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1 Vectors

1.1 Review of Vectors

1.1.1 Physics Terminology

Scalar : quantity specified by a single number;

Vector : quantity specified by a number (magnitude) and a direction;

e.g. speed is a scalar, velocity is a vector

1.1.2 Geometrical Approach

A vector is represented by a ‘directed line segment’ with a length and direction proportional
to the magnitude and direction of the vector (in appropriate units). A vector can be con-
sidered as a class of equivalent directed line segments e.g.

Q

_ _

P R

S

A A

Both displacements from P to Q and from R to S are represented
by the same vector. Also, different quantities can be represented
by the same vector e.g. a displacement of A cm, or a velocity of A
ms−1 or . . . , where A is the magnitude or length of vector A

Notation: Textbooks often denote vectors by boldface: A but here we use underline: A
Denote a vector by A and its magnitude by |A| or A. Always underline a vector to distinguish

it from its magnitude . A unit vector is often denoted by a hat Â = A /A and represents a
direction.

Addition of vectors—parallelogram law

i.e.

A_

_

_

B

_A+B A +B = B + A (commutative) ;

(A +B) + C = A+ (B + C) (associative) .

Multiplication by scalars,

A vector may be multiplied by a scalar to give a new vector e.g.

(for (forα < 0)α > 0)A_ Aα _

6



Also

|αA| = |α||A|
α(A+B) = αA+ αB (distributive)

α(βA) = (αβ)A (associative)

(α + β)A = αA+ βA .

1.1.3 Scalar or dot product

The scalar product (also known as the dot product) between two vectors is defined as

(A ·B)
def
= AB cos θ, where θ is the angle between A and B

θ

.

_B

A_

(A ·B) is a scalar — i.e. a single number.

Notes on scalar product

(i) A ·B = B ·A ; A · (B + C) = A ·B + A · C

(ii) n̂ · A = the scalar projection of A onto n̂, where n̂ is a unit vector

(iii) (n̂ · A) n̂ = the vector projection of A onto n̂

(iv) A vector may be resolved with respect to some direction n̂ into a parallel component
A‖ = (n̂ · A)n̂ and a perpendicular component A⊥ = A − A‖. You should check that

A⊥ · n̂ = 0

(v) A · A = |A|2 which defines the magnitude of a vector. For a unit vector Â · Â = 1

1.1.4 The vector or ‘cross’ product

(A× B)
def
= AB sin θ n̂ , where n̂ in the ‘right-hand screw direction’

i.e. n̂ is a unit vector normal to the plane of A and B, in the direction of a right-handed
screw for rotation of A to B (through < π radians).
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X_ _(A B)

_B

. _A

_n θ

v

(A× B) is a vector — i.e. it has a direction and a length.

[It is also called the cross or wedge product — and in the latter case denoted by A ∧ B.]

Notes on vector product

(i) A× B = −B × A

(ii) A× B = 0 if A,B are parallel

(iii) A× (B + C) = A× B + A× C

(iv) A× (αB) = αA× B

1.1.5 The Scalar Triple Product

The scalar triple product is defined as follows

(A,B,C)
def
= A · (B × C)

Notes

(i) If A, B and C are three concurrent edges of a parallelepiped, the volume is (A,B,C).

θ

a

c

b

dφ

.

C_

B_O

_ _(B C)X

n

v

_
_A

To see this, note that:

area of the base = area of parallelogram Obdc

= B C sin θ = |B × C|
height = A cosφ = n̂ · A

volume = area of base × height

= B C sin θ n̂ · A
= A · (B × C)

(ii) If we choose C,A to define the base then a similar calculation gives volume = B ·(C×A)
We deduce the following symmetry/antisymmetry properties:

(A,B,C) = (B,C,A) = (C,A,B) = −(A,C,B) = −(B,A,C) = −(C,B,A)

(iii)
If A,B and C are coplanar (i.e. all three vectors lie in the
same plane) then V = (A,B,C) = 0, and vice-versa.
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1.1.6 The Vector Triple Product

There are several ways of combining 3 vectors to form a new vector.
e.g. A× (B × C); (A× B)× C, etc. Note carefully that brackets are important , since

A× (B × C) 6= (A×B)× C .

Expressions involving two (or more) vector products can be simplified by using the identity:–

A× (B × C) = B(A · C)− C(A ·B) .

This is a result you must memorise. We will prove it later in the course.

1.1.7 Some examples in Physics

(i) Angular velocity

Consider a point in a rigid body rotating with angular velocity ω: |ω| is the angular speed
of rotation measured in radians per second and ω̂ lies along the axis of rotation. Let the
position vector of the point with respect to an origin O on the axis of rotation be r.

O

_

_r

_ω

θ

v
You should convince yourself that v = ω × r by checking that this
gives the right direction for v; that it is perpendicular to the plane
of ω and r; that the magnitude |v| = ωr sin θ = ω× radius of circle
in which the point is travelling

(ii) Angular momentum

Now consider the angular momentum of the particle defined by L = r× (mv) where m is
the mass of the particle.

Using the above expression for v we obtain

L = mr × (ω × r) = m
[
ωr2 − r(r · ω)

]

where we have used the identity for the vector triple product. Note that only if r is perpen-
dicular to ω do we obtain L = mωr2, which means that only then are L and ω in the same
direction. Also note that L = 0 if ω and r are parallel.

end of lecture 1
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1.2 Equations of Points, Lines and Planes

1.2.1 Position vectors

A position vector is a vector bound to some origin and gives the position of a point relative
to that origin. It is often denoted x or r.

O
r_ The equation for a point is simply r = a where a is some vector.

1.2.2 The Equation of a Line

Suppose that P lies on a line which passes through a point A which has a position vector a
with respect to an origin O. Let P have position vector r relative to O and let b be a vector
through the origin in a direction parallel to the line.

O

P

A

_

a_

b
r_ We may write

r = a + λb

which is the parametric equation of the line i.e. as we vary
the parameter λ from −∞ to ∞, r describes all points on the
line.

Rearranging and using b× b = 0, we can also write this as:–

(r − a)× b = 0

or

r × b = c

where c = a× b is normal to the plane containing the line and origin.

Notes

(i) r × b = c is an implicit equation for a line

(ii) r × b = 0 is the equation of a line through the origin.
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1.2.3 The Equation of a Plane

_

_ _c

b

n

a r_ _

O

^

PA r is the position vector of an arbitrary point P on the plane
a is the position vector of a fixed point A in the plane
b and c are parallel to the plane but non-collinear: b× c 6= 0.

We can express the vector AP in terms of b and c, so that:

r = a + AP = a+ λb+ µc

for some λ and µ. This is the parametric equation of the plane.

We define the unit normal to the plane

n̂ =
b× c
|b× c| .

Since b · n̂ = c · n̂ = 0, we have the implicit equation:–

(r − a) · n̂ = 0 .

Alternatively, we can write this as:–

r · n̂ = p ,

where p = a · n̂ is the perpendicular distance of the plane from the origin.

This is a very important equation which you must be able to recognise.

Note: r · a = 0 is the equation for a plane through the origin (with unit normal a/|a|).

1.2.4 Examples of Dealing with Vector Equations

Before going through some worked examples let us state two simple rules which will help
you to avoid many common mistakes

1. Always check that the quantities on both sides of an equation are of the same type.
e.g. any equation of the form vector = scalar is clearly wrong. (The only exception to
this is if we lazily write vector = 0 when we mean 0.)

2. Never try to divide by a vector – there is no such operation!
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Example 1: Is the following set of equations consistent?

r × b = c (1)

r = a× c (2)

Geometrical interpretation – the first equation is the (implicit) equation for a line whereas

the second equation is the (explicit) equation for a point. Thus the question is whether the

point is on the line. If we insert (2) into the l.h.s. of (1) we find

r × b = (a× c)× b = −b× (a× c) = −a (b · c) + c (a · b) (3)

Now from (1) we have that b · c = b · (r × b) = 0 thus (3) becomes

r × b = c (a · b) (4)

so that, on comparing (1) and (4), we require

a · b = 1

for the equations to be consistent.

Example 2: Solve the following set of equations for r.

r × a = b (5)

r × c = d (6)

Geometrical interpretation – both equations are equations for lines e.g. (5) is for a line

parallel to a where b is normal to the plane containing the line and the origin. The problem

is to find the intersection of two lines. (Here we assume the equations are consistent and the

lines do indeed have an intersection).

Consider

b× d = (r × a)× d = −d× (r × a) = −r (a · d) + a (d · r)

which is obtained by taking the vector product of l.h.s of (5) with d.

Now from (6) we see that d · r = r · (r × c) = 0. Thus

r = −b× d
a · d for a · d 6= 0 .

Alternatively we could have taken the vector product of the l.h.s. of (6) with b to find

b× d = b× (r × c) = r (b · c)− c (b · r) .
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Since b · r = 0 we find

r =
b× d
b · c for b · c 6= 0 .

It can be checked from (5) and (6) and the properties of the scalar triple product that for

the equations to be consistent b · c = −d · a. Hence the two expressions derived for r are the

same.

What happens when a · d = b · c = 0? In this case the above approach does not give an

expression for r. However from (6) we see a ·d = 0 implies that a · (r× c) = 0 so that a, c, r

are coplanar. We can therefore write r as a linear combination of a, c:

r = α a+ γ c . (7)

To determine the scalar α we can take the vector product with c to find

d = α a× c (8)

(since r× c = d from (6) and c× c = 0). In order to extract α we need to convert the vectors

in (8) into scalars. We do this by taking, for example, a scalar product with b

b · d = α b · (a× c)

so that

α = − b · d
(a , b , c)

.

Similarly, one can determine γ by taking the vector product of (7) with a:

b = γ c× a

then taking a scalar product with b to obtain finally

γ =
b · b

(a , b , c)
.

Example 3: Solve for r the vector equation

r + (n̂ · r) n̂ + 2n̂× r + 2b = 0 (9)

where n̂ · n̂ = 1.

In order to unravel this equation we can try taking scalar and vector products of the equation

with the vectors involved. However straight away we see that taking various products with

r will not help, since it will produce terms that are quadratic in r. Instead, we want to
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eliminate (n̂ · r) and n̂ × r so we try taking scalar and vector products with n̂. Taking the

scalar product one finds

n̂ · r + (n̂ · r)(n̂ · n̂) + 0 + 2n̂ · b = 0

so that, since (n̂ · n̂) = 1, we have

n̂ · r = −n̂ · b (10)

Taking the vector product of (9) with n̂ gives

n̂× r + 0 + 2
[
n̂(n̂ · r)− r

]
+ 2n̂× b = 0

so that

n̂× r = 2
[
n̂(b · n̂) + r

]
− 2n̂× b (11)

where we have used (10). Substituting (10) and (11) into (9) one eventually obtains

r =
1

5

[
−3(b · n̂) n̂+ 4(n̂× b)− 2b

]
(12)

end of lecture 2

1.3 Vector Spaces and Orthonormal Bases

1.3.1 Review of vector spaces

Let V denote a vector space. Then vectors in V obey the following rules for addition and

multiplication by scalars

A +B ∈ V if A,B ∈ V
αA ∈ V if A ∈ V

α(A+B) = αA+ αB

(α + β)A = αA+ βA

The space contains a zero vector or null vector, 0, so that, for example (A) + (−A) = 0.

Of course as we have seen, vectors in IR3 (usual 3-dimensional real space) obey these axioms.

Other simple examples are a plane through the origin which forms a two-dimensional space

and a line through the origin which forms a one-dimensional space.
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1.3.2 Linear Independence

Consider two vectors A and B in a plane through the origin and the equation:–

αA+ βB = 0 .

If this is satisfied for non-zero α and β then A and B are said to be linearly dependent.

i.e. B = −α
β
A .

Clearly A and B are collinear (either parallel or anti-parallel). If this equation can be

satisfied only for α = β = 0, then A and B are linearly independent, and obviously not

collinear (i.e. no λ can be found such that B = λA).

Notes

(i) If A, B are linearly independent any vector r in the plane may be written uniquely as

a linear combination

r = aA + bB

(ii) We say A, B span the plane or A, B form a basis for the plane

(iii) We call (a, b) a representation of r in the basis formed by A, B and a, b are the

components of r in this basis.

In 3 dimensions three vectors are linearly dependent if we can find non-trivial α, β, γ (i.e.

not all zero) such that

αA+ βB + γC = 0

otherwise A,B,C are linearly independent (no one is a linear combination of the other two).

Notes

(i) If A, B and C are linearly independent they span IR3 and form a basis i.e. for any vector

r we can find scalars a, b, c such that

r = aA+ bB + cC .

(ii) The triple of numbers (a, b, c) is the representation of r in this basis; a, b, c are said

to be the components of r in this basis.
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(iii) The geometrical interpretation of linear dependence in three dimensions is that

three linearly dependent vectors ⇔ three coplanar vectors

To see this note that if αA+ βB + γC = 0 then

α 6= 0 αA · (B × C) = 0 ⇒ A,B,C are coplanar

α = 0 then B is collinear with C and A,B,C are coplanar

These ideas can be generalised to vector spaces of arbitrary dimension. For a space of

dimension n one can find at most n linearly independent vectors.

1.3.3 Standard orthonormal basis: Cartesian basis

A basis in which the basis vectors are orthogonal and normalised (of unit length) is called

an orthonormal basis.

You have already have encountered the idea of Cartesian coordinates in which points in

space are labelled by coordinates (x, y, z). We introduce orthonormal basis vectors denoted

by either i, j and k or ex, ey and ez which point along the x, y and z-axes. It is usually

understood that the basis vectors are related by the r.h. screw rule, with i × j = k and so

on, cyclically.

In the ‘xyz’ notation the components of a vector A are Ax, Ay, Az, and a vector is written

in terms of the basis vectors as

A = Ax i+ Ay j + Az k or A = Ax ex + Ay ey + Az ez .

Also note that in this basis, the basis vectors themselves are represented by

i = ex = (1, 0, 0) j = ey = (0, 1, 0) k = ez = (0, 0, 1)

1.3.4 Suffix or Index notation

A more systematic labelling of orthonormal basis vectors for IR3 is by e1, e2 and e3. i.e.

instead of i we write e1, instead of j we write e2, instead of k we write e3. Then

e1 · e1 = e2 · e2 = e3 · e3 = 1; e1 · e2 = e2 · e3 = e3 · e1 = 0. (13)

Similarly the components of any vector A in 3-d space are denoted by A1, A2 and A3.
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This scheme is known as the suffix notation. Its great advantages over ‘xyz’ notation are that

it clearly generalises easily to any number of dimensions and greatly simplifies manipulations

and the verification of various identities (see later in the course).

-
i

6k

�
��3
j

r = xi + yj + zk

Old Notation

or

-
ex

6ez

�
��3

ey

r = xex + yey + zez

-
e1

6e3

�
��3

e2

New Notation

r = x1e1 + x2e2 + x3e3

Thus any vector A is written in this new notation as

A = A1 e1 + A2 e2 + A3 e3 =
3∑

i=1

Ai ei .

The final summation will often be abbreviated to A =
∑

i

Ai ei .

Notes

(i) The numbers Ai are called the (Cartesian) components (or representation) of A with

respect to the basis set {ei}.

(ii) We may write A =

3∑

i=1

Ai ei =

3∑

j=1

Aj ej =

3∑

α=1

Aα eα where i, j and α are known as

summation or ‘dummy’ indices.

(iii) The components are obtained by using the orthonormality properties of equation (13):

A · e1 = (A1e1 + A2e2 + A3e3) · e1 = A1

A1 is the projection of A in the direction of e1.

Similarly for the components A2 and A3. So in general we may write

A · ei = Ai or sometimes (A)i

where in this equation i is a ‘free’ index and may take values i = 1, 2, 3. In this way

we are in fact condensing three equations into one.
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(iv) In terms of these components, the scalar product takes on the form:–

A ·B =

3∑

i=1

Ai Bi .

end of lecture 3

1.4 Suffix Notation

1.4.1 Free Indices and Summation Indices

Consider, for example, the vector equation

a− (b · c) d+ 3n = 0 (14)

As the basis vectors are linearly independent the equation must hold for each component:

ai − (b · c) di + 3ni = 0 for i = 1, 2, 3 (15)

The free index i occurs once and only once in each term of the equation. In general every

term in the equation must be of the same kind i.e. have the same free indices.

Now suppose that we want to write the scalar product that appears in the second term of

equation (15) in suffix notation. As we have seen summation indices are ‘dummy’ indices

and can be relabelled

b · c =

3∑

i=1

bici =

3∑

k=1

bkck

This freedom should always be used to avoid confusion with other indices in the equation.

Thus we avoid using i as a summation index, as we have already used it as a free index, and

write equation (15) as

ai −
(

3∑

k=1

bkck

)
di + 3ni = 0 for i = 1, 2, 3

rather than

ai −
(

3∑

i=1

bici

)
di + 3ni = 0 for i = 1, 2, 3

which would lead to great confusion, inevitably leading to mistakes, when the brackets are

removed!
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1.4.2 Handedness of Basis

In the usual Cartesian basis that we have considerd up to now, the basis vectors e1, e2, and

e3 form a right-handed basis, that is, e1 × e2 = e3, e2 × e3 = e1 and e3 × e1 = e2.

However, we could choose e1 × e2 = −e3, and so on, in which case the basis is said to be

left-handed.

-
e1

6e3

�
��3

e2

right handed

-
e1

6e2

�
��3

e3

left handed

e3 = e1 × e2

e1 = e2 × e3

e2 = e3 × e1

(e1, e2, e3) = 1

e3 = e2 × e1

e1 = e3 × e2

e2 = e1 × e3

(e1, e2, e3) = −1

1.4.3 The Vector Product in a right-handed basis

A× B = (

3∑

i=1

Ai ei)× (

3∑

j=1

Bj ej) =

3∑

i=1

3∑

j=1

Ai Bj (ei × ej) .

Since e1 × e1 = e2 × e2 = e3 × e3 = 0, and e1 × e2 = −e2 × e1 = e3, etc. we have

A×B = e1(A2B3 − A3B2) + e2(A3B1 − A1B3) + e3(A1B2 − A2B1) (16)

from which we deduce that

(A× B)1 = (A2B3 − A3B2) , etc.

Notice that the right-hand side of equation (16) corresponds to the expansion of the deter-

minant ∣∣∣∣∣∣

e1 e2 e3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣

by the first row.
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It is now easy to write down an expression for the scalar triple product

A · (B × C) =

3∑

i=1

Ai(B × C)i

= A1(B2C3 − C2B3)− A2(B1C3 − C1B3) + A3(B1C2 − C1B2)

=

∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣
.

The symmetry properties of the scalar triple product may be deduced from this by noting

that interchanging two rows (or columns) changes the value by a factor −1.

1.4.4 Summary of algebraic approach to vectors

We are now able to define vectors and the various products of vectors in an algebraic way

(as opposed to the geometrical approach of lectures 1 and 2).

A vector is represented (in some orthonormal basis e1, e2, e3) by an ordered set of 3 numbers

with certain laws of addition.

e.g. A is represented by (A1, A2, A3) ;

A+B is represented by (A1 +B1, A2 +B2, A3 +B3) .

The various ‘products’ of vectors are defined as follows:–

The Scalar Product is denoted by A ·B and defined as:–

A ·B def
=
∑

i

AiBi .

A ·A = A2 defines the magnitude A of the vector.

The Vector Product is denoted by A× B, and is defined in a right-handed basis as:–

A×B =

∣∣∣∣∣∣

e1 e2 e3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
.

The Scalar Triple Product

(A,B,C)
def
=

∑

i

Ai(B × C)i

=

∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣
.

In all the above formula the summations imply sums over each index taking values 1, 2, 3.
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1.4.5 The Kronecker Delta Symbol δij

We define the symbol δij (pronounced “delta i j”), where i and j can take on the values 1

to 3, such that

δij = 1 if i = j

= 0 if i 6= j

i.e. δ11 = δ22 = δ33 = 1 and δ12 = δ13 = δ23 = · · · = 0.

The equations satisfied by the orthonormal basis vectors ei can all now be written as:–

ei · ej = δij .

e.g. e1 · e2 = δ12 = 0 ; e1 · e1 = δ11 = 1 Notes

(i) Since there are two free indices i and j, ei · ej = δij is equivalent to 9 equations

(ii) δij = δji [ i.e. δij is symmetric in its indices. ]

(iii)

3∑

i=1

δii = 3 ( = δ11 + δ22 + δ33)

(iv)
3∑

j=1

Ajδjk = A1δ1k + A2δ2k + A3δ3k

Remember that k is a free index. Thus if k = 1 then only the first term on the rhs

contributes and rhs = A1, similarly if k = 2 then rhs = A2 and if k = 2 then rhs = A3.

Thus we conclude that
3∑

j=1

Ajδjk = Ak

In other words, the Kronecker delta picks out the kth term in the sum over j. This is

in particular true for the multiplication of two Kronecker deltas:
3∑

j=1

δijδjk = δi1δ1k + δi2δ2k + δi3δ3k = δik

Generalising the reasoning in (iv) implies the so-called sifting property:

3∑

j=1

(anything )jδjk = (anything )k
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where (anything)j denotes any expression that has a single free index j.

Examples of the use of this symbol are:–

1. A · ej = (

3∑

i=1

Aiei) · ej =

3∑

i=1

Ai (ei · ej)

=

3∑

i=1

Aiδij = Aj , since terms with i 6= j vanish.

2. A ·B = (
3∑

i=1

Aiei) · (
3∑

j=1

Bjej)

=
3∑

i=1

3∑

j=1

AiBj (ei · ej) =
3∑

i=1

3∑

j=1

AiBjδij

=

3∑

i=1

AiBi ( or

3∑

j=1

AjBj).

1.4.6 Matrix representation of δij

We may label the elements of a (3× 3) matrix M as Mij ,

M =




M11 M12 M13

M21 M22 M23

M31 M32 M33


 .

Thus we see that if we write δij as a matrix we find that it is the identity matrix 11.

δij =




1 0 0
0 1 0
0 0 1


 .

end of lecture 4

1.5 More About Suffix Notation

1.5.1 Einstein Summation Convention

As you will have noticed, the novelty of writing out summations as in Lecture 4 soon wears

thin. A way to avoid this tedium is to adopt the Einstein summation convention; by adhering

strictly to the following rules the summation signs are suppressed.

Rules
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(i) Omit summation signs

(ii) If a suffix appears twice, a summation is implied e.g. AiBi = A1B1 + A2B2 + A3B3

Here i is a dummy index.

(iii) If a suffix appears only once it can take any value e.g. Ai = Bi holds for i = 1, 2, 3

Here i is a free index. Note that there may be more than one free index. Always check

that the free indices match on both sides of an equation e.g. Aj = Bi is WRONG.

(iv) A given suffix must not appear more than twice in any term of an expression. Again,

always check that there are no multiple indices e.g. AiBiCi is WRONG.

Examples

A = Aiei here i is a dummy index.

A · ej = Aiei · ej = Aiδij = Aj here i is a dummy index but j is a free index.

A ·B = (Aiei) · (Bjej) = AiBjδij = AjBj here i,j are dummy indices.

(A ·B)(A · C) = AiBiAjCj again i,j are dummy indices.

Armed with the summation convention one can rewrite many of the equations of the previous

lecture without summation signs e.g. the sifting property of δij now becomes

[· · · ]jδjk = [· · · ]k

so that, for example, δijδjk = δik

From now on, except where indicated, the summation convention will be assumed.
You should make sure that you are completely at ease with it.

1.5.2 Levi-Civita Symbol εijk

We saw in the last lecture how δij could be used to greatly simplify the writing out of the

orthonormality condition on basis vectors.

We seek to make a similar simplification for the vector products of basis vectors (taken here

to be right handed) i.e. we seek a simple, uniform way of writing the equations

e1 × e2 = e3 e2 × e3 = e1 e3 × e1 = e2

e1 × e1 = 0 e2 × e2 = 0 e3 × e3 = 0
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To do so we define the Levi-Cevita symbol εijk (pronounced ‘epsilon i j k’), where i, j and

k can take on the values 1 to 3, such that:–

εijk = +1 if ijk is an even permutation of 123 ;

= −1 if ijk is an odd permutation of 123 ;

= 0 otherwise (i.e. 2 or more indices are the same) .

An even permutation consists of an even number of transpositions.

An odd permutations consists of an odd number of transpositions.

For example, ε123 = +1 ;

ε213 = −1 { since (123) → (213) under one transposition [1 ↔ 2]} ;

ε312 = +1 {(123) → (132) → (312); 2 transpositions; [2 ↔ 3][1 ↔ 3]} ;

ε113 = 0 ; ε111 = 0 ; etc.

ε123 = ε231 = ε312 = +1 ; ε213 = ε321 = ε132 = −1 ; all others = 0 .

1.5.3 Vector product

The equations satisfied by the vector products of the (right-handed) orthonormal basis vec-

tors ei can now be written uniformly as :–

ei × ej = εijk ek (i, j = 1,2,3) .

For example,

e1 × e2 = ε121 e1 + ε122 e2 + ε123 e3 = e3 ; e1 × e1 = ε111 e1 + ε112 e2 + ε113 e3 = 0

Also,

A× B = Ai Bj ei × ej
= εijk AiBj ek

but,
A× B = (A×B)k ek .

Thus

(A× B)k = εijk AiBj
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Always recall that we are using the summation convention. For example writing out the

sums

(A× B)3 = ε113 A1B1 + ε123 A2B3 + ε133 A3B3 + · · ·
= ε123 A1B2 + ε213 A2B1 (only non-zero terms)

= A1B2 − A2B1

Now note a ‘cyclic symmetry’ of εijk

εijk = εkij = εjki = −εjik = −εikj = −εkji
This holds for any choice of i, j and k. To understand this note that

1. If any pair of the free indices i, j, k are the same, all terms vanish;

2. If (ijk) is an even (odd) permutation of (123), then so is (jki) and (kij), but (jik),

(ikj) and (kji) are odd (even) permutations of (123).

Now use the cyclic symmetry to find alternative forms for the components of the vector

product

(A×B)k = εijk AiBj = εkij AiBj

or relabelling indices k → i i→ j j → k

(A×B)i = εjki AjBk = εijk AjBk .

The scalar triple product can also be written using εijk

(A,B,C) = A · (B × C) = Ai(B × C)i

(A,B,C) = εijk AiBjCk .

Now as an exercise in index manipulation we can prove the cyclic symmetry of the scalar

product

(A,B,C) = εijk AiBjCk

= −εikj AiBjCk interchanging two indices of εikj

= +εkij AiBjCk interchanging two indices again

= εijk AjBkCi relabelling indices k → i i→ j j → k

= εijk CiAjBk = (C,A,B)
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1.5.4 Product of two Levi-Civita symbols

We state without formal proof the following identity (see questions on Problem Sheet 3)

εijk εrsk = δirδjs − δisδjr.

To verify this is true one can check all possible cases e.g. ε12k ε12k = ε121 ε121 + ε122 ε122 +

ε123 ε123 = 1 = δ11δ22 − δ12δ21. More generally, note that the left hand side of the boxed

equation may be written out as

• εij1 εrs1 + εij2 εrs2 + εij3 εrs3 where i, j, r, s are free indices;

• for this to be non-zero we must have i 6= j and r 6= s

• only one term of the three in the sum can be non-zero ;

• if i = r and j = s we have +1 ; if i = s and j = r we have −1 .

The product identity furnishes an algebraic proof for the ‘BAC-CAB’ rule. Consider the ith

component of A× (B × C):

[
A× (B × C)

]
i = εijk Aj(B × C)k

= εijk Aj εkrs BrCs = εijk εrsk AjBrCs

= (δir δjs − δis δjr)AjBrCs

= (AjBiCj − AjBjCi)

= Bi(A · C)− Ci(A ·B)

=
[
B(A · C)− C(A ·B)

]
i

Since i is a free index we have proven the identity for all three components i = 1, 2, 3.

end of lecture 5
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1.6 Change of Basis

1.6.1 Linear Transformation of Basis

Suppose {ei} and {ei′} are two different orthonormal bases. How do we relate them?

Clearly e1
′ can be written as a linear combination of the vectors e1, e2, e3. Let us write the

linear combination as

e1
′ = λ11e1 + λ12e2 + λ13e3

with similar expressions for e2
′ and e3

′. In summary,

ei
′ = λij ej (17)

(assuming summation convention) where λij (i = 1, 2, 3 and j = 1, 2, 3) are the 9 numbers

relating the basis vectors e1
′, e2

′ and e3
′ to the basis vectors e1, e2 and e3.

Notes

(i) Since ei
′ are orthonormal

ei
′ · ej ′ = δij .

Now the l.h.s. of this equation may be written as

(λik ek) · (λjl el) = λikλjl (ek · el) = λikλjlδkl = λik λjk

(in the final step we have used the sifting property of δkl) and we deduce

λikλjk = δij (18)

(ii) In order to determine λij from the two bases consider

ei
′ · ej = (λik ek) · ej = λik δkj = λij .

Thus

ei
′ · ej = λij (19)

1.6.2 Inverse Relations

Consider expressing the unprimed basis in terms of the primed basis and suppose that
ei = µij ej

′.

Then λki = ek
′ · ei = µij (ek

′ · ej ′) = µij δkj = µik so that

µij = λji (20)

Note that ei · ej = δij = λki (ek
′ · ej) = λkiλkj and so we obtain a second relation

λkiλkj = δij . (21)
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1.6.3 The Transformation Matrix

We may label the elements of a 3× 3 matrix M as Mij , where i labels the row and j labels

the column in which Mij appears:

M =




M11 M12 M13

M21 M22 M23

M31 M32 M33


 .

The summation convention can be used to describe matrix multiplication. The ij component

of a product of two 3× 3 matrices M,N is given by

(MN)ij = Mi1N1j +Mi2N2j +Mi3N3j = Mik Nkj (22)

Likewise, recalling the definition of the transpose of a matrix (MT )ij = Mji

(MTN)ij = (MT )ikNkj = MkiNkj (23)

We can thus arrange the numbers λij as elements of a square matrix, denoted by λ and

known as the transformation matrix:

λ =




λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33




We denote the matrix transpose by λT and define it by (λT )ij = λji so we see from equation

(20) that µ = λT is the transformation matrix for the inverse transformation.

We also note that δij may be thought of as elements of a 3× 3 unit matrix:




δ11 δ12 δ13

δ21 δ22 δ33

δ31 δ32 δ33


 =




1 0 0
0 1 0
0 0 1


 = 11.

i.e. the matrix representation of the Kronecker delta symbol is the unit matrix 11.

Comparing equation(18) with equation (22), and equation (21) with equation (23), we see

that the relations λikλjk = λkiλkj = δij can be written in matrix notation as:-

λλT = λTλ = 11 , i.e. λ−1 = λT .
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This is the condition for an orthogonal matrix and the transformation (from the ei basis

to the ei
′ basis) is called an orthogonal transformation.

Now from the properties of determinants, |λλT | = |11| = 1 = |λ| |λT | and |λT | = |λ|, we have

that |λ|2 = 1 hence

|λ| = ±1 .

If |λ| = +1 the orthogonal transformation is said to be ‘proper’

If |λ| = −1 the orthogonal transformation is said to be ‘improper’

1.6.4 Examples of Orthogonal Transformations

Rotation about the e3 axis. We have e3
′ = e3 and thus for a rotation through θ,

_

θ

θ

_e

e

e

e_

_

2
2

1

1
O

’

’ e3
′ · e1 = e1

′ · e3 = e3
′ · e2 = e2

′ · e3 = 0 , e3
′ · e3 = 1

e1
′ · e1 = cos θ

e1
′ · e2 = cos (π/2− θ) = sin θ

e2
′ · e2 = cos θ

e2
′ · e1 = cos (π/2 + θ) = − sin θ

Thus

λ =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 .

It is easy to check that λλT = 11. Since |λ| = cos2 θ+ sin2 θ = 1, this is a proper transforma-

tion. Note that rotations cannot change the handedness of the basis vectors.

Inversion or Parity transformation. This is defined such that ei
′ = −ei.

i.e. λij = −δij or λ =



−1 0 0
0 −1 0
0 0 −1


 = −11 .

Clearly λλT = 11. Since |λ| = −1, this
is an improper transformation. Note
that the handedness of the basis is re-
versed: e1

′ × e2
′ = −e3

′

e_
1

e_2

e_3
l.h. basis

’

’

’

_

_e

e

e_1

2

3

r.h. basis
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Reflection. Consider reflection of the axes in e2–e3 plane so that e1
′ = −e1, e2

′ = e2 and

e3
′ = e3. The transformation matrix is:–

λ =



−1 0 0
0 1 0
0 0 1


 .

Since |λ| = −1, this is an improper transformation. Again the handedness of the basis

changes.

1.6.5 Products of Transformations

Consider a transformation λ to the basis {ei′} followed by a transformation ρ to another

basis {ei′′}

ei

λ
=⇒ ei

′
ρ

=⇒ ei
′′

Clearly there must be an orthogonal transformation ei

ξ
=⇒ ei

′′

Now

ei
′′ = ρijej

′ = ρijλjkek = (ρλ)ikek so ξ = ρλ

Notes

(i) Note the order of the product: the matrix corresponding to the first change of basis

stands to the right of that for the second change of basis. In general, transformations

do not commute so that ρλ 6= λρ.

(ii) The inversion and the identity transformations commute with all transformations.

1.6.6 Improper Transformations

We may write any improper transformation ξ (for which |ξ| = −1) as ξ = (−11)λ where λ =

−ξ and |λ| = +1 Thus an improper transformation can always be expressed as a proper

transformation followed by an inversion.

e.g. consider ξ for a reflection in the 1− 3 plane which may be written as

ξ =




1 0 0
0 −1 0
0 0 1


 =



−1 0 0
0 −1 0
0 0 −1





−1 0 0
0 1 0
0 0 −1




Identifying λ from ξ = (−11)λ we see that λ is a rotation of π about e2.
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1.6.7 Summary

If |λ| = +1 we have a proper orthogonal transformation which is equivalent to rotation

of axes. It can be proven that any rotation is a proper orthogonal transformation and

vice-versa.

If |λ| = −1 we have an improper orthogonal transformation which is equivalent to rotation

of axes then inversion. This is known as an improper rotation since it changes the handedness

of the basis.

end of lecture 6

1.7 Transformation Properties of Vectors and Scalars

1.7.1 Transformation of vector components

Let A be any vector, with components Ai in the basis {ei} and A′i in the basis {ei′} i.e.

A = Ai ei = A′i ei
′ .

The components are related as follows, taking care with dummy indices:–

A′i = A · ei′ = (Ajej) · ei′ = (ei
′ · ej)Aj = λijAj

A′i = λijAj

Ai = A · ei = (A′kek
′) · ei = λkiA

′
k = (λT )ikA

′
k.

Note carefully that we do not put a prime on the vector itself – there is only one vector, A,

in the above discussion.

However, the components of this vector are different in different bases, and so are denoted

by Ai in the basis {ei}, A′i in the basis {ei′}, etc.

In matrix form we can write these relations as




A′1
A′2
A′3


 =




λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33






A1

A2

A3


 = λ




A1

A2

A3



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Example: Consider a rotation of the axes about e3




A′1
A′2
A′3


 =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1






A1

A2

A3


 =




cos θ A1 + sin θ A2

cos θ A2 − sin θ A1

A3




A direct check of this using trigonometric considerations is significantly harder!

1.7.2 The Transformation of the Scalar Product

Let A and B be vectors with components Ai and Bi in the basis {ei} and components A′i
and B′i in the basis {ei′}. In the basis {ei}, the scalar product, denoted by (A ·B), is:–

(A ·B) = AiBi .

In the basis {ei′}, we denote the scalar product by (A ·B) ′, and we have

(A ·B) ′ = A′iB
′
i = λijAjλikBk = δjkAjBk

= AjBj = (A ·B) .

Thus the scalar product is the same evaluated in any basis. This is of course expected from

the geometrical definition of scalar product which is independent of basis. We say that the

scalar product is invariant under a change of basis.

Summary We have now obtained an algebraic definition of scalar and vector quantities.

Under the orthogonal transformation from the basis {ei} to the basis {ei′}, defined by the

transformation matrix λ : ei
′ = λij ej , we have that:–

• A scalar is a single number φ which is invariant:

φ′ = φ .

Of course, not all scalar quantities in physics are expressible as the scalar product of

two vectors e.g. mass, temperature.

• A vector is an ‘ordered triple’ of numbers Ai which transforms to A′i :

A′i = λijAj .
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1.7.3 Summary of story so far

We take the opportunity to summarise some key-points of what we have done so far. N.B.

this is NOT a list of everything you need to know.

Key points from geometrical approach

You should recognise on sight that

r × b = c is a line (r lies on a line)

r · a = d is a plane (r lies in a plane)

Useful properties of scalar and vector products to remember

a · b = 0 ⇔ vectors orthogonal

a× b = 0 ⇔ vectors collinear

a · (b× c) = 0 ⇔ vectors co-planar or linearly dependent

a× (b× c) = b(a · c)− c(a · b)

Key points of suffix notation

We label orthonormal basis vectors e1, e2, e3 and write the expansion of a vector A as

A =

3∑

i=1

Aiei

The Kronecker delta δij can be used to express the orthonormality of the basis

ei · ej = δij

The Kronecker delta has a very useful sifting property

∑

j

[· · · ]jδjk = [· · · ]k

(e1, e2, e3) = ±1 determines whether the basis is right- or left-handed

Key points of summation convention

Using the summation convention we have for example

A = Aiei
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and the sifting property of δij becomes

[· · · ]jδjk = [· · · ]k

We introduce εijk to enable us to write the vector products of basis vectors in a r.h. basis

in a uniform way

ei × ej = εijkek

.

The vector products and scalar triple products in a r.h. basis are

A× B =

∣∣∣∣∣∣

e1 e2 e3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
or equivalently (A× B)i = εijkAjBk

A · (B × C) =

∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣
or equivalently A · (B × C) = εijkAiBjCk

Key points of change of basis

The new basis is written in terms of the old through

ei
′ = λijej where λij are elements of a 3× 3 transformation matrix λ

λ is an orthogonal matrix, the defining property of which is λ−1 = λT and this can be written

as

λλT = 11 or λikλjk = δij

|λ| = ±1 decides whether the transformation is proper or improper i.e. whether the hand-

edness of the basis is changed

Key points of algebraic approach

A scalar is defined as a number that is invariant under an orthogonal transformation

A vector is defined as an object A represented in a basis by numbers Ai which transform

to A′i through

A′i = λijAj.

or in matrix form 


A′1
A′2
A′3


 = λ




A1

A2

A3




end of lecture 7
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2 Tensors

2.1 Tensors of Second Rank

2.1.1 Nature of Physical Laws

The simplest physical laws are expressed in terms of scalar quantities which are independent

of our choice of basis e.g. the gas law

pV = RT

relating pressure, volume and temperature.

At the next level of complexity are laws relating vector quantities:

F = ma Newton’s Law

J = gE Ohm’s Law, g is conductivity

Notes

(i) These laws take the form vector = scalar × vector

(ii) They relate two vectors in the same direction

If we consider Newton’s Law, for instance, then in a particular Cartesian basis {ei}, a is

represented by its components {ai} and F by its components {Fi} and we can write

Fi = mai

In another such basis {ei ′}
F ′i = ma′i

where the set of numbers, {a′i}, is in general different from the set {ai}. Likewise, the set

{F ′i} differs from the set {Fi}, but of course

a′i = λijaj and F ′i = λijFj

Thus we can think of F = ma as representing an infinite set of relations between measured

components in various bases. Because all vectors transform the same way under orthogonal

transformations, the relations have the same form in all bases. We say that Newton’s Law,

expressed in component form, is form invariant or covariant.
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2.1.2 Examples of more complicated laws

Ohm’s law in an anisotropic medium

The simple form of Ohm’s Law stated above, in which an applied electric field E produces

a current in the same direction, only holds for conducting media which are isotropic, that

is, the same in all directions. This is certainly not the case in crystalline media, where the

regular lattice will favour conduction in some directions more than in others.

The most general relation between J and E which is linear and is such that J vanishes when

E vanishes is of the form

Ji = GijEj

where Gij are the components of the conductivity tensor in the chosen basis, and characterise

the conduction properties when J and E are measured in that basis. Thus we need nine

numbers, Gij , to characterise the conductivity of an anisotropic medium. The conductivity

tensor is an example of a second rank tensor.

Suppose we consider an orthogonal transformation of basis. Simply changing basis cannot

alter the form of the physical law and so we conclude that

J ′i = G′ijE
′
j where J ′i = λijJj and E ′j = λjkEk

Thus we deduce that

λijJj = λijGjkEk = G′ijλjkEk

which we can rewrite as

(G′ijλjk − λijGjk)Ek = 0

This must be true for arbitrary electric fields and hence

G′ijλjk = λijGjk

Multiplying both sides by λlk, noting that λlkλjk = δlj and using the sifting property we

find that

G′il = λijλlkGjk

This exemplifies how the components of a second rank tensor change under an orthogonal

transformation.

Rotating rigid body
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O

_

_r

_ω

θ

v

Consider a particle of mass m at a point r in a rigid
body rotating with angular velocity ω. Recall from
Lecture 1 that v = ω × r. You were asked to check
that this gives the right direction for v; that it is per-
pendicular to the plane of ω and r; that the magnitude
|v| = ωr sin θ = ω× radius of circle in which the point
is travelling

Now consider the angular momentum of the particle about the origin O, defined by

L = r × p = r × (mv) where m is the mass of the particle.

Using the above expression for v we obtain

L = mr × (ω × r) = m
[
ω(r · r)− r(r · ω)

]
(24)

where we have used the identity for the vector triple product. Note that only if r is perpen-

dicular to ω do we obtain L = mr2ω, which means that only then are L and ω in the same

direction.

Taking components of equation (24) in an orthonormal basis {ei}, we find that

Li = m
[
ωi(r · r)− xi(r · ω)

]

= m
[
r2ωi − xixjωj

]
noting that r · ω = xjωj

= m
[
r2δij − xixj

]
ωj using ωi = δijωj

Thus

Li = Iij(O)ωj where Iij(O) = m
[
r2 δij − xixj

]

Iij(O) are the components of the inertia tensor, relative to O, in the ei basis. The inertia

tensor is another example of a second rank tensor.

Summary of why we need tensors

(i) Physical laws often relate two vectors.

(ii) A second rank tensor provides a linear relation between two vectors which may be in

different directions.

(iii) Tensors allow the generalisation of isotropic laws (‘physics the same in all directions’)

to anisotropic laws (‘physics different in different directions’)
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2.1.3 General properties

Scalars and vectors are called tensors of rank zero and one respectively, where rank = no.

of indices in a Cartesian basis. We can also define tensors of rank greater than two.

The set of nine numbers, Tij , representing a second rank tensor can be written as a 3 × 3

array

T =




T11 T12 T13

T21 T22 T23

T31 T32 T33




This of course is not true for higher rank tensors (which have more than 9 components).

We can rewrite the generic transformation law for a second rank tensor as follows:

T ′ij = λikλjl Tkl = λik Tkl (λT )lj

Thus in matrix form the transformation law is

T ′ = λTλT

Notes

(i) It is wrong to say that a second rank tensor is a matrix; rather the tensor is the funda-

mental object and is represented in a given basis by a matrix.

(ii) It is wrong to say a matrix is a tensor e.g. the transformation matrix λ is not a tensor

but nine numbers defining the transformation between two different bases.

2.1.4 Invariants

Trace of a tensor: the trace of a tensor is defined as the sum of the diagonal elements Tii.

Consider the trace of the matrix representing the tensor in the transformed basis

T ′ii = λirλisTrs

= δrsTrs = Trr

Thus the trace is the same, evaluated in any basis and is a scalar invariant.

Determinant: it can be shown that the determinant is also an invariant.

Symmetry of a tensor: if the matrix Tij representing the tensor is symmetric then

Tij = Tji
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Under a change of basis

T ′ij = λirλjsTrs

= λirλjsTsr using symmetry

= λisλjrTrs relabelling

= T ′ji

Therefore a symmetric tensor remains symmetric under a change of basis. Similarly (exercise)

an antisymmetric tensor Tij = −Tji remains antisymmetric.

In fact one can decompose an arbitrary second rank tensor Tij into a symmetric part Sij
and an antisymmetric part Aij through

Sij =
1

2

[
Tij + Tji

]
Aij =

1

2

[
Tij − Tji

]

2.1.5 Eigenvectors

In general a second rank tensor maps a given vector onto a vector in a different direction: if

a vector n has components ni then

Tijnj = mi ,

where mi are components of m, the vector that n is mapped onto.

However some special vectors called eigenvectors may exist such that mi = t ni
i.e. the new vector is in the same direction as the original vector. Eigenvectors
usually have special physical significance (see later).

end of lecture 8

2.2 The Inertia Tensor

2.2.1 Computing the Inertia Tensor

We saw in the previous lecture that for a single particle of mass m, located at position r

with respect to an origin O on the axis of rotation of a rigid body

Li = Iij(O)ωj where Iij(O) = m
{
r2 δij − xixj

}
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where Iij(O) are the components of the inertia tensor, relative to O, in the basis {ei}.

For a collection of N particles of mass mα at rα, where α = 1 . . . N ,

Iij(O) =
N∑

α = 1

mα
{

(rα· rα) δij − xαi x
α
j

}
(25)

For a continuous body, the sums become integrals, giving

Iij(O) =

∫

V

ρ(r)
{

(r · r) δij − xixj
}
dV .

Here, ρ(r) is the density at position r. ρ(r) dV is the mass of the volume element dV at r.

For laminae (flat objects) and solid bodies, these are 2- and 3-dimensional integrals respec-

tively.

If the basis is fixed relative to the body, the Iij(O) are constants in time.

Consider the diagonal term

I11(O) =
∑

α
mα

{
(rα· rα)− (xα1 )2

}

=
∑

α
mα

{
(xα2 )2 + (xα3 )2

}

=
∑

α
mα (rα⊥ )2 ,

where rα⊥ is the perpendicular distance of mα from the e1 axis through O.

This term is called the moment of inertia about the e1 axis. It is simply the mass of each

particle in the body, multiplied by the square of its distance from the e1 axis, summed over

all of the particles. Similarly the other diagonal terms are moments of inertia.

The off-diagonal terms are called the products of inertia, having the form, for example

I12(O) = −
∑

α
mα xα1 xα2 .

Example

Consider 4 masses m at the vertices of a square of side 2a.

(i) O at centre of the square.
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-

6

e1
a

e2

a

O

r

r

r

r

(a, a, 0)

(a,−a, 0)

(−a, a, 0)

(−a,−a, 0)

For m(1) = m at (a, a, 0), r(1) = ae1 + ae2, so r(1) · r(1) = 2a2, x
(1)
1 = a, x

(1)
2 = a and x

(1)
3 = 0

I(O) = m



2a2




1 0 0
0 1 0
0 0 1


− a2




1 1 0
1 1 0
0 0 0





 = ma2




1 −1 0
−1 1 0

0 0 2


 .

For m(2) = m at (a,−a, 0), r(2) = ae1 − ae2, so r(2) · r(2) = 2a2, x
(2)
1 = a and x

(2)
2 = −a

I(O) = m



2a2




1 0 0
0 1 0
0 0 1


− a2




1 −1 0
−1 1 0

0 0 0





 = ma2




1 1 0
1 1 0
0 0 2


 .

For m(3) = m at (−a,−a, 0), r(3) = −ae1− ae2, so r(3) · r(3) = 2a2, x
(3)
1 = −a and x

(3)
2 = −a

I(O) = m



2a2




1 0 0
0 1 0
0 0 1


− a2




1 1 0
1 1 0
0 0 0





 = ma2




1 −1 0
−1 1 0

0 0 2


 .

For m(4) = m at (−a, a, 0), r(4) = −ae1 + ae2, so r(4) · r(4) = 2a2, x
(4)
1 = −a and x

(4)
2 = a

I(O) = m



2a2




1 0 0
0 1 0
0 0 1


− a2




1 −1 0
−1 1 0

0 0 0





 = ma2




1 1 0
1 1 0
0 0 2


 .

Adding up the four contributions gives the inertia tensor for all 4 particles as:–

I(O) = 4ma2




1 0 0
0 1 0
0 0 2


 .

Note that the final inertia tensor is diagonal and in this basis the products of inertia are

all zero. (Of course there are other bases where the tensor is not diagonal.) This implies

the basis vectors are eigenvectors of the inertia tensor. For example, if ω = ω(0, 0, 1) then

L(O) = 8mωa2(0, 0, 1).

In general L(O) is not parallel to ω. For example, if ω = ω(0, 1, 1) then L(O) =

4mωa2(0, 1, 2). Note that the inertia tensors for the individual masses are not diagonal.
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2.2.2 Two Useful Theorems

Perpendicular Axes Theorem

For a lamina, or collection of particles confined to a plane, (choose e3 as normal to the

plane), with O in the plane

I11(O) + I22(O) = I33(O) .

This is simply checked by using equation (25) on page 33 and noting xα3 = 0.

Parallel Axes Theorem

If G is the centre of mass of the body its position vector R is given by

R =
∑

α
mαrα

/
M,

where rα are the position vectors relative to O and M =
∑

α
mα, is the total mass

of the system.

The parallel axes theorem states that

Iij(O)− Iij(G) = M
{

(R ·R) δij −RiRj
}

,

Proof: Let sα be the position ofmα with respect toG, then O -
GR

��
��
�

*
rα

mαr
�
��
�
sα

Iij(G) =
∑

α
mα

{
(sα· sα) δij − sαi s

α
j

}
;

Iij(O) =
∑

α
mα

{
(rα· rα) δij − xαi x

α
j

}

=
∑

α
mα

{
(R + sα)2 δij − (R + sα)i(R + sα)j

}

= M
{
R2δij −RiRj

}
+
∑

α
mα

{
(sα· sα) δij − sαi s

α
j

}

+2 δij R ·
∑

α
mαsα − Ri

∑

α
mαsαj −Rj

∑

α
mαsαi

= M
{
R2δij −RiRj

}
+ Iij(G)

42



the cross terms vanishing since
∑

α
mαsαi =

∑

α
mα

(
rαi − Ri

)
= 0 .

Example of use of Parallel Axes Theorem.

Consider the same arrangement of masses as before but
with O at one corner of the square i.e. a (massless)
lamina of side 2a, with masses m at each corner and the
origin O at the bottom, left so that the masses are at
(0, 0, 0), (2a, 0, 0), (0, 2a, 0) and (2a, 2a, 0)

-

6

e12a

e2

2a

O
r r
r r

We have M = 4m and

OG = R =
1

4m
{m(0, 0, 0) +m(2a, 0, 0) +m(0, 2a, 0) +m(2a, 2a, 0)}

= (a, a, 0)

and so G is at the centre of the square and R2 = 2a2 . We can now use the parallel axis

theorem to relate the inertia tensor of the previous example to that of the present

I(O)− I(G) = 4m



2a2




1 0 0
0 1 0
0 0 1


− a2




1 1 0
1 1 0
0 0 0





 = 4ma2




1 −1 0
−1 1 0

0 0 2


 .

From the previous example,

I(G) = 4ma2




1 0 0
0 1 0
0 0 2


 and hence

I(O) = 4ma2




1 + 1 0− 1 0
0− 1 1 + 1 0

0 0 2 + 2


 = 4ma2




2 −1 0
−1 2 0

0 0 4




end of lecture 9

2.3 Eigenvectors of Real, Symmetric Tensors

If T is a (2nd-rank) tensor an eigenvector n of T obeys (in any basis)

Tijnj = t ni .

where t is the eigenvalue of the eigenvector.

The tensor acts on the eigenvector to produce a vector in the same direction.

The direction of n doesn’t depend on the basis although its components do (because n is a

vector) and is sometimes referred to as a principal axis; t is a scalar (doesn’t depend on

basis) and is sometimes referred to as a principal value.
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2.3.1 Construction of the Eigenvectors

Since ni = δijnj , we can write the equation for an eigenvector as

(
Tij − t δij

)
nj = 0 .

This set of three linear equations has a non-trivial solution (i.e. a solution n 6= 0) iff

det (T − t 11) ≡ 0 .

i.e. ∣∣∣∣∣∣

T11 − t T12 T13

T21 T22 − t T23

T31 T32 T33 − t

∣∣∣∣∣∣
= 0 .

This is equation, known as the ‘characteristic’ or ‘secular’ equation, is a cubic in t, giving

3 real solutions t(1), t(2) and t(3) and corresponding eigenvectors n(1), n(2) and n(3).

Example:

T =




1 1 0
1 0 1
0 1 1


 .

The characteristic equation reads

∣∣∣∣∣∣

1− t 1 0
1 −t 1
0 1 1− t

∣∣∣∣∣∣
= 0.

Thus
(1− t){t(t− 1)− 1} − {(1− t)− 0} = 0

and so
(1− t){t2 − t− 2} = (1− t)(t− 2)(t+ 1) = 0.

Thus the solutions are t = 1, t = 2 and t = −1.

Check: The sum of the eigenvalues is 2, and is equal to the trace of the tensor; the reason

for this will become apparent next lecture.

We now find the eigenvector for each of these eigenvalues, by solving Tij nj = tni

(1− t)n1 + n2 = 0
n1 − t n2 + n3 = 0

n2 + (1− t)n3 = 0.

for t = 1, t = 2 and t = −1 in turn.
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For t = t(1) = 1, we denote the corresponding eigenvector by n(1) and the equations for the

components of n(1) are (dropping the label (1)):

n2 = 0
n1 − n2 + n3 = 0

n2 = 0



 =⇒ n2 = 0 ;n3 = −n1 .

Thus n1 : n2 : n3 = 1 : 0 : −1 and a unit vector in the direction of n(1) is

n̂(1) =
1√
2

(1, 0,−1) .

[ Note that we could equally well have chosen n̂(1) = −1√
2

(1, 0,−1) . ]

For t = t(2) = 2, the equations for the components of n(2) are:

−n1 + n2 = 0
n1 − 2n2 + n3 = 0

n2 − n3 = 0



 =⇒ n2 = n3 = n1 .

Thus n1 : n2 : n3 = 1 : 1 : 1 and a unit vector in the direction of n(2) is

n̂(2) =
1√
3

(1, 1, 1) .

For t = t(3) = −1, a similar calculation (exercise) gives

n̂(3) =
1√
6

(1,−2, 1) .

Note that n̂(1) · n̂(2) = n̂(1) · n̂(3) = n̂(2) · n̂(3) = 0 and so the eigenvectors are mutually

orthogonal.

The scalar triple product of the triad n̂(1), n̂(2) and n̂(3), with the above choice of signs, is

−1, and so they form a left-handed basis. Changing the sign of one (or all three) of the

vectors would produce a right-handed basis.

2.3.2 Important Theorem and Proof

Theorem: If Tij is real and symmetric, its eigenvalues are real. The eigenvectors corre-

sponding to distinct eigenvalues are orthogonal.

Proof: Let a and b be eigenvectors, with eigenvalues ta and tb respectively, then:–

Tijaj = ta ai (26)

Tijbj = tb bi (27)
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We multiply equation (26) by b∗i , and sum over i, giving:–

Tijajb
∗
i = ta aib

∗
i (28)

We now take the complex conjugate of equation (27), multiply by ai and sum over i, to

give:–

T∗ijb
∗
j ai = tb∗ b∗i ai (29)

Since Tij is real and symmetric, T∗ij = Tji , and so:–

l.h. side of equation (29) = Tjib
∗
j ai

= Tijb
∗
i aj = l.h. side of equation (28).

Subtracting (29) from (28) gives:–

(
ta − tb∗

)
aib
∗
i = 0 .

Case 1: consider what happens if b = a,

aia
∗
i =

3∑

i=1

|ai|2 > 0 for all non-zero a,

and so

ta = ta∗ .

Thus, we have shown that the eigenvalues are real.

Since t is real and Tij are real, real a, b can be found.

Case 2: now consider a 6= b, in which case ta 6= tb by hypothesis:

(
ta − tb

)
aibi = 0 .

If ta 6= tb, then aibi = 0, implying

a · b = 0 .

Thus the eigenvectors are orthogonal if the eigenvalues are distinct.
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2.3.3 Degenerate eigenvalues

If the characteristic equation is of the form

(t(1) − t)(t(2) − t)2 = 0

there is a repeated root and we have a doubly degenerate eigenvalue t(2).

Claim: In the case of a real, symmetric tensor we can nevertheless always find TWO

mutually orthogonal solutions for n(2) (which are both orthogonal to n(1)).

Example

T =




0 1 1
1 0 1
1 1 0


 ⇒ |T − t11| =

∣∣∣∣∣∣

−t 1 1
1 −t 1
1 1 −t

∣∣∣∣∣∣
= 0⇒ t = 2 and t = −1 (twice) .

For t = t(1) = 2 with eigenvector n(1)

−2n1 + n2 + n3 = 0
n1 − 2n2 + n3 = 0
n1 + n2 − 2n3 = 0



 =⇒





n2 = n3 = n1

n̂(1) = 1√
3

(1, 1, 1) .

For t = t(2) = −1 with eigenvector n(2)

n
(2)
1 + n

(2)
2 + n

(2)
3 = 0

is the only independent equation. This can be written as n(1) · n(2) = 0 which is the equa-

tion for a plane normal to n(1). Thus any vector orthogonal to n(1) is an eigenvector with

eigenvalue −1.

If we choose n
(2)
3 = 0, then n

(2)
2 = −n(2)

1 and a possible unit eigenvector is

n̂(2) =
1√
2

(1,−1, 0) .

If we require the third eigenvector n(3) to be orthogonal to n(2), then we must have n
(3)
2 = n

(3)
1 .

The equations then give n
(3)
3 = −2n

(3)
1 and so

n̂(3) =
1√
6

(1, 1,−2) .

Alternatively, the third eigenvector can be calculated by using n̂(3) = ±n̂(1) × n̂(2), the sign

chosen determining the handedness of the triad n̂(1), n̂(2), n̂(3). This particular pair, n(2) and
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n(3), is just one of an infinite number of orthogonal pairs that are eigenvectors of Tij — all

lying in the plane normal to n(1).

If the characteristic equation is of form

(t(1) − t)3 = 0

then we have a triply degenerate eigenvalue t(1). In fact, this only occurs if the tensor is equal

to t(1)δij which means it is ‘isotropic’ and any direction is an eigenvector with eigenvalue

t(1).

end of lecture 10

2.4 Diagonalisation of a Real, Symmetric Tensor

In the basis {ei} the tensor Tij is, in general, non-diagonal. i.e. Tij is non-zero for i 6= j.

However if we transform to a basis constructed from the normalised eigenvectors—the ‘prin-

cipal axes’—we find that the tensor becomes diagonal.

Transform to the basis {ei′} chosen such that

ei
′ = n(i) ,

where n(i) are the three normalized , and orthogonal , eigenvectors of Tij with eigenvalues

t(i) respectively.

Now

λij = ei
′ · ej = n(i) · ej = n

(i)
j .

i.e. the rows of λ are the components of the normalised eigenvectors of T .

In the basis {ei′}
T ′ij = (λTλT )ij

Now since the columns of λT are the normalised eigenvectors of T we see that

TλT =




T11 T12 T13

T21 T22 T23

T31 T32 T33







n
(1)
1 n

(2)
1 n

(3)
1

n
(1)
2 n

(2)
2 n

(3)
2

n
(1)
3 n

(2)
3 n

(3)
3


 =




t(1)n
(1)
1 t(2)n

(2)
1 t(3)n

(3)
1

t(1)n
(1)
2 t(2)n

(2)
2 t(3)n

(3)
2

t(1)n
(1)
3 t(2)n

(2)
3 t(3)n

(3)
3




λTλT =




n
(1)
1 n

(1)
2 n

(1)
3

n
(2)
1 n

(2)
2 n

(2)
3

n
(3)
1 n

(3)
2 n

(3)
3







t(1)n
(1)
1 t(2)n

(2)
1 t(3)n

(3)
1

t(1)n
(1)
2 t(2)n

(2)
2 t(3)n

(3)
2

t(1)n
(1)
3 t(2)n

(2)
3 t(3)n

(3)
3


 =




t(1) 0 0
0 t(2) 0
0 0 t(3)



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from the orthonormality of the n(i) (rows of λ; columns of λT ).

Thus, with respect to a basis defined by the eigenvectors or principal axes of the tensor,

the tensor has diagonal form. [ i.e. T ′ = diag{t(1), t(2), t(3)}. ] The diagonal basis is often

referred to as the ‘principal axes basis’.

Note: In the diagonal basis the trace of a tensor is the sum of the eigenvalues; the deter-

minant of the tensor is the product of the eigenvalues. Since the trace and determinant are

invariants this means that in any basis the trace and determinant are the sum and products

of the eigenvalues respectively.

Example: Diagonalisation of Inertia Tensor. Consider the inertia tensor for four

masses arranged in a square with the origin at the left hand corner (see lecture 9 p 36):

I(O) = 4ma2




2 −1 0
−1 2 0

0 0 4




It is easy to check (exercise) that the eigenvectors (or principal axes of inertia) are (e1 + e2)

(eigenvalue 4ma2), (e1 − e2) (eigenvalue 12ma2) and e3 (eigenvalue 16ma2).

-

6

�
�
�
�
�
�
�
���

@
@
@
@
@
@
@
@@I e1

′
e2
′

e1
2a

e2

2a

O

x x

x x

Defining the ei
′ basis as normalised eigenvectors: e1

′ = 1√
2
(e1 + e2) ; e2

′ = 1√
2
(−e1 + e2) ;

e3
′ = e3 , one obtains

λ =




1√
2

1√
2

0
−1√

2
1√
2

0

0 0 1


 ( ∼ rotation of π/4 about e3 axis)
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and the inertia tensor in the basis {ei ′} has components I ′ij(O) =
(
λ I(O)λT

)
ij so that

I ′(O) = 4ma2




1√
2

1√
2

0
−1√

2
1√
2

0

0 0 1






2 −1 0
−1 2 0

0 0 4






1√
2
−1√

2
0

1√
2

1√
2

0

0 0 1




= 4ma2




1 0 0
0 3 0
0 0 4


 .

We see that the tensor is diagonal with diagonal elements which are the eigenvalues (principal

moments of inertia).

Remark: Diagonalisability is a very special and useful property of real, symmetric tensors.

It is a property also shared by the more general class of Hermitean operators which you will

meet in quantum mechanics in third year. A general tensor does not share the property. For

example a real non-symmetric tensor cannot be diagonalised.

2.4.1 Symmetry and Eigenvectors of the Inertia Tensor

In the previous example the eigenvectors had some physical significance: in the original basis

e3 is perpendicular to the plane where the masses lie; e1 + e2 is along the diagonal of the

square.

By using the transformation law for the inertia tensor we can see how the symmetry of

the mass arrangement is related to the eigenvectors of the tensor. First we need to define

symmetry axes and planes.

A Symmetry Plane is a plane under reflection in which the distribution of mass remains

unchanged e.g. for a lamina with normal e3 the e1− e2 plane is a reflection symmetry plane.

Claim: A normal to a symmetry plane is an eigenvector

Proof: Choose e3 as the normal. Now since the mass distribution is invariant under reflection

in the symmetry plane, the representation of the tensor must be unchanged when the axes

are reflected in the plane i.e. the tensor should look exactly the same when the axes have

been transformed in such a way that the mass distribution with repect to the new axes is

the same as the mass distribution with respect to the old axes.

. .
.

I ′ = λIλT = I for λ a reflection in the e1–e2 plane λ =




1 0 0
0 1 0
0 0 −1


 .
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Calculating I ′ = λIλT gives

I ′ =




I11 I12 −I13

I21 I22 −I23

−I31 −I32 I33


 = I ⇒ I =




I11 I12 0
I21 I22 0
0 0 I33




and e3 is an eigenvector, eigenvalue I33.

An m-fold Symmetry Axis is an axis about which rotation of the system by 2π/m leaves

the mass distribution unchanged e.g. for the example of the previous subsection the diagonal

of the square is 2-fold symmetry axis.

Claim: A 2-fold symmetry axis is an eigenvector

Proof: Choose e3 as the symmetry axis. Now since the mass distribution is invariant under

rotation of π about this axis, the representation of the tensor must be unchanged when the

axes are rotated by π about e3

. .
.

I ′ = λIλT = I for λ a rotation of π about e3 λ =



−1 0 0
0 −1 0
0 0 1


 .

Calculating I ′ = λIλT gives

I ′ =




I11 I12 −I13

I21 I22 −I23

−I31 −I32 I33


 = I ⇒ I =




I11 I12 0
I21 I22 0
0 0 I33




and e3 is an eigenvector, eigenvalue I33.

Claim: An m-fold symmetry axis is an eigenvector and for m > 2 the orthogonal plane is

a degenerate eigenspace i.e. if e3 is chosen as the symmetry axis then I is of the form

I =




b 0 0
0 b 0
0 0 a




See e.g. the example in lecture 9 p.34/35 which has e3 as a 4-fold symmetry axis.

Proof: The idea is the same as the m = 2 case above. Because it is a bit more complicated

we do not include it here.

Note: The limit m→∞ yields a continuous symmetry axis. e.g. a cylinder, a cone ..
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2.4.2 Summary

a. The most general body with no symmetry:

the 3 orthogonal eigenvectors have to be found the hard way!

b. A body with a symmetry plane:

the normal to the symmetry plane is an eigenvector.

c. A body with a 2-fold symmetry axis:

the symmetry axis is an eigenvector.

d. A body with an m-fold symmetry axis (m > 2):

the symmetry axis is an eigenvector; there are degenerate eigenvectors normal to the

symmetry axis.

e. A body with spherical symmetry:

any vector is an eigenvector with the same eigenvalue! (triple degeneracy)

end of lecture 11

3 Fields

3.1 Examples of Fields

In physics we often have to consider properties that vary in some region of space e.g. tem-

perature of a body. To do this we require the concept of fields.

If to each point r in some region of ordinary 3-d space there corresponds a scalar φ(x1, x2, x3),

then φ(r) is a scalar field.

Examples: temperature distribution in a body T (r), pressure in the atmosphere P (r),

electric charge density or mass density ρ(r), electrostatic potential φ(r).
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Similarly a vector field assigns a vector V (x1, x2, x3) to each point r of some region.

Examples: velocity in a fluid v(r), electric current density J(r), electric field E(r), magnetic

field B(r)

A vector field in 2-d can be represented graphically, at a carefully selected set of points r, by

an arrow whose length and direction is proportional to V (r) e.g. wind velocity on a weather

forecast chart.

3.1.1 Level Surfaces of a Scalar Field

If φ(r) is a non-constant scalar field, then the equation φ(r) = c where c is a constant, defines

a level surface (or equipotential) of the field. Level surfaces do not intersect (else φ would

be multi-valued at the point of intersection).

Familiar examples in two dimensions, where they are level curves rather than level surfaces,

are the contours of constant height on a geographical map, h(x1, x2) = c . Also isobars on a

weather map are level curves of pressure P (x1, x2) = c.

Examples in three dimensions:

(i) Suppose that

φ(r) = x2
1 + x2

2 + x2
3 = x2 + y2 + z2

The level surface φ(r) = c is a sphere of radius
√
c centred on the origin. As c is varied, we

obtain a family of level surfaces which are concentric spheres.

(ii) Electrostatic potential due to a point charge q situated at the point a is

φ(r) =
q

4πε0

1

|r − a|

The level surfaces are concentric spheres centred on the point a.

(iii) Let φ(r) = k · r . The level surfaces are planes k · r = constant with normal k.

(iv) Let φ(r) = exp(ik · r) . Note that this a complex scalar field. Since k · r = constant is

the equation for a plane, the level surfaces are planes.
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3.1.2 Gradient of a Scalar Field

How does a scalar field change as we change position?

As an example think of a 2-d contour map of the height h = h(x, y) of a hill say. The

height is a scalar field. If we are on the hill and move in the x − y plane then the change

in height will depend on the direction in which we move (unless the hill is completely flat!).

For example there will be a direction in which the height increases most steeply (‘straight

up the hill’) We now introduce a formalism to describe how a scalar field φ(r) changes as a

function of r.

Mathematical Note: A scalar field φ(r) = φ(x1, x2, x3) is said to be continuously differ-

entiable in a region R if its first order partial derivatives

∂φ(r)

∂x1
,

∂φ(r)

∂x2
and

∂φ(r)

∂x3

exist and are continuous at every point r ∈ R. We will generally assume scalar fields are

continuously differentiable.

Let φ(r) be a scalar field. Consider 2 nearby points: P (position vector r) and Q (position

vector r + δr). Assume P and Q lie on different level surfaces as shown:

O

P

Q

r_ φ =

φ =

constant 2

constant 1

r_δ

Now use Taylor’s theorem for a function of 3 variables to evaluate the change in φ as we

move from P to Q

δφ ≡ φ(r + δr)− φ(r)

= φ(x1 + δx1, x2 + δx2, x3 + δx3)− φ(x1, x2, x3)

=
∂φ(r)

∂x1
δx1 +

∂φ(r)

∂x2
δx2 +

∂φ(r)

∂x3
δx3 +O( δx2

i )
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where we have assumed that the higher order partial derivatives exist. Neglecting terms of

order ( δx2
i ) we can write

δφ = ∇ φ(r) · δr

where the 3 quantities
(
∇ φ(r)

)
i

=
∂φ(r)

∂xi

form the Cartesian components of a vector field. We write

∇ φ(r) ≡ ei
∂φ(r)

∂xi
= e1

∂φ(r)

∂x1

+ e2

∂φ(r)

∂x2

+ e3

∂φ(r)

∂x3

or in the old ‘x, y, z’ notation (where x1 = x, x2 = y and x3 = z)

∇ φ(r) = e1

∂φ(r)

∂x
+ e2

∂φ(r)

∂y
+ e3

∂φ(r)

∂z

The vector field ∇φ(r), pronounced “grad phi”, is called the gradient of φ(r).

Example: calculate the gradient of φ = r2 = x2 + y2 + z2

∇φ(r) =

(
e1

∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z

)
(x2 + y2 + z2)

= 2x e1 + 2y e2 + 2z e3 = 2r

3.1.3 Interpretation of the gradient

In deriving the expression for δφ above, we assumed that the points P and Q lie on different

level surfaces. Now consider the situation where P and Q are nearby points on the same

level surface. In that case δφ = 0 and so

δφ = ∇φ(r) · δr = 0

P

Q
r_δ

∆_φ

.
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The infinitesimal vector δr lies in the level surface at r, and the above equation holds for all

such δr, hence

∇φ(r) is normal to the level surface at r.

To construct a unit normal n̂(r) to the level surface at r, we divide ∇φ(r) by its length

n̂(r) =
∇φ(r)

|∇φ(r)|
(
valid for |∇φ(r)| 6= 0

)

3.1.4 Directional Derivative

Now consider the change, δφ, produced in φ by moving distance δs in some direction say ŝ.

Then δr = ŝδs and

δφ = ∇φ(r) · δr = (∇φ(r) · ŝ) δs

As δs→ 0, the rate of change of φ as we move in the direction of ŝ is

dφ(r)

ds
= ŝ · ∇φ(r) = |∇φ(r)| cos θ (30)

where θ is the angle between ŝ and the normal to the level surface at r.

ŝ · ∇φ(r) is the directional derivative of the scalar field φ in the direction of ŝ.

Note that the directional derivative has its maximum value when s is parallel to ∇φ(r), and

is zero when s lies in the level surface. Therefore

∇φ points in the direction of the maximum rate of increase in φ

Also recall that this direction is normal to the level surface. For a familiar example think of

the contour lines on a map. The steepest direction is perpendicular to the contour lines.

Example: Find the directional derivative of φ = xy(x + z) at point (1, 2,−1) in the (e1 +

e2)/
√

2 direction.

∇φ = (2xy + yz)e1 + x(x + z)e2 + xye3 = 2e1 + 2e3

at (1,2,-1). Thus at this point

1√
2

(e1 + e2) · ∇φ =
√

2
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Physical example: Let T (r) be the temperature of the atmosphere at the point r. An

object flies through the atmosphere with velocity v. Obtain an expression for the rate of

change of temperature experienced by the object.

As the object moves from r to r + δr in time δt, it sees a change in temperature

δT (r) = ∇T (r) · δr =

(
∇T (r) · δr

δt

)
δt

Taking the limit δt→ 0 we obtain

dT (r)

dt
= v · ∇T (r)

end of lecture 12

3.2 More on Gradient; the Operator ‘Del’

3.2.1 Examples of the Gradient in Physical Laws

Gravitational force due to Earth: Consider the potential energy of a particle of mass

m at a height z above the Earth’s surface V = mgz. Then the force due to gravity can be

written as

F = −∇V = −mg e3

Newton’s Law of Gravitation: Now consider the gravitational force on a mass m at r

due to a mass m0 at the origin We can write this as

F = −Gmm0

r2
r̂ = −∇ V

where the potential energy V = −Gmm0/r (see p.51 for how to calculate ∇(1/r)).

In these two examples we see that the force acts down the potential energy gradient.

3.2.2 Examples on gradient

Last lecture some examples using ‘xyz’ notation were given. Here we do some exercises with

suffix notation. As usual suffix notation is most convenient for proving more complicated

identities.
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1. Let φ(r) = r2 = x2
1 + x2

2 + x2
3, then

∇φ(r) =

(
e1

∂

∂x1

+ e2

∂

∂x2

+ e3

∂

∂x3

)
(x2

1 + x2
2 + x2

3) = 2x1 e1 + 2x2 e2 + 2x3 e3 = 2r

In suffix notation

∇φ(r) = ∇ r2 =

(
ei

∂

∂xi

)
(xjxj) = ei (δijxj + xjδij) = ei 2xi = 2r

In the above we have used the important property of partial derivatives

∂xi
∂xj

= δij

The level surfaces of r2 are spheres centred on the origin, and the gradient of r2 at r

points radially outward with magnitude 2r.

2. Let φ = a · r where a is a constant vector.

∇ (a · r) =

(
ei

∂

∂xi

)
(ajxj) = ei ajδij = a

This is not surprising, since the level surfaces a · r = c are planes orthogonal to a.

3. Let φ(r) = r =
√
x2

1 + x2
2 + x2

3 = (xjxj)1/2

∇ r =

(
ei

∂

∂xi

)
(xjxj)1/2

= ei
1

2
(xjxj)−1/2 ∂

∂xi
(xkxk) (chain rule)

= ei
1

2r
2 xi

=
1

r
r = r̂

The gradient of the length of the position vector is the unit vector pointing radially

outwards from the origin. It is normal to the level surfaces which are spheres centered

on the origin.

3.2.3 Identities for gradients

If φ(r) and ψ(r) are real scalar fields, then:

1. Distributive law
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∇
(
φ(r) + ψ(r)

)
= ∇φ(r) +∇ψ(r)

Proof:

∇
(
φ(r) + ψ(r)

)
= ei

∂

∂xi

(
φ(r) + ψ(r)

)
= ∇φ(r) + ∇ψ(r)

2. Product rule

∇
(
φ(r) ψ(r)

)
= ψ(r) ∇φ(r) + φ(r) ∇ψ(r)

Proof:

∇
(
φ(r) ψ(r)

)
= ei

∂

∂xi

(
φ(r) ψ(r)

)

= ei

(
ψ(r)

∂φ(r)

∂xi
+ φ(r)

∂ψ(r)

∂xi

)

= ψ(r) ∇φ(r) + φ(r) ∇ψ(r)

3. Chain rule: If F (φ(r)) is a scalar field, then

∇F (φ(r)) =
∂F (φ)

∂φ
∇φ(r)

Proof:

∇F (φ(r)) = ei
∂

∂xi
F (φ(r)) = ei

∂F (φ)

∂φ

∂φ(r)

∂xi
=

∂F (φ)

∂φ
∇φ(r)

Example of Chain Rule: If φ(r) = r we can use result 3 from section 13.2 to give

∇F (r) =
∂F (r)

∂r
∇ r =

∂F (r)

∂r

1

r
r

If F (φ(r)) = φ(r)n = rn we find that

∇ (rn) = (n rn−1)
1

r
r = (n rn−2) r

In particular

∇
(

1

r

)
= − r

r3
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3.2.4 Transformation of the gradient

Here we prove the claim that the gradient actually is a vector (so far we assumed it was!).

Let the point P have coordinates xi in the ei basis and the same point P have coordinates

x′i in the ei
′ basis i.e. we consider the vector transformation law xi → x′i = λij xj.

φ(r) is a scalar if it depends only on the physical point P and not on the coordinates xi or

x′i used to specify P . The value of φ at P is invariant under a change of basis λ (but the

function may look different).

φ(x1, x2, x3)→ φ′(x′1, x
′
2, x

′
3) = φ(x1, x2, x3)

Now consider ∇φ in the new (primed) basis. Its components are

∂

∂x′i
φ′(x′1, x

′
2, x

′
3)

Using the chain rule, we obtain

∂

∂x′i
φ′(x′1, x

′
2, x

′
3) =

∂xj

∂x′i

∂

∂xj
φ(x1, x2, x3) .

Since xj = λkj x
′
k (inverse vector transformation law)

∂xj

∂x′i
= λkj

∂x′k
∂x′i

= λkj δik = λij .

Hence
∂

∂x′i
φ(x1, x2, x3) = λij

∂

∂xj
φ(x1, x2, x3) .

which shows that the components of ∇φ respect the vector transformation law. Thus ∇φ(r)

transforms as a vector field as claimed.

3.2.5 The Operator ‘Del’

We can think of the vector operator ∇ (confusingly pronounced “del”) acting on the

scalar field φ(r) to produce the vector field ∇φ(r).

In Cartesians: ∇ = ei
∂

∂xi
= e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
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We call ∇ an ‘operator’ since it operates on something to its right. It is a vector operator

since it has vector transformation properties. (More precisely it is a linear differential vector

operator!)

We have seen how ∇ acts on a scalar field to produce a vector field. We can make products

of the vector operator ∇ with other vector quantities to produce new operators and fields in

the same way as we could make scalar and vector products of two vectors.

For example, recall that the directional derivative of φ in direction ŝ was given by ŝ · ∇φ.

Generally, we can interpret A · ∇ as a scalar operator:

A · ∇ = Ai
∂

∂xi

i.e. A · ∇ acts on a scalar field to its right to produce another scalar field

(A · ∇) φ(r) = Ai
∂φ(r)

∂xi
= A1

∂φ(r)

∂x1
+ A2

∂φ(r)

∂x2
+ A3

∂φ(r)

∂x3

Actually we can also act with this operator on a vector field to get another vector field.

(A · ∇) V (r) = Ai
∂

∂xi
V (r) = Ai

∂

∂xi

(
Vj(r) ej

)

= e1 (A · ∇)V1(r) + e2 (A · ∇)V2(r) + e3 (A · ∇)V3(r)

The alternative expression A ·
(
∇V (r)

)
is undefined because ∇V (r) doesn’t make sense.

N.B. Great care is required with the order in products since, in general, products involving

operators are not commutative. For example

∇ ·A 6= A · ∇

A · ∇ is a scalar differential operator whereas ∇ · A =
∂Ai
∂xi

gives a scalar field called the

divergence of A.

end of lecture 13

3.3 More on Vector Operators

In this lecture we combine the vector operator ∇ (‘del’) with a vector field to define two new

operations ‘div’ and ‘curl’. Then we define the Laplacian.
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3.3.1 Divergence

We define the divergence of a vector field A (pronounced ‘div A’ ) as:-

divA(r) ≡ ∇ · A(r)

In Cartesian coordinates

∇ · A(r) =
∂

∂xi
Ai(r) =

∂A1(r)

∂x1

+
∂A2(r)

∂x2

+
∂A3(r)

∂x3

or
∂Ax(r)

∂x
+
∂Ay(r)

∂y
+
∂Az(r)

∂z
in x, y, z notation

It is easy to show that ∇ · A(r) is a scalar field: Under a change of basis ei → ei
′ = λij ej

(
∇ · A(r)

)′
=

∂

∂x′i
A′i(x

′
1, x

′
2, x

′
3) =

∂xj

∂x′i

∂

∂xj

(
λikAk(x1, x2, x3)

)

= λij λik
∂

∂xj
Ak(x1, x2, x3) = δjk

∂

∂xj
Ak(x1, x2, x3)

=
∂

∂xj
Aj(x1, x2, x3) = ∇ ·A(r)

Hence ∇ · A is invariant under a change of basis and is thus a scalar field.

Example: A(r) = r ⇒ ∇ · r = 3 a very useful & important result!

∇ · r =
∂x1

∂x1
+
∂x2

∂x2
+
∂x3

∂x3
= 1 + 1 + 1 = 3

In suffix notation

∇ · r =
∂xi
∂xi

= δii = 3.

Example: Here we use ‘xyz’ notation: x1 = x, x2 = y, x3 = z. Consider A = x2z e1 −
2y3z2 e2 + xy2z e3

∇ · A =
∂

∂x
(x2z) − ∂

∂y
(2y3z2) +

∂

∂z
(xy2z)

= 2xz − 6y2z2 + xy2

Thus for instance at the point (1,1,1) ∇ · A = 2− 6 + 1 = −3.
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3.3.2 Curl

We define the curl of a vector field, curlA, as

curlA(r) ≡ ∇× A(r)

Note that curl A is a vector field

In Cartesian coordinates

∇× A = ei
(
∇× A

)
i

= ei εijk
∂

∂xj
Ak

ie, the ith component of ∇× A is

(
∇× A

)
i = εijk

∂

∂xj
Ak

More explicitly
(
∇× A

)
1

=
∂A3

∂x2
− ∂A2

∂x3
etc,

Instead of the above equation for curl that uses εijk , one can use a determinant form (c.f.

the expression of the vector product)

∇× A =

∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x1

∂

∂x2

∂

∂x3

A1 A2 A3

∣∣∣∣∣∣∣∣
or

∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣
.

Example: A(r) = r ⇒ ∇× r = 0 another very useful & important result!

∇× r = ei εijk
∂

∂xj
xk

= ei εijk δjk = ei εijj = 0

or, using the determinant formula, ∇× r =

∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x1

∂

∂x2

∂

∂x3

x1 x2 x3

∣∣∣∣∣∣∣∣
≡ 0
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Example: Compute the curl of V = x2ye1 + y2xe2 + xyze3:

∇× V =

∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z
x2y y2x xyz

∣∣∣∣∣∣∣∣∣
= e1(xz − 0)− e2(yz − 0) + e3(y2 − x2)

3.3.3 Physical Interpretation of ‘div’ and ‘curl’

Full interpretations of the divergence and curl of a vector field are best left until after we have

studied the Divergence Theorem and Stokes’ Theorem respectively. However, we can gain

some intuitive understanding by looking at simple examples where div and/or curl vanish.

First consider the radial field A = r ; ∇ ·A = 3 ; ∇×A = 0.
We sketch the vector field A(r) by drawing at selected points
vectors of the appropriate direction and magnitude. These
give the tangents of ‘flow lines’. Roughly speaking, in this
example the divergence is positive because bigger arrows come
out of a point than go in. So the field ‘diverges’. (Once the
concept of flux of a vector field is understood this will make
more sense.)

v

v_

_

Now consider the field v = ω × r where ω is a constant
vector. One can think of v as the velocity of a point in
a rigid rotating body. We sketch a cross-section of the
field v with ω chosen to point out of the page. We can
calculate ∇× v as follows:

∇×
(
ω × r

)
= ei εijk

∂

∂xj

(
ω × r

)
k = ei εijk

∂

∂xj
εklm ωl xm

= ei

(
δil δjm − δim δjl

)
ωl δjm

(
since

∂ωl
∂xj

= 0

)

= ei

(
ωi δjj − δij ωj

)
= ei 2ωi = 2ω

Thus we obtain yet another very useful & important result:

∇×
(
ω × r

)
= 2ω

To understand intuitively the non-zero curl imagine that the flow lines are those of a rotating

fluid with a small ball centred on a flow line of the field. The centre of the ball will follow
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the flow line. However the effect of the neighbouring flow lines is to make the ball rotate.

Therefore the field has non-zero ‘curl’ and the axis of rotation gives the direction of the curl.

In the previous example (A = r) the ball would just move away from origin without rotating

therefore the field r has zero curl.

Terminology:

1. If ∇ · A(r) = 0 in some region R, A is said to be solenoidal in R.

2. If ∇× A(r) = 0 in some region R, A is said to be irrotational in R.

3.3.4 The Laplacian Operator ∇2

We may take the divergence of the gradient of a scalar field φ(r)

∇ · (∇φ(r)) =
∂

∂xi

∂

∂xi
φ(r) ≡ ∇2φ(r)

∇2 is the Laplacian operator, pronounced ‘del-squared’. In Cartesian coordinates

∇2 =
∂

∂xi

∂

∂xi

More explicitly

∇2 φ(r) =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

or
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂x2

It may be shown that the Laplacian of a scalar field ∇2 φ is also a scalar field, i.e. the

Laplacian is a scalar operator.

Example

∇2 r2 =
∂

∂xi

∂

∂xi
xjxj =

∂

∂xi
(2xi) = 2δii = 6 .

In Cartesian coordinates, the effect of the Laplacian on a vector field A is defined to be

∇2A(r) =
∂

∂xi

∂

∂xi
A(r) =

∂2

∂x2
1

A(r) +
∂2

∂x2
2

A(r) +
∂2

∂x2
3

A(r)

The Laplacian acts on a vector field to produce another vector field.

end of lecture 14
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3.4 Vector Operator Identities

There are many identities involving div, grad, and curl. It is not necessary to know all of

these, but you are advised to be able to produce from memory expressions for ∇r, ∇ · r,
∇× r, ∇φ(r), ∇(a · r), ∇× (a× r), ∇(fg), and first four identities given below. You should

be familiar with the rest and to be able to derive and use them when necessary!

Most importantly you should be at ease with div, grad and curl. This only comes through

practice and deriving the various identities gives you just that. In these derivations the

advantages of suffix notation, the summation convention and εijk will become apparent.

In what follows, φ(r) is a scalar field; A(r) and B(r) are vector fields.

3.4.1 Distributive Laws

1. ∇ · (A + B) = ∇ · A + ∇ ·B

2. ∇× (A + B) = ∇× A + ∇×B

The proofs of these are straightforward using suffix or ‘x y z’ notation and follow from the

fact that div and curl are linear operations.

3.4.2 Product Laws

The results of taking the div or curl of products of vector and scalar fields are predictable

but need a little care:-

3. ∇ · (φA) = φ ∇ · A + A · ∇φ

4. ∇× (φA) = φ (∇× A) + (∇φ)× A = φ (∇× A) − A×∇φ

Proof of (4): first using εijk

∇× (φA) = ei εijk
∂

∂xj
(φAk)

= ei εijk

(
φ

(
∂Ak
∂xj

)
+

(
∂φ

∂xj

)
Ak

)

= φ (∇× A) + (∇φ)× A
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or avoiding εijk and using ‘x y z’ notation: ∇× (φA) =

∣∣∣∣∣∣∣∣

ex ey ez
∂

∂x

∂

∂y

∂

∂z
φAx φAy φAz

∣∣∣∣∣∣∣∣
.

The x component is given by

∂(φAz)

∂y
− ∂(φAy)

∂z
= φ(

∂Az
∂y
− ∂Ay

∂z
) +

(
∂φ

∂y

)
Az −

(
∂φ

∂z

)
Ay

= φ(∇× A)x +
[
(∇φ)× A

]
x

A similar proof holds for the y and z components.

Although we have used Cartesian coordinates in our proofs, the identities hold in all coor-

dinate systems.

3.4.3 Products of Two Vector Fields

Things start getting complicated!

5. ∇ (A ·B) = (A · ∇)B + (B · ∇)A + A× (∇× B) + B × (∇× A)

6. ∇ · (A×B) = B · (∇× A) − A · (∇× B)

7. ∇× (A×B) = A (∇ ·B) − B (∇ · A) + (B · ∇)A − (A · ∇)B

Proof of (6):

∇ · (A× B) =
∂

∂xi
εijk Aj Bk

= εijk

(
∂Aj

∂xi

)
Bk + εijk Aj

(
∂Bk
∂xi

)

= Bkεkij
∂Aj

∂xi
− Ajεjik

∂Bk
∂xi

The proofs of (5) and (7) involve the product of two epsilon symbols. For example, this is

why there are four terms on the rhs of (7).

All other results involving one ∇ can be derived from the above identities.

Example: If a is a constant vector, and r is the position vector, show that

∇ (a · r) = (a · ∇) r = a
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In lecture 13 we showed that ∇ (a · r) = a for constant a. Hence, we need only evaluate

(a · ∇) r = ai
∂

∂xi
ej xj = ai ej δij = ai ei = a (31)

and the identity holds.

Example: Show that ∇ · (ω × r) = 0 where ω is a constant vector.

Using (6) ∇ · (ω × r) = r · (∇× ω) − ω · (∇× r) = 0− 0

Example: Show that ∇ · (r−3r) = 0, for r 6= 0 (where r = |r| as usual).

Using identity (3), we have

∇ · (r−3r) = r−3 (∇ · r) + r · ∇(r−3)

We have previously shown that ∇ · r = 3 and that ∇(rn) = n rn−2 r. Hence

∇ · (r−3r) = r−3 (∇ · r) + r · ∇(r−3)

=
3

r3
+ r ·

(−3

r5
r

)

=
3

r3
+
−3

r5
r2 = 0 (except at r = 0)

3.4.4 Identities involving 2 gradients

8. ∇× (∇φ) = 0 curl grad φ is always zero.

9. ∇ · (∇× A) = 0 div curl A is always zero.

10. ∇× (∇× A) = ∇(∇ ·A) − ∇2A

Proofs are easily obtained in Cartesian coordinates using suffix notation:-

Proof of (8)

∇× (∇φ) = ei εijk
∂

∂xj
(∇φ)k = ei εijk

∂

∂xj

∂

∂xk
φ

= ei εijk
∂

∂xk

∂

∂xj
φ

(
since

∂2φ

∂x∂y
=

∂2φ

∂y∂x
etc

)

= ei εikj
∂

∂xj

∂

∂xk
φ (interchanging labels j and k)

= −ei εijk
∂

∂xj

∂

∂xk
φ (ikj → ijk gives minus sign)

= −∇× (∇φ) = 0
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since any vector equal to minus itself is must be zero. The proof of (9) is similar. It is

important to understand how these two identities stem from the anti-symmetry of εijk .

Proof of (10)

∇× (∇× A) = ei εijk
∂

∂xj
(∇× A)k

= ei εijk
∂

∂xj
εklm

∂

∂xl
Am

= ei

((
δil δjm − δim δjl

) ∂

∂xj

∂

∂xl
Am

)

= ei

(
∂

∂xj

∂

∂xi
Aj −

∂

∂xj

∂

∂xj
Ai

)

= ei

(
∂

∂xi
(∇ ·A) − ∇2Ai

)

= ∇(∇ · A) − ∇2 A

Although this proof look tedious it is far simpler than trying to use ‘xyz’ (try both and see!).

It is an important result and is used frequently in electromagnetism, fluid mechanics, and

other ‘field theories’.

Finally, when a scalar field φ depends only on the magnitude of the position vector r = |r|,
we have

∇2 φ(r) = φ′′(r) +
2φ′(r)

r
where the prime denotes differentiation with respect to r. Proof of this relation is left to the

tutorial.

3.4.5 Polar Co-ordinate Systems

Before commencing with integral vector calculus we review here polar co-ordinate systems.

Here dV indicates a volume element and dA an area element. Note that different conventions,

e.g. for the angles φ and θ, are sometimes used, in particular in the Mathematics ‘Several

Variable Calculus’ Module.

Plane polar co-ordinates

Cylindrical polar co-ordinates

Spherical polar co-ordinates

end of lecture 15
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x = r cos
y = r sin

φ φ
φ

y

x

d
r

rd

dr
φdA = r dr d

φ
φ

x y

sin

z

dz

dφ
φ

dφ

z = z
ρ

dρ

ρ

y = 
x =  

dV = 

ρ
ρ

ρ ρd dφ dz

φcos
φ

4 Integrals over Fields

4.1 Scalar and Vector Integration and Line Integrals

4.1.1 Scalar & Vector Integration

You should already be familar with integration in IR1, IR2, IR3. Here we review integration

of a scalar field with an example.

Consider a hemisphere of radius a centered on the e3 axis and with bottom face at z = 0. If

the mass density (a scalar field) is ρ(r) = σ/r where σ is a constant, then what is the total

mass?

It is most convenient to use spherical polars (see lecture 15). Then

M =

∫

hemisphere

ρ(r)dV =

∫ a

0

r2ρ(r)dr

∫ π/2

0

sin θdθ

∫ 2π

0

dφ = 2πσ

∫ a

0

rdr = πσa2

Now consider the centre of mass vector

MR =

∫

V

rρ(r)dV
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x y

2

z

φ
dφ

dr

r

rdθ

r sinθ d

θ
dθ

φ

x = r sin θ cosφ
y = r sinθ sinφ
z = r cosθ

dV = r sinθ dr dθ dφ

This is our first example of integrating a vector field (here rρ(r)). To do so simply integrate

each component using r = r sin θ cosφe1 + r sin θ sinφe2 + r cos θe3

MX =

∫ a

0

r3ρ(r)dr

∫ π/2

0

sin2 θdθ

∫ 2π

0

cosφ dφ = 0 since φ integral gives 0

MY =

∫ a

0

r3ρ(r)dr

∫ π/2

0

sin2 θdθ

∫ 2π

0

sin φ dφ = 0 since φ integral gives 0

MZ =

∫ a

0

r3ρ(r)dr

∫ π/2

0

sin θ cos θdθ

∫ 2π

0

dφ = 2πσ

∫ a

0

r2dr

∫ π/2

0

sin 2θ

2
dθ

=
2πσa3

3

[− cos 2θ

4

]π/2

0

=
πσa3

3
. .
.

R =
a

3
e3

4.1.2 Line Integrals

P

Q

r

F(r)_ _

_

O

C _dr

As an example, consider a particle constrained to move
on a wire say. Only the component of the force along the
wire does any work. Therefore the work done in moving
the particle from r to r + dr is

dW = F · dr .

The total work done in moving particle along a wire
which follows some curve C between two points P,Q is

WC =

∫ Q

P

dW =

∫

C

F (r) · dr .

This is a line integral along the curve C.

More generally let A(r) be a vector field defined in the region R, and let C be a curve in R

joining two points P and Q. r is the position vector at some point on the curve; dr is an

infinitesimal vector along the curve at r.

The magnitude of dr is the infinitesimal arc length: ds =
√
dr · dr.
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We define t̂ to be the unit vector tangent to the curve at r (points in the direction of dr)

t̂ =
dr

ds

Note that, in general,

∫

C

A · dr depends on the path joining P and Q.

In Cartesian coordinates, we have
∫

C

A · dr =

∫

C

Aidxi =

∫

C

(A1dx1 + A2dx2 + A3dx3)

4.1.3 Parametric Representation of a line integral

Often a curve in 3d can be parameterised by a single parameter e.g. if the curve were the

trajectory of a particle then time would be the parameter. Sometimes the parameter of a

line integral is chosen to be the arc-length s along the curve C.

Generally for parameterisation by λ (varying from λP to λQ)

xi = xi(λ), with λP ≤ λ ≤ λQ

then ∫

C

A · dr =

∫ λQ

λP

(
A · dr

dλ

)
dλ =

∫ λQ

λP

(
A1

dx1

dλ
+ A2

dx2

dλ
+ A3

dx3

dλ

)
dλ

If necessary, the curve C may be subdivided into sections, each with a different parameteri-

sation (piecewise smooth curve).

Example: A = (3x2 + 6y) e1 − 14yze2 + 20xz2e3. Evaluate

∫

C

A · dr between the points

with Cartesian coordinates (0, 0, 0) and (1, 1, 1), along the paths C:

1. (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (1, 1, 1) (straight lines).

2. x = λ, y = λ2 z = λ3; from λ = 0 to λ = 1.

1. • Along the line from (0, 0, 0) to (1, 0, 0), we have y = z = 0, so dy = dz = 0,

hence dr = e1 dx and A = 3x2 e1, (here the parameter is x):

∫ (1,0,0)

(0,0,0)

A · dr =

∫ x=1

x=0

3x2 dx =
[
x3
]1

0
= 1
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x

y

z

(1,0,0)

(1,1,0)

(1,1,1)

O

path 2

path 1

• Along the line from (1, 0, 0) to (1, 1, 0), we have x = 1, dx = 0, z = dz = 0,

so dr = e2 dy (here the parameter is y) and

A =
(

3x2 + 6y
)∣∣
x=1

e1 = (3 + 6y) e1.

∫ (1,1,0)

(1,0,0)

A · dr =

∫ y=1

y=0

(3 + 6y) e1 · e2 dy = 0.

• Along the line from (1, 1, 0) to (1, 1, 1), we have x = y = 1, dx = dy = 0,

and hence dr = e3 dz and A = 9 e1 − 14z e2 + 20z2 e3, therefore

∫ (1,1,1)

(1,1,0)

A · dr =

∫ z=1

z=0

20z2 dz =

[
20

3
z3

]1

0

=
20

3

Adding up the 3 contributions we get

∫

C

A · dr = 1 + 0 +
20

3
=

23

3
along path (1)

2. To integrate A = (3x2 +6y) e1−14yze2 +20xz2e3 along path (2) (where the parameter

is λ), we write

r = λ e1 + λ2 e2 + λ3 e3

dr

dλ
= e1 + 2λ e2 + 3λ2 e3

A =
(
3λ2 + 6λ2

)
e1 − 14λ5 e2 + 20λ7 e3 so that

∫

C

(
A · dr

dλ

)
dλ =

∫ λ=1

λ=0

(
9λ2 − 28λ6 + 60λ9

)
dλ =

[
3λ3 − 4λ7 + 6λ10

]1
0

= 5

Hence

∫

C

A · dr = 5 along path (2)
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In this case, the integral of A from (0, 0, 0) to (1, 1, 1) depends on the path taken.

The line integral

∫

C

A ·dr is a scalar quantity. Another scalar line integral is

∫

C

f ds where

f(r) is a scalar field and ds is the infinitesimal arc-length introduced earlier.

Line integrals around a simple (doesn’t intersect itself) closed curve C are denoted by

∮

C

e.g.

∮

C

A · dr ≡ the circulation of A around C

Example : Let f(r) = ax2 + by2. Evaluate

∮

C

f ds around the unit circle C in the x − y
plane, centred on the origin:

x = cosφ, y = sinφ, z = 0; 0 ≤ φ ≤ 2π.

We have f(r) = ax2 + by2 = a cos2 φ + b sin2 φ

r = cosφ e1 + sinφ e2

dr = (− sinφ e1 + cosφ e2) dφ

so ds =
√
dr · dr =

(
cos2 φ + sin2 φ

)1/2
dφ = dφ

Therefore, for this example,
∮

C

f ds =

∫ 2π

0

(
a cos2 φ + b sin2 φ

)
dφ = π (a + b)

The length s of a curve C is given by s =

∫

C

ds. In this example s = 2π.

We can also define vector line integrals e.g.:-

1.

∫

C

A ds = ei

∫

C

Ai ds in Cartesian coordinates.

2.

∫

C

A× dr = ei εijk

∫

C

Aj dxk in Cartesians.

Example : Consider a current of magnitude I flowing along a wire following a closed path

C. The magnetic force on an element dr of the wire is Idr × B where B is the magnetic
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field at r. Let B(r) = x e1 + y e2. Evaluate

∮

C

B × dr for a circular current loop of radius a

in the x− y plane, centred on the origin.

B = a cosφ e1 + a sinφ e2

dr = (−a sinφ e1 + a cosφ e2) dφ

Hence

∮

C

B × dr =

∫ 2π

0

(
a2 cos2 φ + a2 sin2 φ

)
e3 dφ = e3 a

2

∫ 2π

0

dφ = 2πa2 e3

end of lecture 16

4.2 The Scalar Potential

Consider again the work done by a force. If the force is conservative, i.e. total energy is

conserved, then the work done is equal to minus the change in potential energy

dV = −dW = −F · dr = −Fidxi

Now we can also write dV as

dV =
∂V

∂xi
dxi = (∇V )idxi

Therefore we can identify F = −∇V

Thus the force is minus the gradient of the (scalar) potential. The minus sign is conventional

and chosen so that potential energy decreases as the force does work.

In this example we knew that a potential existed (we postulated conservation of energy).

More generally we would like to know under what conditions can a vector field A(r) be

written as the gradient of a scalar field φ, i.e. when does A(r) = (±)∇φ(r) hold?

Aside: A simply connected region R is a region where every closed curve in R can be

shrunk continuously to a point while remaining entirely in R. The inside of a sphere is simply

connected while the region between two concentric cylinders is not simply connected: it is

doubly connected. For this course we shall be concerned with simply connected regions

4.2.1 Theorems on Scalar Potentials

For a vector field A(r) defined in a simply connected region R, the following three statements

are equivalent, i.e., any one implies the other two:-

1. A(r) can be written as the gradient of a scalar potential φ(r)

75



A(r) = ∇φ(r) with φ(r) =

∫ r

r
0

A(r′) · dr′

where r
0

is some arbitrary fixed point in R.

2. (a)

∮

C

A(r′) · dr′ = 0, where C is any closed curve in R

(b) φ(r) ≡
∫ r

r
0

A(r′) · dr′ does not depend on the path between r
0

and r.

3. ∇× A(r) = 0 for all points r ∈ R

Proof that (2) implies (1)

Consider two neighbouring points r and r + dr, define the potential as before

φ(r) =

∫ r

r
0

A(r′) · dr′

and define dφ as

dφ(r) = φ(r + dr) − φ(r) =

{∫ r+dr

r
0

A(r′) · dr′ −
∫ r

r
0

A(r′) · dr′
}

(by definition)

=

{∫ r+dr

r
0

A(r′) · dr′ +

∫ r
0

r
A(r′) · dr′

}
(swapped limits on 2nd

∫
)

=

∫ r+dr

r
A(r′) · dr′ (combined integrals using path independence)

= A(r) · dr (for infinitesimal dr)

But, by Taylor’s theorem, we also have

dφ(r) =
∂φ(r)

∂xi
dxi = ∇φ(r) · dr

Comparing the two different equations for dφ(r), which hold for all dr, we deduce

A(r) = ∇φ(r)

Thus we have shown that path independence implies the existence of a scalar potential φ

for the vector field A. (Also path independence implies 2(a) ).
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Proof that (1) implies (3) (the easy bit!)

A = ∇φ ⇒ ∇× A = ∇×
(
∇φ
)
≡ 0

because curl (grad φ) is identically zero (ie it is zero for any scalar field φ).

Proof that (3) implies (2): (the hard bit!)

We defer the proof until we have met Stokes’ theorem in a few lectures time.

Terminology: A vector field is

• irrotational if ∇× A(r) = 0.

• conservative if A(r) = ∇φ .

• For simply connected regions we have shown irrotational and conservative are synony-

mous. But note that for a multiply connected region this is not the case.

Note: φ(r) is only determined up to a constant: if ψ = φ + constant then ∇ψ = ∇φ and

ψ can equally well serve as a potential. The freedom in the constant corresponds to the

freedom in choosing r
0

to calculate the potential. Equivalently the absolute value of a scalar

potential has no meaning, only potential differences are significant.

4.2.2 Finding Scalar Potentials

We have shown that the scalar potential φ(r) for a conservative vector field A(r) can be

constructed from a line integral which is independent of the path of integration between the

endpoints. Therefore, a convenient way of evaluating such integrals is to integrate along a

straight line between the points r
0

and r. Choosing r
0

= 0, we can write this integral in

parametric form as follows:

r′ = λ r where {0 ≤ λ ≤ 1} so dr′ = dλ r and therefore

φ(r) =

∫ λ=1

λ=0

A(λ r) · (dλ r)

Example 1: Let A(r) = (a · r) a where a is a constant vector.
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It is easy to show that ∇× ((a · r) a) = 0 (tutorial). Thus

φ(r) =

∫ r

0

A(r′) · dr′ =
∫ r

0

(a · r′) a · dr′

=

∫ 1

0

(a · λ r) a · (dλ r) = (a · r)2

∫ 1

0

λ dλ

=
1

2
(a · r)2

Note: Always check that your φ(r) satisfies A(r) = ∇φ(r) !

Example 2: Let A(r) = 2 (a · r) r + r2 a where a is a constant vector.

It is straightforward to show that ∇× A = 0. Thus

φ(r) =

∫ r

0

A(r′) · dr′ =

∫ 1

0

A(λ r) · (dλ r)

=

∫ 1

0

[
2 (a · λ r)λ r + λ2r2 a

]
· (dλ r)

=

[
2 (a · r) r · r + r2 (a · r)

]∫ 1

0

λ2 dλ

= r2 (a · r)

Example 2 (revisited): Again, let A(r) = 2 (a · r) r + r2 a here a is a constant vector.

A(r) = 2 (a · r) r + r2 a = (a · r)∇r2 + r2∇(a · r) = ∇
(

(a · r) r2 + const

)

in agreement with what we had before if we choose const = 0.

While this method is not as systematic as Method 1, it can be quicker if you spot the trick!

4.2.3 Conservative forces: conservation of energy

Let us now see how the name conservative field arises. Consider a vector field F (r) corre-

sponding to the only force acting on some test particle of mass m. We will show that for a

conservative force (where we can write F = −∇V ) the total energy is constant in time.

Proof: The particle moves under the influence of Newton’s Second Law:

mr̈ = F (r).

Consider a small displacement dr along the path taking time dt. Then

mr̈ · dr = F (r) · dr = −∇V (r) · dr.
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Integrating this expression along the path from r
A

at time t = tA to r
B

at time t = tB yields

m

∫ r
B

r
A

r̈ · dr = −
∫ r

B

r
A

∇V (r) · dr.

We can simplify the left-hand side of this equation to obtain

m

∫ r
B

r
A

r̈ · dr = m

∫ tB

tA

r̈ · ṙ dt = m

∫ tB

tA

1
2

d

dt
ṙ2dt = 1

2
m[v2

B − v2
A],

where vA and vB are the magnitudes of the velocities at points A and B respectively.

The right-hand side simply gives

−
∫ r

B

r
A

∇V (r) · dr = −
∫ r

B

r
A

dV = VA − VB

where VA and VB are the values of the potential V at r
A

and r
B

, respectively. Therefore

1

2
mv2

A + VA =
1

2
mv2

B + VB

and the total energy E = 1
2
mv2 + V is conserved, i.e. constant in time.

Newtonian gravity and the electrostatic force are both conservative. Frictional forces are not

conservative; energy is dissipated and work is done in traversing a closed path. In general,

time-dependent forces are not conservative.

end of lecture 17

4.2.4 Physical Examples of Conservative Forces

Newtonian Gravity and the electrostatic force are both conservative. Frictional forces are not

conservative; energy is dissipated and work is done in traversing a closed path. In general,

time-dependent forces are not conservative.

The foundation of Newtonian Gravity is Newton’s Law of Gravitation. The force F on

a particle of mass m1 at r due to a particle of mass m at the origin is given by

F = −Gmm1

r̂

r2

where G = 6.672 59(85)× 10−11Nm2kg2 is Newton’s Gravitational Constant.

The gravitational field G(r) (due to the mass at the origin) is formally defined as

G(r) = lim
m1→0

F (r)

m1

.
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so that the gravitational field due to the test mass m1 can be ignored. The gravitational

potential can be obtained by spotting the direct integration for G = −∇φ

φ = −Gm
r

.

Alternatively, to calculate by a line integral choose r
0

=∞ then

φ(r) = −
∫ r

∞
G(r′) · dr′ = −

∫ 1

∞
G(λr) · dλr

=

∫ 1

∞

Gm (r̂ · r)
r2

dλ

λ2
= −Gm

r

NB In this example the vector field G is singular at the origin r = 0. This implies we have

to exclude the origin and it is not possible to obtain the scalar potential at r by integration

along a path from the origin. Instead we integrate from infinity, which in turn means that

the gravitational potential at infinity is zero.

NB Since F = m1G = −∇(m1φ) the potential energy of the mass m1 is V = m1φ. The

distinction (a convention) between potential and potential energy is a common source of

confusion.

Electrostatics: Coulomb’s Law states that the force F on a particle of charge q1 at r in

the electric field E due to a particle of charge q at the origin is given by

F = q1E =
q1 q

4πε0

r̂

r2

where ε0 = 8.854 187 817 · · ·× 10−12 C2N−1m−2 is the Permitivity of Free Space and the

4π is conventional. More strictly,

E(r) = lim
q1→0

F (r)

q1
.

The electrostatic potential is taken as φ = 1/(4πε0r) (obtained by integrating E = −∇φ
from infinity to r) and the potential energy of a charge q1 in the electric field is V = q1φ.

Note that mathematically electrostatics and gravitation are very similar, the only real dif-

ference being that gravity between two masses is always attractive, whereas like charges

repel.

end of add-on to lecture 17
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4.3 Surface Integrals

S

S

d

n̂_ Let S be a two-sided surface in ordinary three-
dimensional space as shown. If an infinitesimal element
of surface with (scalar) area dS has unit normal n̂, then
the infinitesimal vector element of area is defined by:-

dS = n̂ dS

Example: if S lies in the (x, y) plane, then dS = e3 dx dy in Cartesian coordinates.

Physical interpretation: dS · â gives the projected (scalar) element of area onto the plane

with unit normal â.

For closed surfaces (eg, a sphere) we choose n̂ to be the outward normal. For open

surfaces, the sense of n̂ is arbitrary — except that it is chosen in the same sense for all

elements of the surface. See Bourne & Kendall 5.5 for further discussion of surfaces.

n_
n_

n_

n_

n_

n_

n_
n_

−

^

^

^

^

^

^
^

^

.

If A(r) is a vector field defined on S, we define the (normal) surface integral

∫

S

A · dS =

∫

S

(
A · n̂

)
dS = lim

m→∞
δS → 0

m∑

i=1

(
A(r i) · n̂ i

)
δSi

where we have formed the Riemann sum by dividing the surface S into m small areas, the

ith area having vector area δS i. Clearly, the quantity A(r i) · n̂ i is the component of A

normal to the surface at the point r i

• We use the notation

∫

S

A·dS for both open and closed surfaces. Sometimes the integral

over a closed surface is denoted by

∮

S

A · dS (not used here).
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• Note that the integral over S is a double integral in each case. Hence surface integrals

are sometimes denoted by

∫ ∫

S

A · dS (not used here).

Example: Let S be the surface of a unit cube (S = sum over all six faces).

x

z

O

dS

dS_

_

y
dz

dy

1

1

1

On the front face, parallel to the (y, z) plane, at x = 1, we have

dS = n̂ dS = e1 dy dz

On the back face at x = 0 in the (y, z) plane, we have

dS = n̂ dS = −e1 dy dz

In each case, the unit normal n̂ is an outward normal because S is a closed surface.

If A(r) is a vector field, then the integral

∫

S

A · dS over the front face shown is

∫ z=1

z=0

∫ y=1

y=0

A · e1 dy dz =

∫ z=1

z=0

∫ y=1

y=0

A1

∣∣∣∣
x=1

dy dz

The integral over y and z is an ordinary double integral over a square of side 1. The integral

over the back face is

−
∫ z=1

z=0

∫ y=1

y=0

A · e1 dy dz = −
∫ z=1

z=0

∫ y=1

y=0

A1

∣∣∣∣
x=0

dy dz

The total integral is the sum of contributions from all 6 faces.
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4.3.1 Parametric form of the surface integral

Suppose the points on a surface S are defined by two real parameters u and v:-

r = r(u, v) = (x(u, v), y(u, v), z(u, v)) then

• the lines r(u, v) for fixed u, variable v, and

• the lines r(u, v) for fixed v, variable u

are parametric lines and form a grid on the surface S as shown.

lines of
constant

lines of
constant u

n_

S v

^

.

If we change u and v by du and dv respectively, then r changes by dr:-

dr =
∂r

∂u
du +

∂r

∂v
dv

Along the curves v = constant, we have dv = 0, and so dr is simply:-

dru =
∂r

∂u
du

where
∂r

∂u
is a vector which is tangent to the surface, and tangent to the lines v = const.

Similarly, for u = constant, we have

drv =
∂r

∂v
dv

so
∂r

∂v
is tangent to lines u = constant.
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dS

dr_

dr_

v=v

v=v

u=u

u=u

u

v

1

2

2

1

_n̂

We can therefore construct a unit vector n̂, normal to the surface at r:-

n̂ =
∂r

∂u
× ∂r

∂v

/∣∣∣∣
∂r

∂u
× ∂r

∂v

∣∣∣∣

The vector element of area, dS, has magnitude equal to the area of the infinitesimal paral-

lelogram shown, and points in the direction of n̂, therefore we can write

dS = dru × drv =

(
∂r

∂u
du

)
×
(
∂r

∂v
dv

)
=

(
∂r

∂u
× ∂r

∂v

)
du dv

dS =

(
∂r

∂u
× ∂r

∂v

)
du dv

Finally, our integral is parameterised as

∫

S

A · dS =

∫

v

∫

u

A ·
(
∂r

∂u
× ∂r

∂v

)
du dv

Note: We use two integral signs when writing surface integrals in terms of explicit parame-

ters u and v. The limits for the integrals over u and v must be chosen appropriately for the

surface.

end of lecture 18
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4.4 More on Surface and Volume Integrals

4.4.1 The Concept of Flux

θ

dS_
v_

dS cosθ

Let v(r) be the velocity at a point r in a moving fluid.
In a small region, where v is approximately constant,
the volume of fluid crossing the element of vector area
dS = n̂ dS in time dt is

(∣∣v
∣∣ dt
)

(dS cos θ) =
(
v · dS

)
dt

since the area normal to the direction of flow is v̂ · dS =
dS cos θ.

Therefore

v · dS = volume per unit time of fluid crossing dS

hence

∫

S

v · dS = volume per unit time of fluid crossing a finite surface S

More generally, for a vector field A(r):

The surface integral

∫

S

A · dS is called the flux of A through the surface S.

The concept of flux is useful in many different contexts e.g. flux of molecules in an gas;

electromagnetic flux etc

Example: Let S be the surface of sphere x2 + y2 + z2 = a2.

Find n̂, dS and evaluate the total flux of the vector field A = r̂/r2 out of the sphere.

An arbitrary point r on S may be parameterised by spherical polar co-ordinates θ and φ

r = a sin θ cosφ e1 + a sin θ sin φ e2 + a cos θ e3 {0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}

so
∂r

∂θ
= a cos θ cosφ e1 + a cos θ sinφ e2 − a sin θ e3

and
∂r

∂φ
= −a sin θ sinφ e1 + a sin θ cosφ e2 + 0 e3
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θ

φ

r

e
e

e_

_
_

e

e

_

_1

2

e_
3

r

φ

θ

dS

Therefore

∂r

∂θ
× ∂r

∂φ
=

∣∣∣∣∣∣

e1 e2 e3

a cos θ cos φ a cos θ sinφ −a sin θ
−a sin θ sinφ +a sin θ cosφ 0

∣∣∣∣∣∣

= a2 sin2 θ cosφ e1 + a2 sin2 θ sinφ e2 + a2 sin θ cos θ
[
cos2 φ+ sin2 φ

]
e3

= a2 sin θ (sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3)

= a2 sin θ r̂

n̂ = r̂

dS =
∂r

∂θ
× ∂r

∂φ
dθ dφ = a2 sin θdθ dφ r̂

On the surface S, r = a and the vector field A(r) = r̂/a2. Thus the flux of A is

∫

S

A · dS =

∫ π

0

sin θdθ

∫ 2π

0

dφ = 4π

Spherical basis: The normalised vectors (shown in the figure)

eθ =
∂r

∂θ

/∣∣∣∣
∂r

∂θ

∣∣∣∣ ; eφ =
∂r

∂φ

/∣∣∣∣
∂r

∂φ

∣∣∣∣ ; er = r̂

form an orthonormal set. This is the basis for spherical polar co-ordinates and is an example

of a non-Cartesian basis since the eθ, eφ, er depend on position r.

4.4.2 Other Surface Integrals

If f(r) is a scalar field, a scalar surface integral is of the form

∫

S

f dS
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For example the surface area of the surface S is

∫

S

dS =

∫

S

∣∣dS
∣∣ =

∫

v

∫

u

∣∣∣∣
∂r

∂u
× ∂r

∂v

∣∣∣∣ du dv

We may also define vector surface integrals:-
∫

S

f dS

∫

S

A dS

∫

S

A× dS

Each of these is a double integral, and is evaluated in a similar fashion to the scalar integrals,

the result being a vector in each case.

The vector area of a surface is defined as S =

∫

S

dS. For a closed surface this is always

zero.

Example: the vector area of an (open) hemisphere (see 16.1) of radius a is found using

spherical polars to be

S =

∫

S

dS =

∫ 2π

φ=0

∫ π/2

θ=0

a2 sin θer dθ dφ .

Using er = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3 we obtain

S = e1 a
2

∫ π/2

0

sin2 θdθ

∫ 2π

0

cosφdφ + e2 a
2

∫ π/2

0

sin2 θdθ

∫ 2π

0

sin φdφ

+ e3 a
2

∫ π/2

0

sin θ cos θdθ

∫ 2π

0

dφ

= 0 + 0 + e3πa
2

The vector surface of the full sphere is zero since the contributions from upper and lower

hemispheres cancel; also the vector area of a closed hemisphere is zero since the vector area

of the bottom face is −e3πa
2.

4.4.3 Parametric form of Volume Integrals

We have already met and revised volume integrals in 16.1. Conceptually volume integrals are

simpler than line and surface integrals because the elemental volume dV is a scalar quantity.

Here we discuss the parametric form of volume integrals. Suppose we can write r in terms

of three real parameters u, v and w, so that r = r(u, v, w). If we make a small change in

each of these parameters, then r changes by

dr =
∂r

∂u
du +

∂r

∂v
dv +

∂r

∂w
dw
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Along the curves {v = constant, w = constant}, we have dv = 0 and dw = 0, so dr is

simply:-

dru =
∂r

∂u
du

with drv and drw having analogous definitions.

dr_

_dr

u

w dr_ v

The vectors dru, drv and drw form the sides of an in-
finitesimal parallelepiped of volume

dV =
∣∣dru · drv × drw

∣∣

dV =

∣∣∣∣
∂r

∂u
· ∂r
∂v
× ∂r

∂w

∣∣∣∣ du dv dw

Example: Consider a circular cylinder of radius a, height c. We can parameterise r using

cylindrical polar coordinates. Within the cylinder, we have

r = ρ cosφ e1 + ρ sin φ e2 + ze3 {0 ≤ ρ ≤ a, 0 ≤ φ ≤ 2π, 0 ≤ z ≤ c}

Thus
∂r

∂ρ
= cosφ e1 + sinφ e2

∂r

∂φ
= −ρ sin φ e1 + ρ cos φ e2

∂r

∂z
= e3

and so dV =

∣∣∣∣
∂r

∂ρ
· ∂r
∂φ
× ∂r

∂z

∣∣∣∣ dρ dφ dz = ρ dρ dφ dz

φ

ρ

z

e

e

ee

e_ e

_

_

_ z

1 2_

_
3

ρ

φ

c

0

dV

The volume of the cylinder is
∫

V

dV =

∫ z=c

z=0

∫ φ=2π

φ=0

∫ ρ=a

ρ=0

ρ dρ dφ dz = π a2c.

Cylindrical basis: the normalised vectors (shown on the figure) form a non-Cartesian basis

where

eρ =
∂r

∂ρ

/∣∣∣∣
∂r

∂ρ

∣∣∣∣ ; eφ =
∂r

∂φ

/∣∣∣∣
∂r

∂φ

∣∣∣∣ ; ez =
∂r

∂z

/∣∣∣∣
∂r

∂z

∣∣∣∣
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end of lecture 19

4.5 The Divergence Theorem

4.5.1 Integral Definition of Divergence

If A is a vector field in the region R, and P is a point in R, then the divergence of A at P

may be defined by

divA = lim
V→0

1

V

∫

S

A·dS

where S is a closed surface in R which encloses the volume V . The limit must be taken so

that the point P is within V .

This definition of divA is basis independent.

We now prove that our original definition of div is recovered in Cartesian co-ordinates

Let P be a point with Cartesian coordinates
(x0, y0, z0) situated at the centre of a small
rectangular block of size δ1 × δ2 × δ3, so its
volume is δV = δ1 δ2 δ3.

• On the front face of the block, orthog-
onal to the x axis at x = x0 + δ1/2
we have outward normal n̂ = e1 and so
dS = e1 dy dz

• On the back face of the block orthog-
onal to the x axis at x = x0 − δ1/2 we
have outward normal n̂ = −e1 and so
dS = −e1 dy dz

O

dS

dS_

_

dz

dy
P

δ1

δ2

δ3

z

y

x

Hence A · dS = ±A1 dy dz on these two faces. Let us denote the two surfaces orthogonal to

the e1 axis by S1.
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The contribution of these two surfaces to the integral

∫

S

A · dS is given by

∫

S1

A · dS =

∫

z

∫

y

{
A1(x0 + δ1/2, y, z) − A1(x0 − δ1/2, y, z)

}
dy dz

=

∫

z

∫

y

{[
A1(x0, y, z) +

δ1

2

∂A1(x0, y, z)

∂x
+ O(δ2

1)

]

−
[
A1(x0, y, z) −

δ1

2

∂A1(x0, y, z)

∂x
+ O(δ2

1)

]}
dy dz

=

∫

z

∫

y

δ1
∂A1(x0, y, z)

∂x
dy dz

where we have dropped terms of O(δ2
1) in the Taylor expansion of A1 about (x0, y, z).

So
1

δV

∫

S1

A · dS =
1

δ2 δ3

∫

z

∫

y

∂A1(x0, y, z)

∂x
dy dz

As we take the limit δ1, δ2, δ3 → 0 the integral tends to ∂A1(x0,y0,z0)
∂x

δ2 δ3 and we obtain

lim
δV→0

1

δV

∫

S1

A · dS =
∂A1(x0, y0, z0)

∂x

With similar contributions from the other 4 faces, we find

divA =
∂A1

∂x
+
∂A2

∂y
+
∂A3

∂z
= ∇ · A

in agreement with our original definition in Cartesian co-ordinates.

Note that the integral definition gives an intuitive understanding of the divergence in terms

of net flux leaving a small volume around a point r. In pictures: for a small volume dV

dV dV dV

(flux in = flux out)
div A >  0 div A < 0 div A = 0___

4.5.2 The Divergence Theorem (Gauss’s Theorem)

If A is a vector field in a volume V , and S is the closed surface bounding V , then
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∫

V

∇ · A dV =

∫

S

A · dS

Proof : We derive the divergence theorem by making use of the integral definition of div A

divA = lim
V→0

1

V

∫

S

A · dS.

Since this definition of div A is valid for volumes of arbitrary shape, we can build a smooth

surface S from a large number, N , of blocks of volume ∆V i and surface ∆Si. We have

divA(ri) =
1

∆V i

∫

∆Si
A · dS + (εi)

where εi → 0 as ∆V i → 0. Now multiply both sides by ∆V i and sum over all i

N∑

i=1

divA(ri) ∆V i =

N∑

i=1

∫

∆Si
A · dS +

N∑

i=1

εi ∆V i

On rhs the contributions from surface elements interior to S cancel. This is because where

two blocks touch, the outward normals are in opposite directions, implying that the contri-

butions to the respective integrals cancel.

Taking the limit N →∞ we have, as claimed,
∫

V

∇ · A dV =

∫

S

A · dS .

For an elegant alternative proof see Bourne & Kendall 6.2

4.6 The Continuity Equation

Consider a fluid with density field ρ(r) and velocity field v(r). We have seen previously that

the volume flux (volume per unit time) flowing across a surface is given by
∫
S
v · dS. The

corresponding mass flux (mass per unit time) is given by
∫

S

ρv · dS ≡
∫

S

J · dS

where J = ρv is called the mass current.

Now consider a volume V bounded by the closed surface S containing no sources or sinks of

fluid. Conservation of mass means that the outward mass flux through the surface S must

be equal to the rate of decrease of mass contained in the volume V .
∫

S

J · dS = −∂M
∂t

.
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The mass in V may be written as M =
∫
V
ρ dV . Therefore we have

∂

∂t

∫

V

ρ dV +

∫

S

J · dS = 0 .

We now use the divergence theorem to rewrite the second term as a volume integral and we

obtain ∫

V

[
∂ρ

∂t
+∇ · J

]
dV = 0

Now since this holds for arbitrary V we must have that

∂ρ

∂t
+∇ · J = 0 .

This equation, known as the continuity equation, appears in many different contexts since

it holds for any conserved quantity. Here we considered mass density ρ and mass current J

of a fluid; but equally it could have been number density of molecules in a gas and current

of molecules; electric charge density and electric current vector; thermal energy density and

heat current vector; or even more abstract conserved quantities such as probability density!

4.7 Sources and Sinks

Static case: Consider time independent behaviour where ∂ρ
∂t

= 0. The continuity equation

tells us that for the density to be constant in time we must have ∇ · J = 0 so that flux into

a point equals flux out.

However if we have a source or a sink of the field, the divergence is not zero at that point.

In general the quantity 1

V

∫

S

A · dS

tells us whether there are sources or sinks of the vector field A within V : if V contains

• a source, then

∫

S

A · dS =

∫

V

∇ · A dV > 0

• a sink, then

∫

S

A · dS =

∫

V

∇ · A dV < 0

If S contains neither sources nor sinks, then

∫

S

A · dS = 0.

As an example consider electrostatics. You will have learned that electric field lines are

conserved and can only start and stop at charges. A positive charge is a source of electric

field (i.e. creates a positive flux) and a negative charge is a sink (i.e. absorbs flux or creates

a negative flux).
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The electric field due to a charge q at the origin is

E =
q

4πε0

r̂

r2
.

It is easy to verify that ∇ · E = 0 except at the origin where the field is singular.

The flux integral for this type of field across a sphere (of any radius) around the origin was

evaluated in the last lecture and we find the flux out of the sphere as:

∫

S

E · dS =
q

ε0

Now since ∇ · E = 0 away from the origin the results holds for any surface enclosing the

origin. Moreover if we have several charges enclosed by S then

∫

S

E · dS =
∑

i

qi
ε0
.

This recovers Gauss’ Law of electrostatics.

We can go further and consider a charge density of ρ(r) per unit volume. Then

∫

S

E · dS =

∫

V

ρ(r)

ε0
dV .

We can rewrite the lhs using the divergence theorem

∫

V

∇ ·E dV =

∫

V

ρ(r)

ε0
dV .

Since this must hold for arbitrary V we see

∇ · E =
ρ(r)

ε0

which holds for all r and is one of Maxwell’s equations of Electromagnetism.

end of lecture 20

4.8 Examples of the Divergence Theorem

Volume of a body:

Consider the volume of a body:

V =

∫

V

dV
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Recalling that ∇ · r = 3 we can write

V =
1

3

∫

V

∇ · r dV

which using the divergence theorem becomes

V =
1

3

∫

S

r · dS

Example: Consider the hemisphere x2 + y2 + z2 ≤ a2 centered on e3 with bottom face at

z = 0. Recalling that the divergence theorem holds for a closed surface, the above equation

for the volume of the hemisphere tells us

V =
1

3

[∫

hemisphere

r · dS +

∫

bottom

r · dS
]
.

On the bottom face dS = −e3 dS so that r · dS = −z dS = 0 since z = 0. Hence the only

contribution comes from the (open) surface of the hemisphere and we see that

V =
1

3

∫

hemisphere

r · dS .

We can evaluate this by using spherical polars for the surface integral. As was derived in

lecture 19, for a hemisphere of radius a

dS = a2 sin θ dθ dφ er .

On the hemisphere r · dS = a3 sin θ dθ dφ so that
∫

S

r · dS = a3

∫ π/2

0

sin θ dθ

∫ 2π

0

dφ = 2πa3

giving the anticipated result

V =
2πa3

3
.

4.9 Line Integral Definition of Curl and Stokes’ Theorem

4.9.1 Line Integral Definition of Curl

Let ∆S be a small planar surface containing the
point P , bounded by a closed curve C, with unit
normal n̂ and (scalar) area ∆S. Let A be a vector
field defined on ∆S.

C

S∆ P

n_^
.

The component of ∇× A parallel to n̂ is defined to be
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n̂·
(
∇× A

)
= lim

∆S→0

1

∆S

∮

C

A·dr

NB: the integral around C is taken in the right-hand sense with respect to the normal n̂ to

the surface – as in the figure above.

This definition of curl is independent of the choice of basis. The usual Cartesian form

for curlA can be recovered from this general definition by considering small rectangles in

the (e1−e2), (e2−e3) and (e3−e1) planes respectively, but you are not required to prove this.

4.9.2 Cartesian form of Curl

Let P be a point with Cartesian coordinates (x0, y0, z0) situated at the centre of a small

rectangle C = abcd of size δ1 × δ2, area ∆S = δ1 δ2, in the (e1−e2) plane.

e

e

e

n =

_

_

_

_ e_3

3

2

1

x0

y
0

δ

δ2

1

a b

cd

^

The line integral around C is given by the sum of four terms

∮

C

A · dr =

∫ b

a

A · dr +

∫ c

b

A · dr +

∫ d

c

A · dr +

∫ a

d

A · dr

Since r = xe1 + ye2 + ze3, we have dr = e1 dx along d→ a and c→ b, and dr = e2 dy along

a→ b and d→ c. Therefore

∮

C

A · dr =

∫ b

a

A2 dy −
∫ b

c

A1 dx −
∫ c

d

A2 dy +

∫ a

d

A1 dx
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For small δ1 & δ2, we can Taylor expand the integrands, viz
∫ a

d

A1 dx =

∫ a

d

A1(x, y0 − δ2/2, z0) dx

=

∫ x0+δ1/2

x0−δ1/2

[
A1(x, y0, z0) − δ2

2

∂A1(x, y0, z0)

∂y
+ O(δ2

2)

]
dx

∫ b

c

A1 dx =

∫ b

c

A1(x, y0 + δ2/2, z0) dx

=

∫ x0+δ1/2

x0−δ1/2

[
A1(x, y0, z0) +

δ2

2

∂A1(x, y0, z0)

∂y
+ O(δ2

2)

]
dx

so

1

∆S

[∫ a

d

A · dr +

∫ c

b

A · dr
]

=
1

δ1 δ2

[∫ a

d

A1 dx −
∫ b

c

A1 dx

]

=
1

δ1δ2

∫ x0+δ1/2

x0−δ1/2

[
−δ2

∂A1(x, y0, z0)

∂y
+ O(δ2

2)

]
dx

→ −∂A1(x0, y0, z0)

∂y
as δ1, δ2 → 0

A similar analysis of the line integrals along a→ b and c→ d gives

1

∆S

[∫ b

a

A · dr +

∫ d

c

A · dr
]
→ ∂A2(x0, y0, z0)

∂x
as δ1, δ2 → 0

Adding the results gives for our line integral definition of curl yields

e3 ·
(
∇× A

)
=

(
∇× A

)
3

=

[
∂A2

∂x
− ∂A1

∂y

]∣∣∣∣
(x0, y0, z0)

in agreement with our original definition in Cartesian coordinates.

The other components of curl A can be obtained from similar rectangles in the (e2−e3) and

(e1−e3) planes, respectively.

4.9.3 Stokes’ Theorem

If S is an open surface, bounded by a simple closed
curve C, and A is a vector field defined on S, then

∮

C

A · dr =

∫

S

(
∇× A

)
· dS

where C is traversed in a right-hand sense about dS.
(As usual dS = n̂dS and n̂ is the unit normal to S).

dS

S

_

_

C

n̂

.
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Proof:

Divide the surface area S into N adjacent small surfaces as indicated in the diagram. Let

∆Si = ∆Si n̂i be the vector element of area at ri. Using the integral definition of curl,

n̂ ·
(
curl A

)
= n̂ ·

(
∇× A

)
= lim

∆S→0

1

∆S

∮

C

A · dr

we multiply by ∆Si and sum over all i to get

N∑

i=1

(
∇× A(ri)

)
· n̂i ∆Si =

N∑

i=1

∮

Ci
A · dr +

N∑

i=1

εi ∆Si

where C i is the curve enclosing the area ∆Si, and the quantity εi → 0 as ∆Si → 0.

n

C

C

C

n_

_

1

2

2

1^

^

.

Since each small closed curve C i is traversed in the same sense, then, from the diagram, all

contributions to

N∑

i=1

∮

Ci
A · dr cancel, except on those curves where part of C i lies on the

curve C. For example, the line integrals along the common sections of the two small closed

curves C1 and C2 cancel exactly. Therefore

N∑

i=1

∮

Ci
A · dr =

∮

C

A · dr

Hence ∮

C

A · dr =

∫

S

(
∇× A

)
· dS =

∫

S

n̂ ·
(
∇× A

)
dS
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Mathematical Note: For those worried about how to analyse ‘the error term’, note that for

finite N , we can put an upper bound
N∑

i=1

εi ∆Si ≤ S max
i

{
εi
}

This tends to zero in the limit N →∞, because εi → 0 and S is finite.

end of lecture 21

4.9.4 Applications of Stokes’ Theorem

In Lecture 17 it was stated that if a vector field is irrotational (curl vanishes) then a line

integral is independent of path. We can now prove this statement using Stokes’ theorem.

Proof:

Let ∇×A(r) = 0 in R, and consider the difference
of two line integrals from the point r

0
to the point r

along the two curves C1 and C2 as shown:

∫

C1

A(r′) · dr′ −
∫

C2

A(r′) · dr′

We use r′ as integration variable to distinguish it from
the limits of integration r

0
and r.

S

r_

r_

C

C

0

2

1

We can rewrite this as the integral around the closed curve C = C1 − C2:
∫

C1

A(r′) · dr′ −
∫

C2

A(r′) · dr′ =

∮

C

A(r′) · dr′

=

∫

S

∇× A · dS = 0

In the above, we have used Stokes’ theorem to write the line integral of A around the closed

curve C = C1 − C2, as the surface integral of ∇× A over an open surface S bounded by C.

This integral is zero because ∇× A = 0 everywhere in R. Hence

∇× A(r) = 0 ⇒
∮

C

A(r′) · dr′ = 0

for any closed curve C in R as claimed.

Clearly, the converse is also true ı.e. if the line integral between two points is path inde-

pendent then the line integral around any closed curve (connecting the two points) is zero.

Therefore

0 =

∮

C

A(r′) · dr′ =
∫

S

∇× A · dS
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where we have used Stokes’ theorem and since this holds for any S the field must be irrota-

tional.

Planar Areas

Consider a planar surface in the e1−e2 plane and the vector field

A =
1

2
[−ye1 + xe2] .

We find ∇×A = e3. Since a vector element of area normal to a planar surface in the e1−e2

plane is dS = dS e3 we can obtain the area in the following way

∫

S

∇× A · dS =

∫

S

e3 · dS =

∫

S

dS = S

Now we can use Stokes’ theorem to find

S =

∮

C

A · dr =
1

2

∮

C

(−ye1 + xe2) · (e1dx+ e2dy)

=
1

2

∮

C

(x dy − y dx)

where C is the closed curve bounding the surface.

e.g. To find the area inside the curve

x2/3 + y2/3 = 1

use the substitution x = cos3 φ, y = sin3 φ, 0 ≤ φ ≤ 2π then

dx

dφ
= −3 cos2 φ sinφ ;

dy

dφ
= 3 sin2 φ cosφ

and we obtain

S =
1

2

∮

C

(
x
dy

dφ
− y dx

dφ

)
dφ

=
1

2

∫ 2π

0

(
3 cos4 φ sin2 φ+ 3 sin4 φ cos2 φ

)
dφ

=
3

2

∫ 2π

0

sin2 φ cos2 φ dφ =
3

8

∫ 2π

0

sin2 2φ dφ =
3π

8
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4.9.5 Example on joint use of Divergence and Stokes’ Theorems

Example: show that ∇ · ∇ × A ≡ 0 independent of co-ordinate system:

Let S be a closed surface, enclosing a volume V . Applying the divergence theorem to ∇×A,

we obtain ∫

V

∇ ·
(
∇× A

)
dV =

∫

S

(
∇× A

)
· dS

Now divide S into two surfaces S1 and S2 with a common boundary C as shown below

S

C

V

S

S

S

S
1

2

2

1

Now use Stokes’ theorem to write
∫

S

(
∇× A

)
· dS =

∫

S1

(
∇× A

)
· dS +

∫

S2

(
∇× A

)
· dS =

∮

C

A · dr −
∮

C

A · dr = 0

where the second line integral appears with a minus sign because it is traversed in the

opposite direction. (Recall that Stokes’ theorem applies to curves traversed in the right

hand sense with respect to the outward normal of the surface.)

Since this result holds for arbitrary volumes, we must have

∇ · ∇ × A ≡ 0

end of lecture 22
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