrepancy in

the shift of the perihelion
of Mercury,
on page 275.
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We cannot refrain,

in closing this chapter,

from reminding the reader that

191 9 was right after World War I,

and that

Einstein was then classified dS

a GERMAN scientist,

and yet,

the British scientists,

without any of the

stupid racial prejudices then

(and alas! still)

rampant in the world,

went to a great deal of trouble

to equip and send out expeditions

to test a theory by
an "enemy.

11

XXXIV. THE THIRD OF THE "CRUCIAL
11

PHENOMENA.

We have already seen that

two of the consequences from

the Einstein theory

were completely verified by
experiment:

(1) One, concerning the shift of

the perihelion of Mercury,
the experimental data for which

was known long before Einstein

BUT NEVER BEFORE EXPLAINED.
And it must be remembered

that the Einstein theory was

289



NOT expressly designed to

explain this shift,

but did it

QUITE INCIDENTALLY!

(2) The other, concerning the bending
of a ray of light as it

passes near the sun.

It was never suspected

before Einstein that

a ray of light when passing

near the sun

would be bent.*

It was for the first time

PREDICTED by this theory,

and, to everyone's surprise,

was actually verified

by experiment,

QUANTITATIVELY as well as

QUALITATIVELY (see Chap. XXXIII).
Now there was still another

consequence of this theory which

could be tested experimentally,

according to Einstein.

In order to appreciate it

we must say something about spectra.

Everyone probably knows that

if you hang a triangular glass prism

in the sunlight,

a band of different colors,

like a rainbow,
will appear on the wall where

the light strikes after it has

come through the prism.

The explanation of this phenomenon

*But, see the footnote on p. 278.

290



is quite simple,

as may be seen from the diagram:

A

When a beam of white light, SD,
strikes the prism ABC,
it does NOT continue in

the SAME direction, D,
but is bent.*

Furthermore,

if it is "composite" light,

like sunlight or any other white light,

which is composed of

light of different colors

(or different wave-lengths),

*This bending of a light ray

is called "refraction,"

and has nothing to do with

the bending discussed in Ch. XXXIII.

The reader may look up "refraction"

in any book on elementary physics.
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each constituent

bends a different amount;
and when these constituents

reach the other side, BC, of the prism,

they are bent again,

as shown in the diagram on p. 291,
so that,

by the time they reach the wall, XY ,

the colors are all separated out,

as shown,
the light of longest wave-length,

namely, red,

being deflected least.

Hence the rainbow-colored spectrum.

Now, obviously,

if the light from 5 is

"monochromatic/
1

that is,

light of a SINGLE wave-length only,
instead of "composite,"
like sunlight,

we have instead of a "rainbow/*
a single bright line on XY ,

having a DEFINITE position,

since the amount of bending,
as we said above,

depends upon the color or wave-length
of the light in question.

Now such monochromatic light

may be obtained from

the incandescent vapor
of a chemical element

thus sodium, when heated,

burns with a light of

a certain definite wave-length,

characteristic of sodium.
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And similarly (or other elements.

This is explained as follows:

The atoms of each element

vibrate with a certain

DEFINITE period of vibration,

characteristic of that substance,

and, in vibrating, cause

a disturbance in the medium around it,

this disturbance being
a light-wave of definite wave-length

corresponding to

the period of vibration,

thus giving rise to

a DEFINITE color

which is visible in

i DEFINITE position in the spectrum.

And so,

if you look at a spectrum

you can tell from the bright lines in it

just what substances

are present at 5.

Now then,

according to Einstein,

since each atom has

a definite period of vibration,

it is a sort of natural clock

and should serve as

a measure for an "interval" c/s.

Thus take c/s to be

the interval between

the beginning and end of one vibration,

and eft the time this takes,

or the "period" of vibration;

then, using space coordinates

such that

dr= S =
d<t>

= 0,
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that is,

the coordinates of an observer

for whom the atom is vibrating at

the origin of his space coordinates

(in other words,

an observer traveling with the atom),

equation (71) becomes

<tf = yd? or c/s= Vydt,

2/n
where 7 = 1

---
(see p. 253).

Now,
if an atom of, say, sodium

is vibrating near the sun,

we should have to substitute

for m and r

the mass and radius of the sun/

and, similarly,

if an atom of the substance is

vibrating near the earth,

m and r would then have to be

the mass and radius of the earth,

and so on:

Thus 7 DEPENDS upon
the location of the atom.

But since ds is

the space-time interval between

the beginning and end of a vibration,

as judged by an observer

traveling with the atom,
c/s is consequently

INDEPENDENT of the location

of the atom/

then, since
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obviously eft would have to be

DEPENDENT UPON THE LOCATION.

Thus,

though sodium from a source

in a laboratory

gives rise to a line in

a definite part of the spectrum,

on the other hand,

sodium on the sun, which,

according to the above reasoning,

would have a

DIFFERENT period of vibration,

and hence would emit light of a

DIFFERENT wave-length,

would then give a bright line in a

DIFFERENT part of the spectrum

from that ordinarily due to sodium.

And now let us see

HOW MUCH of a change in

the period of vibration

is predicted by the Einstein theory

and whether it is borne out

by the facts:

If Jt and dt' represent

the periods of vibration near

the sun and the earth,

respectively,

then

or
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Now Tearth is very nearly 1 ;

hence

cfc 1

& V^un J, 2m
R
.*

<(
_ !l

f_

_ . . m
m*

~ T +
7?

Or, using the values of

m and R given on page 286,
we qetwe get

This result implies that

an atom of a given substance

should have a

slightly LONGER period of vibration

when it is near the sun than

when it is near the earth,

and hence a

slightly LONGER wave-length
and therefore

its lines should be

SHIFTED a little toward the

RED end of the spectrum (see p. 292).

This was a most unexpected result!

and since the amount of shift

was so slight,

^Neglecting higher powers of A

since p is very small

(see the values of m and R on p. 286).
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it made the experimental verification

very difficult.

For several years after

Einstein announced this result (1917)

experimental observations on this point
were doubtful,
and this caused many physicists

to doubt the validity of the

Einstein theory,
in spite of its other triumphs,
which we have already discussed.

BUT FINALLY, in 1927,
the very careful measurements

made by Evershed

definitely settled the issue

IN FAVOR OF THE EINSTEIN THEORY.

Furthermore,
similar experiments were performed

by W. S. Adams
on the star known as

the companion to Sirius,

which has a relatively

LARGE MASS and SMALL RADIUS,
thus making the ratio

S7- 1 +-
eft r

much larger than

in the case of the sun (see p. 296)
and therefore easier to observe

experimentally.
Here too

the verdict was definitely

IN FAVOR OF THE EINSTEIN THEORY!

So that to-day
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all physicists are agreed
that the Einstein theory

marks a definite step forward

for:

(1) IT EXPLAINED
PREVIOUSLY KNOWN FACTS
MORE ADEQUATELY THAN
PREVIOUS THEORIES DID (seep. 103).

(2) IT EXPLAINED FACTS
NOT EXPLAINED AT ALL
BY PREVIOUS THEORIES
such as:

(a) The Michelson-Morley experiment,*

(b) the shift in the perihelion

of Mercury (see Ch. XXXI),

(c) the increase in mass of

an electron when in motion. f

(3) IT PREDICTED FACTS
NOT PREVIOUSLY KNOWN AT ALL-
(a) The bending of a light ray

when passing near the sun (see Ch. XXXII).

(b) The shift of lines in

the spectrum (see p. 296).

(c) The identity of mass and energy,

which/ in turn,

led to the ATOMIC BOMB!
(Seep. 318 ff.)

And all this

by using

VERY FEW
and

*See Part I, "The Special Theory.
11

tSee Chap. VIII.
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VERY REASONABLE
hypotheses (see p. 97),
not in the slightest degree
"far-fetched" or "forced."

And what greater service

can any physical theory
render

than this !

We trust that the reader

has been led by this little book
to have a sufficient insight

into the issues involved,
and to appreciate
the great breadth and
fundamental importance of

THE EINSTEIN THEORY OF RELATIVITY!

XXXV. SUMMARY.

I. In the SPECIAL Relativity Theory
it was shown that

two different observers,

may, under certain

SPECIAL conditions,

study the universe from their

different points of view

and yet obtain

the SAME LAWS and the SAME FACTS.

II. In the GENERAL Theory,
this democratic result was found to

hold also for

ANY two observers,

without regard to the

special conditions mentioned in I.
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III. To accomplish this

Einstein introduced the

PRINCIPLE OF EQUIVALENCE,
by which

the idea of a FORCE OF GRAVITY
was replaced by
the idea of the

CURVATURE OF A SPACE.

IV. The study of this curvature

required the machinery of

the TENSOR CALCULUS,
by means of which

the CURVATURE TENSOR was derived.

V. This led immediately to

the NEW LAW OF GRAVITATION
which was tested by
the THREE CRUCIAL PHENOMENA
and found to work beautifully!

VI. And READ AGAIN
pages 298 and 299 1
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THE MORAL

Since man has been

so successful in science,

can we not learn from

THE SCIENTIFIC WAY OF THINKING,
what the human mind is capable of,

and HOW it achieves SUCCESS:

There is NOTHING ABSOLUTE in science.

Absolute space and absolute time

have been shown to be myths.

We must replace these old ideas

by more human,
OBSERVATIONAL concepts.
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II. But what we observe is

profoundly influenced by
the state of the observer,

and therefore

various observers get

widely different results

even in their measurements of

time and length!

Ill However,
in spite of these differences,

various observers may still

study the universe

WITH EQUAL RIGHT
AND EQUAL SUCCESS,
and CAN AGREE on

what are to be called

the LAWS of the universe.
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IV. To accomplish this we need

MORE MATHEMATICS
THAN EVER BEFORE,
MODERN, STREAMLINED, POWERFUL
MATHEMATICS.
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V. Thus a combination of

PRACTICAL REALISM
(OBSERVATIONALISM)
and

IDEALISM (MATHEMATICS),
TOGETHER
have achieved SUCCESS.

VI. And
knowing that the laws are

MAN-MADE,
we know that

they are subject to change
and we are thus

PREPARED FOR CHANGE,
But these changes in science

are NOT made WANTONLY,
BUT CAREFULLY AND CAUTIOUSLY
by the

BEST MINDS and HONEST HEARTS,
and not by any casual child who
thinks that

the world may be changed as easily

as rolling off a log.
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WOULD YOU LIKE TO KNOW?

HOW THE EQUATIONS (20) ON PAGE 61

ARE DERIVED:

x = a cosfl = (x'
-

fc) cos0
=

(x'
-

y' tanfl) cos0

.'. x = x' cos? y' sinf?.

\f

y^c-fc/^ ^ + a sinfl
COSC^

y
f

=
cosO

+ (*
~

}

/= -- i
/ a '+ x smO - y

co$0

/. / = x' sinfl + / cos0.



HOW THE FAMOUS MAXWELL
EQUATIONS LOOK:

X f Y f Z represent the components
of the ELECTRIC FORCE
at a point x , y , z in

an electromagnetic field/

at a given instant, t,

L , M , N represent the components

of the MAGNETIC FORCE
at the same point and

at the same instant.
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III. HOW TO JUDGE
WHETHER A SET OF QUANTITIES
IS A TENSOR 9R NOT:
We may apply various criteria:

(1) See if it satisfies any of

the definitions of tensors of

various character and rank

given in (1 6), (1 7), (1 8), etc.,

or in (30), (31), etc.

or in (32), etc.

Or

(2) See if it is the

sum, difference, or product
of two tensors.

Or

(3) See if it satisfies

the following theorem:

A QUANTITY WHICH
ON INNER MULTIPLICATION
BY ANY COVARIANT VECTOR
(OR ANY CONTRAVARIANT VECTOR)
ALWAYS GIVES A TENSOR,
IS ITSELF A TENSOR.
This theorem may be

quite easily proved
as follows:

Given that XAa is known to be

a contravariant vector,

for any choice of

the covariant vector Aa /

To prove that X is a tensor:

Now since XAa is

a contravariant vector,

it must obey (16), thus:

(X Aft)
= (XAa);
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but A's =
X
y

hence, by substitution,

yr Af _ dx,; dXfl AryA /A/9 \ '

^ /i/sA
dxy oxa

or

j/ /y/
3x5 3x^ y\ _ ^

S\0 VA TV~~ "^ A I v,
6xT 3xa

But /A^ does not have to be zero,

hence

XI _ C'X^ C/X0 y~ '

^ A
axT oxa

which satisfies (1 7),

thus proving that

X must be a

CONTRAVARIANT TENSOR
OF RANK TWO.

And similarly for other cases:

Thus if XA =
B,y

then X must be a tensor of

the form C^ /

and if XA* = Crp /

then X must be a tensor of

the form B
a
arp ,

and so on.

Now let us show that

the set of little g's in (42)
is a tensor:
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Knowing that c/s
2

is a

SCALAR -
i.e. A TENSOR OF RANK ZERO
(see p. 128),
then

the right-hand member of (42) is also

A TENSOR OF RANK ZERO/
but c/x, is, by (1 5) on p. 1 52,

A CONTRAVARIANT VECTOR,
hence,

by the theorem on page 312,

gMI , dx^ must be

A COVARIANT TENSOR
OF RANK ONE.
And, again,

since C/XM is

a contravariant vector,

then,

by the same theorem,

g^ must be

A COVARIANT TENSOR
OF RANK TWO,
and therefore

it is appropriate to write it

with TWO SUBscripts

as we have been doing
in anticipation of

this proof.
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IV. WHY MASS CAN BE EXPRESSED IN
KILOMETERS:

The reader may be surprised to

see the mass expressed in kilometers!

But it may seem more reasonable"

from the following considerations:

In order to decide in what units

a quantity is expressed
we must consider its "dimensionality

14

in terms of the fundamental units of

Mass, Length, and Time:

Thus the "dimensionality" of

a velocity is L/T;
the "dimensionality" of

an acceleration is i/7
2

;

and so on.

Now, in Newtonian physics,

the force of attraction which

the sun exerts upon the earth

being F = fcmm'/f
2

(see p. 219),
where m is the mass of the sun,

m the mass of the earth,

and r the distance between them;
and also, F m j,

j being the centripetal acceleration

of the earth toward the sun

(another one of the fundamental

laws of Newtonian mechanics);

hence

fcmm' _ ,.

2
m j

2-
or m = v r i.

Therefore,
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the "dimensionality" of m is

,,
L = V

L
'r p

since a constant, like V,

has no "dimensionality/*

And now
if we take as a unit of time/

the time it takes light to go
a distance of one kilometer/

and call this unit

a
M
kilometer

n
of time

(thus 300/000 kilometers would

equal one second/ since

light goes 300/000 kilometers in

one second)/

then we may express

the "dimensionality" of m thus:

L
3

/T
2
or simply /

thus we may express

mass also in kilometers.

So far as considerations of

"dimensionality" are concerned/

the same result holds true also for

Einsteinian physics.

If the reader has never before

encountered this idea of

"dimensionality"

(which, by the way, is a very

important tool in scientific thinking),

he will enjoy reading a paper on

"Dimensional Analysis" by
Dr. A. N. Lowan,

published by
the Galois Institute of Mathematics

of Long Island University in

Brooklyn, N. Y.
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V, HOW Gu LOOKS IN FULL:

13,3)131,31
r +

If this mathematics BORES you
BE SURE TO READ
PAGES 318-323!
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THE ATOMIC BOMB
We saw on p. 78 that the energy
which a body has when at rest, is:

fo = me

Thus, the Theory of Relativity

tells us not only that

mass and energy are one and the same
but that, even though they are the same

still/ what we consider to be

even a SMALL MASS is

ENORMOUS when translated into ENERGY terms,
so that a mass as tiny as an atom

has a tremendous amount of energy
the multiplying factor being c

2

,

the square of the velocity of light!

How to get at this great storehouse of

energy locked up in atoms

and use it to heat our homes,
to drive our cars and planes,

and so on and so on?

Now, so long as m is constant,

as for elastic collision,

fo will also remain unchanged.

But, for inelastic collision,

m , and therefore Fo , will change;
and this is the situation when
AN ATOM IS SPLIT UP, for then

the sum of the masses of the parts

is LESS than the mass of the original atom.

Thus, if one could split atoms,
the resulting loss of mass would

release a tremendous amount of energy!
And so various methods were devised

by scientists like Meitner, Frisch,

Fermi, and others
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to "bombard
11

atoms.

It was Finally shown that when

Uranium atoms were bombarded with neutrons*

these atoms split up ("fission")

into two nearly equal parts,

whose combined mass is less than

the mass of the uranium atom itself,

this loss in mass being equivalent,

as the Einstein formula shows,

to a tremendous amount of energy,

thus released by the fission!

When Einstein warned President Roosevelt

that such experiments might lead to

the acquisition of terrific new sources of power

by the ENEMY of the human race,

the President naturally saw the importance

of having these experiments conducted

where there was some hope that

they would be used to END the war

and to PREVENT future wars

instead of by those who set out to

take over the earth for themselves alone!

Thus the ATOMIC BOMB
was born in the U.S.A.

And now that a practical method

of releasing this energy

has been developed,

the MORAL is obvious:

We MUST realize that it has become

too dangerous to fool around with

scientific GADGETS,
WITHOUT UNDERSTANDING
the MORALITY which is in

*
Read about these amazing experiments in

"Why Smash Atoms?" by A. K. Solomon,

Harvard University Press, 1940.
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Science, Art, Mathematics

SAM, for short.

These are NOT mere

idle words.

We must ROOT OUT the

FALSE AND DANGEROUS DOCTRINE
that SAM is amoral

and is indifferent to

Good and Evil.

We must

SERIOUSLY EXAMINE SAM
FROM THIS VIEWPOINT.*

Religion has offered us

a Morality,

but many
u
wise guys

lc

have

refused to take it

seriously,

and have distorted its

meaning!

And now, we are getting

ANOTHER CHANCE-
SAM is now also

warning us that

we MUST
UNDERSTAND the MORALITY which

HE is now offering us.

And he will not stand for

our failure to accept it,

by regarding him merely as

a source of gadgets!

Even using the atomic energy
for "peaceful" pursuits,

*See our book

"The Education of I C Mits"

for a further discussion

of this vital point.
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like heating the furnaces in

our homes/
IS NOT ENOUGH,
and will NOT satisfy SAM.
For he is desperately trying

to prevent us from

merely picking his pockets

to get at the gadgets in them/
and is begging us to see

the Good/ the True, and

the Beautiful

which are in his mind and heart,

And, moreover,

he is giving

new and clear meanings to

these fine old ideas 1

which even the sceptical

"wise guys
11

will find irresistible.

So

DO NOT BE AN
ANTI-SAMITE,
or SAM will get you
with his

atomic bombs,
his cyclotrons/

and all his new

whatnots.

He is so anxious to HELP us

if only we would listen

BEFORE IT IS TOO LATE!
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